Beispiel #1
0
        public static double EnergyBalanceNormAtInterface(XDGField P, VectorField <XDGField> U, ConventionalDGField[] Umean, SinglePhaseField C, double muA, double muB, double sigma, int momentFittingOrder)
        {
            LevelSetTracker LsTrk = P.Basis.Tracker;

            double energyBal_Norm = 0.0;

            ScalarFunctionEx energyBalFunc = GetEnergyBalanceFunc(P, U, Umean, C, muA, muB, sigma, true);

            var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, momentFittingOrder, 1).XQuadSchemeHelper;
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs.Compile(LsTrk.GridDat, momentFittingOrder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                energyBalFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    energyBal_Norm += ResultsOfIntegration[i, 0];
                }
            }
                                         ).Execute();

            return(energyBal_Norm.Sqrt());
        }
Beispiel #2
0
        public static double CurvatureEnergy(LevelSetTracker LsTrk, SinglePhaseField Curvature, double sigma, ConventionalDGField[] uI, bool ExtVel, bool Norm, int momentFittingorder)
        {
            double EnergyCurv = 0.0;

            var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, momentFittingorder, 1).XQuadSchemeHelper;
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

            ScalarFunctionEx CurvEnergyFunc = GetCurvatureEnergyFunc(LsTrk, Curvature, sigma, uI, ExtVel, Norm);

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs.Compile(LsTrk.GridDat, momentFittingorder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                CurvEnergyFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    EnergyCurv += ResultsOfIntegration[i, 0];
                }
            }
                                         ).Execute();

            if (Norm)
            {
                EnergyCurv.Sqrt();
            }

            return(EnergyCurv);
        }
Beispiel #3
0
        public static void ProjectKineticDissipation(this XDGField proj, LevelSetTracker LsTrk, DGField[] Velocity, double[] mu, int momentFittingOrder, int HistInd = 1)
        {
            using (new FuncTrace()) {
                int D = LsTrk.GridDat.SpatialDimension;
                if (Velocity.Count() != D)
                {
                    throw new ArgumentException();
                }
                if (LsTrk.SpeciesIdS.Count != mu.Length)
                {
                    throw new ArgumentException();
                }

                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(LsTrk.SpeciesIdS.ToArray(), momentFittingOrder, HistInd).XQuadSchemeHelper;

                for (int iSpc = 0; iSpc < LsTrk.SpeciesIdS.Count; iSpc++)
                {
                    SpeciesId spcId = LsTrk.SpeciesIdS[iSpc];
                    double    _mu   = mu[iSpc];

                    var Uspc = Velocity.Select(u => (u as XDGField).GetSpeciesShadowField(spcId)).ToArray();
                    ScalarFunctionEx spcKinDissip = GetSpeciesKineticDissipationFunc(Uspc, _mu);

                    proj.GetSpeciesShadowField(spcId).ProjectField(spcKinDissip);
                }
            }
        }
Beispiel #4
0
        public static double SurfaceEnergyChangerate(LevelSetTracker LsTrk, ConventionalDGField[] uI, double sigma, bool Norm, int momentFittingorder)
        {
            double Changerate_Surface = 0.0;

            var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, momentFittingorder, 1).XQuadSchemeHelper;
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

            ScalarFunctionEx SurfaceChangerate = GetInterfaceDivergenceFunc(LsTrk, uI, Norm);

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs.Compile(LsTrk.GridDat, momentFittingorder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                SurfaceChangerate(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    Changerate_Surface += ResultsOfIntegration[i, 0];
                }
            }
                                         ).Execute();

            double Changerate_Esurf;

            if (Norm)
            {
                Changerate_Esurf = sigma * Changerate_Surface.Sqrt();
            }
            else
            {
                Changerate_Esurf = sigma * Changerate_Surface;
            }

            return(Changerate_Esurf);
        }
Beispiel #5
0
 /// <summary>
 /// ctor.
 /// </summary>
 public LxNormQuadrature(DGField owner, ScalarFunctionEx func, Func <double[], double, double, double> Map, ICompositeQuadRule <QuadRule> rule)
     : base(new int[] { 1 }, owner.Basis.GridDat, rule) //
 {
     m_funcEx = func;
     m_Owner  = owner;
     m_Map    = Map;
 }
Beispiel #6
0
            /// <summary>
            /// Evaluate a field at every single point of the (possibly sub-
            /// divided) grid.
            /// </summary>
            /// <param name="Evaluator">The function to be evaluated</param>
            /// <returns>
            /// A list of results. See
            /// <see cref="ScalarFunctionEx"/>
            /// for information about the indexing.
            /// </returns>
            private MultidimensionalArray SampleField(ScalarFunctionEx Evaluator)
            {
                MultidimensionalArray result = MultidimensionalArray.Create(NoOfCells, verticesPerCell);

                IEnumerable <Chunk> enumerable;

                if (NoOfCells == sgrd.VolumeMask.NoOfItemsLocally)
                {
                    enumerable = sgrd.VolumeMask;
                }
                else
                {
                    enumerable = sgrd.VolumeMask.GetEnumerableWithExternal();
                }


                int iKref = Array.IndexOf(context.Grid.RefElements, this.Zone_Element);

                foreach (var cnk in enumerable)
                {
                    Evaluator(cnk.i0, cnk.Len, localVerticeCoordinates,
                              result.ExtractSubArrayShallow(new int[] { cnk.i0, 0 }, new int[] { cnk.JE - 1, verticesPerCell - 1 }));
                }
                return(result);
            }
 /// <summary>
 /// creates a <see cref="ScalarFunctionEx"/> which represents the comosition
 /// \f$ T \circ f\f$
 /// </summary>
 /// <param name="f">original function \f$ f\f$ </param>
 /// <param name="T">transformation \f$ T\f$ </param>
 /// <returns></returns>
 static public ScalarFunctionEx Map(this ScalarFunctionEx f, Func <double, double> T)
 {
     return((new Map1()
     {
         T = T, f = f
     }).Tf);
 }
Beispiel #8
0
        public static double EnergyJumpAtInterface(LevelSetTracker LsTrk, VectorField <XDGField> Velocity, XDGField Pressure, double muA, double muB, bool Norm, int momentFittingorder)
        {
            double EnergyJump = 0.0;

            ScalarFunctionEx EnergyJumpFunc = GetEnergyJumpFunc(LsTrk, Velocity, Pressure, muA, muB, Norm);

            var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, momentFittingorder, 1).XQuadSchemeHelper;
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs.Compile(LsTrk.GridDat, momentFittingorder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                EnergyJumpFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    EnergyJump += ResultsOfIntegration[i, 0];
                }
            }
                                         ).Execute();

            if (Norm)
            {
                EnergyJump.Sqrt();
            }

            return(EnergyJump);
        }
        protected override void CorrectLevelSet(int timestepNo, CellMask CellsToCorrect = null, bool ReIteration = false)
        {
            DGField Interface_old = Interface.CloneAs();

            ScalarFunctionEx FrontTracking_LevelSetDistanceCorrectionFull = delegate(int cell0, int Len, NodeSet Ns, MultidimensionalArray result)
            {
                Interface_old.Evaluate(cell0, Len, Ns, result);
                MultidimensionalArray GlobalNodes = this.Grid.GlobalNodes.GetValue_Cell(Ns, cell0, Len);

                int c = 0;
                for (int cell = cell0; cell < cell0 + Len; cell++, c++)
                {
                    if (NarrowBandCells.Contains(cell))
                    //if(true)
                    {
                        for (int i = 0; i < Ns.NoOfNodes; i++)
                        {
                            MultidimensionalArray GlobalNode = MultidimensionalArray.Create(1, SpatialDimension);
                            for (int dim = 0; dim < SpatialDimension; dim++)
                            {
                                GlobalNode [0, dim] = GlobalNodes [c, i, dim];
                            }

                            double Phi_abs = AllEdges[0].SignedDistanceToPoint(GlobalNode);

                            foreach (Edge Edge in AllEdges)
                            {
                                double dist = Edge.SignedDistanceToPoint(GlobalNode);
                                if (Math.Abs(Phi_abs) > Math.Abs(dist))
                                {
                                    Phi_abs = dist;
                                }
                            }
                            result[c, i] = Phi_abs;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < Ns.NoOfNodes; i++)
                        {
                            if (result[c, i] > 0.0)
                            {
                                result[c, i] = 1;
                            }
                            else
                            {
                                result[c, i] = -1;
                            }
                        }
                    }
                }
            };

            Interface.ProjectField(FrontTracking_LevelSetDistanceCorrectionFull);
        }
Beispiel #10
0
        /// <summary>
        /// This call computes an integral measure which may depend on
        /// this <see cref="DGField"/> an the given <paramref name="function"/>;
        /// This is a collective call, it must be invoked by all
        /// MPI processes within the communicator; internally, it invokes MPI_Allreduce;
        /// </summary>
        /// <param name="function"></param>
        /// <param name="rule">
        /// composite quadrature rule.
        /// </param>
        /// <param name="Map">
        /// Arbiter mapping applied to the values of this field and
        /// <paramref name="function"/> at some point, which is finally integrated.
        /// E.g., the mapping for an L2-error would be \f$ (\vec{x},a,b) => (a - b)^2 \f$,
        /// where \f$ a \f$ is the value of this field at some point \f$ \vec{x} \f$ and
        /// \f$ b \f$ is the value of <paramref name="function"/> at \f$ \vec{x} \f$.
        /// </param>
        /// <returns>
        /// on all invoking MPI processes, the L2 norm of
        /// this field minus <paramref name="function"/>
        /// </returns>
        public double LxError(ScalarFunctionEx function, Func <double[], double, double, double> Map, ICompositeQuadRule <QuadRule> rule)
        {
            MPICollectiveWatchDog.Watch(csMPI.Raw._COMM.WORLD);

            using (new FuncTrace()) {
                LxNormQuadrature l2nq = new LxNormQuadrature(this, function, Map, rule);
                l2nq.Execute();

                double nrmtot = l2nq.LxNorm.MPISum();
                return(nrmtot);
            }
        }
Beispiel #11
0
        /// <summary>
        /// Computes the Integral of a given function over the zero iso-contour of the Level-Set
        /// </summary>
        /// <param name="LsTrk">Level-Set tracker</param>
        /// <param name="func">function which is integrated</param>
        /// <param name="HMForder"></param>
        /// <param name="spc">species, over whose surface is integrated</param>
        /// <returns>Integral of <param name="func">func</param> over all MPI processors</returns>
        static public double GetIntegralOverZeroLevelSet(LevelSetTracker LsTrk, ScalarFunctionEx func, int HMForder, SpeciesId spc)
        {
            using (new FuncTrace()) {
                if (LsTrk.LevelSets.Count != 1)
                {
                    throw new NotImplementedException();
                }


                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(new SpeciesId[] { spc }, HMForder, 1).XQuadSchemeHelper;
                // new XQuadSchemeHelper(LsTrk, momentFittingVariant);

                // Classic HMF uses order+1 for Surface Integrals and additionally 1 order higher for the HMF system
                // e.g order-2 is the cached quad rule
                if (SchemeHelper.MomentFittingVariant == XQuadFactoryHelper.MomentFittingVariants.Classic)
                {
                    HMForder -= 2;
                }

                CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

                double force = 0;

                CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                             cqs.Compile(LsTrk.GridDat, HMForder),
                                             delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                    func(i0, Length, QR.Nodes, EvalResult);
                },
                                             delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                    for (int i = 0; i < Length; i++)
                    {
                        force += ResultsOfIntegration[i, 0];
                    }
                }
                                             ).Execute();

                double localForce = force;
                double globalForce;
                unsafe
                {
                    csMPI.Raw.Allreduce(
                        (IntPtr)(&localForce),
                        (IntPtr)(&globalForce),
                        1,
                        csMPI.Raw._DATATYPE.DOUBLE,
                        csMPI.Raw._OP.SUM,
                        csMPI.Raw._COMM.WORLD);
                }

                return(globalForce);
            }
        }
Beispiel #12
0
        public static void ProjectKineticEnergy(this XDGField proj, LevelSetTracker LsTrk, XDGField[] Velocity, double[] rho, int momentFittingOrder, int HistInd = 1)
        {
            using (new FuncTrace()) {
                int D = LsTrk.GridDat.SpatialDimension;
                if (Velocity.Count() != D)
                {
                    throw new ArgumentException();
                }
                if (LsTrk.SpeciesIdS.Count != rho.Length)
                {
                    throw new ArgumentException();
                }

                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(LsTrk.SpeciesIdS.ToArray(), momentFittingOrder, HistInd).XQuadSchemeHelper;

                for (int iSpc = 0; iSpc < LsTrk.SpeciesIdS.Count; iSpc++)
                {
                    SpeciesId spcId = LsTrk.SpeciesIdS[iSpc];
                    double    _rho  = rho[iSpc];

                    var Uspc = Velocity.Select(u => (u as XDGField).GetSpeciesShadowField(spcId)).ToArray();
                    //ScalarFunctionEx spcKinDissip = GetSpeciesKineticDissipationFunc(Uspc, _rho);

                    ScalarFunctionEx spcKinEnergy = delegate(int i0, int Len, NodeSet nds, MultidimensionalArray result) {
                        int K = result.GetLength(1); // No nof Nodes

                        MultidimensionalArray U_res = MultidimensionalArray.Create(Len, K, D);
                        for (int i = 0; i < D; i++)
                        {
                            Uspc[i].Evaluate(i0, Len, nds, U_res.ExtractSubArrayShallow(-1, -1, i));
                        }

                        double acc;
                        for (int j = 0; j < Len; j++)
                        {
                            for (int k = 0; k < K; k++)
                            {
                                acc = 0.0;

                                for (int d = 0; d < D; d++)
                                {
                                    acc += U_res[j, k, d] * U_res[j, k, d];
                                }
                                result[j, k] = _rho * acc / 2.0;
                            }
                        }
                    };

                    proj.GetSpeciesShadowField(spcId).ProjectField(spcKinEnergy);
                }
            }
        }
Beispiel #13
0
        public static ScalarFunctionEx GetCurvatureEnergyFunc(LevelSetTracker LsTrk, DGField Curvature, double sigma, ConventionalDGField[] uI, bool ExtVel, bool squared)
        {
            int D = LsTrk.GridDat.SpatialDimension;

            ScalarFunctionEx CurvatureEnergyFunc = delegate(int i0, int Length, NodeSet nds, MultidimensionalArray result) {
                Curvature.Evaluate(i0, Length, nds, result);

                int K = result.GetLength(1); // No nof Nodes
                MultidimensionalArray U_res = MultidimensionalArray.Create(Length, K, D);

                for (int i = 0; i < D; i++)
                {
                    uI.ElementAt(i).Evaluate(i0, Length, nds, U_res.ExtractSubArrayShallow(-1, -1, i));
                }

                var Normals = LsTrk.DataHistories[0].Current.GetLevelSetNormals(nds, i0, Length);

                for (int j = 0; j < Length; j++)
                {
                    for (int k = 0; k < K; k++)
                    {
                        double acc = result[j, k];

                        for (int d = 0; d < D; d++)
                        {
                            // U * N
                            if (!ExtVel)
                            {
                                acc *= U_res[j, k, d] * Normals[j, k, d];
                            }
                            else
                            {
                                acc *= U_res[j, k, d];
                            }
                        }

                        if (squared)
                        {
                            result[j, k] = (sigma * acc).Pow2();
                        }
                        else
                        {
                            result[j, k] = sigma * acc;
                        }
                    }
                }
            };

            return(CurvatureEnergyFunc);
        }
Beispiel #14
0
        public static double GetKineticDissipation(LevelSetTracker LsTrk, DGField[] Velocity, double[] mu, int momentFittingOrder, int HistInd = 1)
        {
            using (new FuncTrace()) {
                int D = LsTrk.GridDat.SpatialDimension;
                if (Velocity.Count() != D)
                {
                    throw new ArgumentException();
                }
                if (LsTrk.SpeciesIdS.Count != mu.Length)
                {
                    throw new ArgumentException();
                }

                double dE = 0.0;

                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(LsTrk.SpeciesIdS.ToArray(), momentFittingOrder, HistInd).XQuadSchemeHelper;

                for (int iSpc = 0; iSpc < LsTrk.SpeciesIdS.Count; iSpc++)
                {
                    SpeciesId spcId = LsTrk.SpeciesIdS[iSpc];
                    double    _mu   = mu[iSpc];

                    var Uspc = Velocity.Select(u => (u as XDGField).GetSpeciesShadowField(spcId)).ToArray();
                    ScalarFunctionEx changerate_dEspc = GetSpeciesKineticDissipationFunc(Uspc, _mu);

                    CellQuadratureScheme vqs = SchemeHelper.GetVolumeQuadScheme(spcId);
                    CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                                 vqs.Compile(LsTrk.GridDat, momentFittingOrder),
                                                 delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                        changerate_dEspc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
                    },
                                                 delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                        for (int i = 0; i < Length; i++)
                        {
                            dE += ResultsOfIntegration[i, 0];
                        }
                    }
                                                 ).Execute();
                }

                return(dE);
            }
        }
Beispiel #15
0
        public static void ProjectEnergyBalanceNorm(this SinglePhaseField err, double alpha, XDGField P, VectorField <XDGField> U, ConventionalDGField[] Umean, SinglePhaseField C,
                                                    double muA, double muB, double sigma, int momentFittingOrder)
        {
            var LsTrk = U[0].Basis.Tracker;
            int D     = LsTrk.GridDat.SpatialDimension;

            ScalarFunctionEx ErrFunc = GetEnergyBalanceFunc(P, U, Umean, C, muA, muB, sigma, true);

            var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, momentFittingOrder, 1).XQuadSchemeHelper;
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs.Compile(LsTrk.GridDat, momentFittingOrder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                ErrFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    err.SetMeanValue(i0 + i, ResultsOfIntegration[i, 0].Sqrt());
                }
            }
                                         ).Execute();
        }
Beispiel #16
0
        public static double GetInterfaceShearViscosityEnergyCR(LevelSetTracker LsTrk, ConventionalDGField[] uI, double muI, int momentFittingOrder)
        {
            double shearViscEnergy = 0.0;

            ScalarFunctionEx shearViscEnergyFunc = GetInterfaceShearViscosityEnergyCRFunc(LsTrk, uI, false);

            var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, momentFittingOrder, 1).XQuadSchemeHelper;
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs.Compile(LsTrk.GridDat, momentFittingOrder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                shearViscEnergyFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    shearViscEnergy += ResultsOfIntegration[i, 0];
                }
            }
                                         ).Execute();

            return(muI * shearViscEnergy);
        }
Beispiel #17
0
        /// <summary>
        /// Calculates the drag (x-component) and lift (y-component) forces acting on a wall of a boundary fitted grid
        /// </summary>
        /// <param name="U"></param>
        /// <param name="P"></param>
        /// <param name="muA"></param>
        /// <returns></returns>
        static public double[] GetForces_BoundaryFitted(VectorField <SinglePhaseField> GradU, VectorField <SinglePhaseField> GradV, SinglePhaseField StressXX,
                                                        SinglePhaseField StressXY, SinglePhaseField StressYY, SinglePhaseField P, LevelSetTracker LsTrk, double muA, double beta)
        {
            int D = LsTrk.GridDat.SpatialDimension;

            if (D > 2)
            {
                throw new ArgumentException("Method GetForces_BoundaryFitted only implemented for 2D (viscoelastic)!");
            }
            // var UA = U.Select(u => u.GetSpeciesShadowField("A")).ToArray();
            //var UA = U.ToArray();
            MultidimensionalArray Grad_U = new MultidimensionalArray(D);
            var _GradU = GradU.ToArray();
            var _GradV = GradV.ToArray();


            int RequiredOrder = _GradU[0].Basis.Degree * 3 + 2;

            //int RequiredOrder = U[0].Basis.Degree * 3 + 2;
            //int RequiredOrder = LsTrk.GetXQuadFactoryHelper(momentFittingVariant).GetCachedSurfaceOrders(0).Max();
            //Console.WriteLine("Order reduction: {0} -> {1}", _RequiredOrder, RequiredOrder);

            //if (RequiredOrder > agg.HMForder)
            //    throw new ArgumentException();

            Console.WriteLine("Forces coeff: {0}, order = {1}", LsTrk.CutCellQuadratureType, RequiredOrder);

            SinglePhaseField _StressXX = StressXX;
            SinglePhaseField _StressXY = StressXY;
            SinglePhaseField _StressYY = StressYY;

            SinglePhaseField pA = null;

            //pA = P.GetSpeciesShadowField("A");
            pA = P;



            double[] forces = new double[D];
            for (int d = 0; d < D; d++)
            {
                ScalarFunctionEx ErrFunc = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                    int K = result.GetLength(1); // No nof Nodes
                    MultidimensionalArray Grad_URes   = MultidimensionalArray.Create(Len, K, D);
                    MultidimensionalArray Grad_VRes   = MultidimensionalArray.Create(Len, K, D);
                    MultidimensionalArray pARes       = MultidimensionalArray.Create(Len, K);
                    MultidimensionalArray StressXXRes = MultidimensionalArray.Create(Len, K);
                    MultidimensionalArray StressXYRes = MultidimensionalArray.Create(Len, K);
                    MultidimensionalArray StressYYRes = MultidimensionalArray.Create(Len, K);

                    var Normals = LsTrk.GridDat.Edges.NormalsCache.GetNormals_Edge(Ns, j0, Len);
                    //var Normals = MultidimensionalArray.Create(1, Ns.Length, 1);
                    //var Normals = LsTrk.GridDat.Edges.NormalsForAffine;


                    for (int i = 0; i < D; i++)
                    {
                        _GradU[i].EvaluateEdge(j0, Len, Ns, Grad_URes.ExtractSubArrayShallow(-1, -1, i),
                                               Grad_URes.ExtractSubArrayShallow(-1, -1, i), ResultIndexOffset: 0, ResultPreScale: 1);

                        _GradV[i].EvaluateEdge(j0, Len, Ns, Grad_VRes.ExtractSubArrayShallow(-1, -1, i),
                                               Grad_VRes.ExtractSubArrayShallow(-1, -1, i), ResultIndexOffset: 0, ResultPreScale: 1);

                        //UA[i].EvaluateGradient(j0, Len, Ns, Grad_UARes.ExtractSubArrayShallow(-1, -1, i, -1), 0, 1);
                    }

                    //pA.Evaluate(j0, Len, Ns, pARes);
                    pA.EvaluateEdge(j0, Len, Ns, pARes, pARes, ResultIndexOffset: 0, ResultPreScale: 1);
                    _StressXX.EvaluateEdge(j0, Len, Ns, StressXXRes, StressXXRes, ResultIndexOffset: 0, ResultPreScale: 1);
                    _StressXY.EvaluateEdge(j0, Len, Ns, StressXYRes, StressXYRes, ResultIndexOffset: 0, ResultPreScale: 1);
                    _StressYY.EvaluateEdge(j0, Len, Ns, StressYYRes, StressYYRes, ResultIndexOffset: 0, ResultPreScale: 1);


                    //if (LsTrk.GridDat.SpatialDimension == 2)
                    //{

                    for (int j = 0; j < Len; j++)
                    {
                        for (int k = 0; k < K; k++)
                        {
                            double acc = 0.0;

                            // pressure
                            switch (d)
                            {
                            case 0:
                                acc += pARes[j, k] * Normals[j, k, 0];
                                acc -= (2 * muA * beta) * Grad_URes[j, k, 0] * Normals[j, k, 0];
                                acc -= (muA * beta) * Grad_URes[j, k, 1] * Normals[j, k, 1];
                                acc -= (muA * beta) * Grad_VRes[j, k, 0] * Normals[j, k, 1];
                                acc -= (muA * (1 - beta)) * StressXXRes[j, k] * Normals[j, k, 0];
                                acc -= (muA * (1 - beta)) * StressXYRes[j, k] * Normals[j, k, 1];
                                break;

                            case 1:
                                acc += pARes[j, k] * Normals[j, k, 1];
                                acc -= (2 * muA * beta) * Grad_VRes[j, k, 1] * Normals[j, k, 1];
                                acc -= (muA * beta) * Grad_VRes[j, k, 0] * Normals[j, k, 0];
                                acc -= (muA * beta) * Grad_URes[j, k, 1] * Normals[j, k, 0];
                                acc -= (muA * (1 - beta)) * StressXYRes[j, k] * Normals[j, k, 0];
                                acc -= (muA * (1 - beta)) * StressYYRes[j, k] * Normals[j, k, 1];
                                break;

                            default:
                                throw new NotImplementedException();
                            }

                            result[j, k] = acc;
                        }
                    }

                    //}
                    //else
                    //{
                    //    for (int j = 0; j < Len; j++)
                    //    {
                    //        for (int k = 0; k < K; k++)
                    //        {
                    //            double acc = 0.0;

                    //            // pressure
                    //            switch (d)
                    //            {
                    //                case 0:
                    //                    acc += pARes[j, k] * Normals[j, k, 0];
                    //                    acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                    //                    acc -= (muA) * Grad_UARes[j, k, 0, 2] * Normals[j, k, 2];
                    //                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                    //                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                    //                    acc -= (muA) * Grad_UARes[j, k, 2, 0] * Normals[j, k, 2];
                    //                    break;
                    //                case 1:
                    //                    acc += pARes[j, k] * Normals[j, k, 1];
                    //                    acc -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                    //                    acc -= (muA) * Grad_UARes[j, k, 1, 2] * Normals[j, k, 2];
                    //                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                    //                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                    //                    acc -= (muA) * Grad_UARes[j, k, 2, 1] * Normals[j, k, 2];
                    //                    break;
                    //                case 2:
                    //                    acc += pARes[j, k] * Normals[j, k, 2];
                    //                    acc -= (2 * muA) * Grad_UARes[j, k, 2, 2] * Normals[j, k, 2];
                    //                    acc -= (muA) * Grad_UARes[j, k, 2, 0] * Normals[j, k, 0];
                    //                    acc -= (muA) * Grad_UARes[j, k, 2, 1] * Normals[j, k, 1];
                    //                    acc -= (muA) * Grad_UARes[j, k, 0, 2] * Normals[j, k, 0];
                    //                    acc -= (muA) * Grad_UARes[j, k, 1, 2] * Normals[j, k, 1];
                    //                    break;
                    //                default:
                    //                    throw new NotImplementedException();
                    //            }

                    //    result[j, k] = acc;
                    //}
                    //}
                    //}
                };


                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, RequiredOrder, 1).XQuadSchemeHelper;

                EdgeMask Mask = new EdgeMask(LsTrk.GridDat, "Wall_cylinder");

                EdgeQuadratureScheme eqs = SchemeHelper.GetEdgeQuadScheme(LsTrk.GetSpeciesId("A"), IntegrationDomain: Mask);

                EdgeQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                             eqs.Compile(LsTrk.GridDat, RequiredOrder), //  agg.HMForder),
                                             delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                    ErrFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
                },
                                             delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                    for (int i = 0; i < Length; i++)
                    {
                        forces[d] += ResultsOfIntegration[i, 0];
                    }
                }
                                             ).Execute();
            }

            //for (int i = 0; i < D; i++)
            //    forces[i] = MPI.Wrappers.MPIExtensions.MPISum(forces[i]);

            return(forces);
        }
Beispiel #18
0
        /// <summary>
        /// Calculates the Torque around the center of mass
        /// </summary>
        /// <param name="U"></param>
        /// <param name="P"></param>
        /// <param name="momentFittingVariant"></param>
        /// <param name="muA"></param>
        /// <param name="particleRadius"></param>
        /// <returns></returns>
        static public void GetCellValues(VectorField <XDGField> U, XDGField P,
                                         double muA, double particleRadius, SinglePhaseField P_atIB, SinglePhaseField gradU_atIB, SinglePhaseField gradUT_atIB)
        {
            var LsTrk = U[0].Basis.Tracker;
            int D     = LsTrk.GridDat.SpatialDimension;
            var UA    = U.Select(u => u.GetSpeciesShadowField("A")).ToArray();

            if (D > 2)
            {
                throw new NotImplementedException("Currently only 2D cases supported");
            }

            int RequiredOrder = U[0].Basis.Degree * 3 + 2;

            //if (RequiredOrder > agg.HMForder)
            //    throw new ArgumentException();

            Console.WriteLine("Cell values calculated by: {0}, order = {1}", LsTrk.CutCellQuadratureType, RequiredOrder);

            ConventionalDGField pA = null;
            double circumference   = new double();

            pA = P.GetSpeciesShadowField("A");

            for (int n = 0; n < 4; n++)
            {
                ScalarFunctionEx ErrFunc_CellVal = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                    int K = result.GetLength(1); // No nof Nodes
                    MultidimensionalArray Grad_UARes = MultidimensionalArray.Create(Len, K, D, D);;
                    MultidimensionalArray pARes      = MultidimensionalArray.Create(Len, K);

                    // Evaluate tangential velocity to level-set surface
                    var Normals = LsTrk.DataHistories[0].Current.GetLevelSetNormals(Ns, j0, Len);

                    for (int i = 0; i < D; i++)
                    {
                        UA[i].EvaluateGradient(j0, Len, Ns, Grad_UARes.ExtractSubArrayShallow(-1, -1, i, -1));
                    }

                    pA.Evaluate(j0, Len, Ns, pARes);

                    for (int j = 0; j < Len; j++)
                    {
                        for (int k = 0; k < K; k++)
                        {
                            double acc  = 0.0;
                            double acc2 = 0.0;
                            switch (n)
                            {
                            case 0:     // Pressure part


                                acc += pARes[j, k] * Normals[j, k, 0];
                                acc *= -Normals[j, k, 1] * particleRadius;


                                acc2 += pARes[j, k] * Normals[j, k, 1];
                                acc2 *= Normals[j, k, 0] * particleRadius;

                                result[j, k] = acc + acc2;
                                break;

                            case 1:                                                           // GradU part

                                acc -= (1 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0]; // Attention was 2 times
                                acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                                acc *= -Normals[j, k, 1] * particleRadius;

                                acc2 -= (1 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                                acc2 -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                                acc2 *= Normals[j, k, 0] * particleRadius;

                                result[j, k] = acc + acc2;
                                break;

                            case 2:                                                           // GradU_T part

                                acc -= (1 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0]; // Attention was 2 times
                                acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                                acc *= -Normals[j, k, 1] * particleRadius;


                                acc2 -= (1 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1]; // Attention was 2 times
                                acc2 -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                                acc2 *= Normals[j, k, 0] * particleRadius;

                                result[j, k] = acc + acc2;
                                break;

                            case 3:     // Standardization with radians

                                result[j, k] = 1;
                                break;

                            default:
                                throw new NotImplementedException();
                            }
                        }
                    }
                };



                var SchemeHelper         = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, RequiredOrder, 1).XQuadSchemeHelper; //   new XQuadSchemeHelper(LsTrk, momentFittingVariant, );
                CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

                CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                             cqs.Compile(LsTrk.GridDat, RequiredOrder),
                                             delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                    ErrFunc_CellVal(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
                },
                                             delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                    for (int i = 0; i < Length; i++)
                    {
                        switch (n)
                        {
                        case 0:
                            P_atIB.SetMeanValue(i0, ResultsOfIntegration[i, 0]);
                            break;

                        case 1:
                            gradU_atIB.SetMeanValue(i0, ResultsOfIntegration[i, 0]);
                            break;

                        case 2:
                            gradUT_atIB.SetMeanValue(i0, ResultsOfIntegration[i, 0]);
                            break;

                        case 3:
                            circumference += ResultsOfIntegration[i, 0];
                            P_atIB.SetMeanValue(i0, P_atIB.GetMeanValue(i0) / ResultsOfIntegration[i, 0]);
                            gradU_atIB.SetMeanValue(i0, gradU_atIB.GetMeanValue(i0) / ResultsOfIntegration[i, 0]);
                            gradUT_atIB.SetMeanValue(i0, gradUT_atIB.GetMeanValue(i0) / ResultsOfIntegration[i, 0]);
                            break;

                        default:
                            throw new NotImplementedException();
                        }
                    }
                }

                                             ).Execute();
            }

            Console.WriteLine("Circle circumference: " + circumference);
        }
Beispiel #19
0
        static public double[] GetParticleForces(VectorField <SinglePhaseField> U, SinglePhaseField P,
                                                 LevelSetTracker LsTrk,
                                                 double muA)
        {
            int D = LsTrk.GridDat.SpatialDimension;
            // var UA = U.Select(u => u.GetSpeciesShadowField("A")).ToArray();
            var UA = U.ToArray();

            int RequiredOrder = U[0].Basis.Degree * 3 + 2;

            //int RequiredOrder = LsTrk.GetXQuadFactoryHelper(momentFittingVariant).GetCachedSurfaceOrders(0).Max();
            //Console.WriteLine("Order reduction: {0} -> {1}", _RequiredOrder, RequiredOrder);

            //if (RequiredOrder > agg.HMForder)
            //    throw new ArgumentException();

            Console.WriteLine("Forces coeff: {0}, order = {1}", LsTrk.CutCellQuadratureType, RequiredOrder);


            ConventionalDGField pA = null;

            //pA = P.GetSpeciesShadowField("A");
            pA = P;

            double[] forces = new double[D];
            for (int d = 0; d < D; d++)
            {
                ScalarFunctionEx ErrFunc = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                    int K = result.GetLength(1); // No nof Nodes
                    MultidimensionalArray Grad_UARes = MultidimensionalArray.Create(Len, K, D, D);;
                    MultidimensionalArray pARes      = MultidimensionalArray.Create(Len, K);

                    // Evaluate tangential velocity to level-set surface
                    var Normals = LsTrk.DataHistories[0].Current.GetLevelSetNormals(Ns, j0, Len);


                    for (int i = 0; i < D; i++)
                    {
                        UA[i].EvaluateGradient(j0, Len, Ns, Grad_UARes.ExtractSubArrayShallow(-1, -1, i, -1), 0, 1);
                    }

                    pA.Evaluate(j0, Len, Ns, pARes);

                    if (LsTrk.GridDat.SpatialDimension == 2)
                    {
                        for (int j = 0; j < Len; j++)
                        {
                            for (int k = 0; k < K; k++)
                            {
                                double acc = 0.0;

                                // pressure
                                switch (d)
                                {
                                case 0:
                                    acc += pARes[j, k] * Normals[j, k, 0];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                                    break;

                                case 1:
                                    acc += pARes[j, k] * Normals[j, k, 1];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                                    break;

                                default:
                                    throw new NotImplementedException();
                                }

                                result[j, k] = acc;
                            }
                        }
                    }
                    else
                    {
                        for (int j = 0; j < Len; j++)
                        {
                            for (int k = 0; k < K; k++)
                            {
                                double acc = 0.0;

                                // pressure
                                switch (d)
                                {
                                case 0:
                                    acc += pARes[j, k] * Normals[j, k, 0];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 2] * Normals[j, k, 2];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 0] * Normals[j, k, 2];
                                    break;

                                case 1:
                                    acc += pARes[j, k] * Normals[j, k, 1];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 2] * Normals[j, k, 2];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 1] * Normals[j, k, 2];
                                    break;

                                case 2:
                                    acc += pARes[j, k] * Normals[j, k, 2];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 2, 2] * Normals[j, k, 2];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 2] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 2] * Normals[j, k, 1];
                                    break;

                                default:
                                    throw new NotImplementedException();
                                }

                                result[j, k] = acc;
                            }
                        }
                    }
                };

                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, RequiredOrder, 1).XQuadSchemeHelper;
                //var SchemeHelper = new XQuadSchemeHelper(LsTrk, momentFittingVariant, );
                CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());

                CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                             cqs.Compile(LsTrk.GridDat, RequiredOrder), //  agg.HMForder),
                                             delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                    ErrFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
                },
                                             delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                    for (int i = 0; i < Length; i++)
                    {
                        forces[d] += ResultsOfIntegration[i, 0];
                    }
                }
                                             ).Execute();
            }

            for (int i = 0; i < D; i++)
            {
                forces[i] = MPI.Wrappers.MPIExtensions.MPISum(forces[i]);
            }

            return(forces);
        }
Beispiel #20
0
        /// <summary>
        /// Calculates the Torque around the center of mass
        /// </summary>
        /// <param name="U"></param>
        /// <param name="P"></param>
        /// <param name="muA"></param>
        /// <param name="particleRadius"></param>
        /// <returns></returns>
        static public double GetTorque(VectorField <SinglePhaseField> U, SinglePhaseField P,
                                       LevelSetTracker LsTrk,
                                       double muA, double particleRadius)
        {
            var _LsTrk = LsTrk;
            int D      = _LsTrk.GridDat.SpatialDimension;
            var UA     = U.ToArray();

            //if (D > 2) throw new NotImplementedException("Currently only 2D cases supported");

            int RequiredOrder = U[0].Basis.Degree * 3;

            //if (RequiredOrder > agg.HMForder)
            //    throw new ArgumentException();

            Console.WriteLine("Torque coeff: {0}, order = {1}", LsTrk.CutCellQuadratureType, RequiredOrder);

            ConventionalDGField pA = null;
            double force           = new double();

            pA = P;

            ScalarFunctionEx ErrFunc = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                int K = result.GetLength(1); // No nof Nodes
                MultidimensionalArray Grad_UARes = MultidimensionalArray.Create(Len, K, D, D);;
                MultidimensionalArray pARes      = MultidimensionalArray.Create(Len, K);

                // Evaluate tangential velocity to level-set surface
                var Normals = _LsTrk.DataHistories[0].Current.GetLevelSetNormals(Ns, j0, Len);

                for (int i = 0; i < D; i++)
                {
                    UA[i].EvaluateGradient(j0, Len, Ns, Grad_UARes.ExtractSubArrayShallow(-1, -1, i, -1), 0, 1);
                }

                pA.Evaluate(j0, Len, Ns, pARes);

                for (int j = 0; j < Len; j++)
                {
                    for (int k = 0; k < K; k++)
                    {
                        double acc  = 0.0;
                        double acc2 = 0.0;


                        // Calculate the torque around a circular particle with a given radius (Paper Wan and Turek 2005)

                        acc += pARes[j, k] * Normals[j, k, 0];
                        acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                        acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                        acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                        acc *= -Normals[j, k, 1] * particleRadius;


                        acc2 += pARes[j, k] * Normals[j, k, 1];
                        acc2 -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                        acc2 -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                        acc2 -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                        acc2 *= Normals[j, k, 0] * particleRadius;

                        result[j, k] = acc + acc2;
                    }
                }
            };

            var SchemeHelper = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, RequiredOrder, 1).XQuadSchemeHelper;
            //var SchemeHelper = new XQuadSchemeHelper(_LsTrk, momentFittingVariant, _LsTrk.GetSpeciesId("A"));
            CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, _LsTrk.Regions.GetCutCellMask());

            CellQuadrature.GetQuadrature(new int[] { 1 }, _LsTrk.GridDat,
                                         cqs.Compile(_LsTrk.GridDat, RequiredOrder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                ErrFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    force += ResultsOfIntegration[i, 0];
                }
            }

                                         ).Execute();


            return(force);
        }
Beispiel #21
0
            /// <summary>
            /// Evaluation of a function <paramref name="field"/> on the plotting grid
            /// and optional averaging.
            /// </summary>
            /// <remarks>
            /// The output is stored in members <see cref="smoothedResult"/> (if <see cref="showJumps"/>==false)
            /// or <see cref="notSmoothedResult"/> (if <see cref="showJumps"/>==true).
            /// </remarks>
            protected void SampleField(ScalarFunctionEx field, bool showJumps)
            {
                MultidimensionalArray originalResult = SampleField(field);

                if (showJumps)
                {
                    notSmoothedResult = originalResult.Storage;
                    return;
                }

                smoothedResult = new double[totalVertices];
                for (int i = 0; i < NoOfCells; i++)
                {
                    for (int j = 0; j < verticesPerCell; j++)
                    {
                        smoothedResult[cellVertices[i, j]] += originalResult[i, j];
                    }
                }

                // If not in parallel, take a short cut
                if (!parallelMode || (!showJumps && !ghostZone && parallelMode))
                {
                    for (int i = 0; i < totalVertices; i++)
                    {
                        smoothedResult[i] /= multiplicity[i];
                    }
                    return;
                }

                int NoOfLocalCells = sgrd.LocalNoOfCells;

                double[,] mySharedVerticesSmoothedResult = new double[maxLocalNoOfExternalCells, verticesPerCell];
                for (int i = NoOfLocalCells; i < NoOfCells; i++)
                {
                    int cellIndex = i - NoOfLocalCells;

                    for (int j = 0; j < verticesPerCell; j++)
                    {
                        mySharedVerticesSmoothedResult[cellIndex, j] = smoothedResult[cellVertices[i, j]];
                    }
                }

                double[,] result = new double[globalNoOfExternalCells, verticesPerCell];

                double[,] sharedVerticesSmoothedResult = GatherGlobalSharedVerticesSmoothedResult(mySharedVerticesSmoothedResult, result);

                for (int proc = 0; proc < noOfExternalCells.Length; proc++)
                {
                    int start = maxLocalNoOfExternalCells * proc;
                    int end   = maxLocalNoOfExternalCells * proc + noOfExternalCells[proc];

                    for (int i = 0; i < totalVertices; i++)
                    {
                        verticesAlreadyProcessed[i] = false;
                    }

                    for (int i = start; i < end; i++)
                    {
                        long localCell = sharedCellIndices[i] - context.CellPartitioning.i0;

                        if (localCell < 0 || localCell > NoOfLocalCells)
                        {
                            continue;
                        }
                        for (int j = 0; j < verticesPerCell; j++)
                        {
                            int localVertex = cellVertices[localCell, j];

                            if (verticesAlreadyProcessed[localVertex])
                            {
                                continue;
                            }

                            verticesAlreadyProcessed[localVertex] = true;

                            if (borderVertices.Contains(localVertex))
                            {
                                double newValue = sharedVerticesSmoothedResult[i, j];
                                double oldValue = smoothedResult[localVertex];

                                if (oldValue * oldValue < newValue * newValue)
                                {
                                    smoothedResult[localVertex] = newValue;
                                }
                            }
                        }
                    }
                }
                for (int i = 0; i < totalVertices; i++)
                {
                    smoothedResult[i] /= multiplicity[i];
                }
            }
Beispiel #22
0
        /// <summary>
        /// Update forces and torque acting from fluid onto the particle
        /// </summary>
        /// <param name="U"></param>
        /// <param name="P"></param>
        /// <param name="LsTrk"></param>
        /// <param name="muA"></param>
        public void UpdateForcesAndTorque(VectorField <SinglePhaseField> U, SinglePhaseField P,
                                          LevelSetTracker LsTrk,
                                          double muA)
        {
            if (skipForceIntegration)
            {
                skipForceIntegration = false;
                return;
            }

            int D = LsTrk.GridDat.SpatialDimension;
            // var UA = U.Select(u => u.GetSpeciesShadowField("A")).ToArray();
            var UA = U.ToArray();

            int RequiredOrder = U[0].Basis.Degree * 3 + 2;

            //int RequiredOrder = LsTrk.GetXQuadFactoryHelper(momentFittingVariant).GetCachedSurfaceOrders(0).Max();
            //Console.WriteLine("Order reduction: {0} -> {1}", _RequiredOrder, RequiredOrder);

            //if (RequiredOrder > agg.HMForder)
            //    throw new ArgumentException();

            Console.WriteLine("Forces coeff: {0}, order = {1}", LsTrk.CutCellQuadratureType, RequiredOrder);


            ConventionalDGField pA = null;

            //pA = P.GetSpeciesShadowField("A");
            pA = P;

            #region Force
            double[] forces = new double[D];
            for (int d = 0; d < D; d++)
            {
                ScalarFunctionEx ErrFunc = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                    int K = result.GetLength(1); // No nof Nodes
                    MultidimensionalArray Grad_UARes = MultidimensionalArray.Create(Len, K, D, D);;
                    MultidimensionalArray pARes      = MultidimensionalArray.Create(Len, K);

                    // Evaluate tangential velocity to level-set surface
                    var Normals = LsTrk.DataHistories[0].Current.GetLevelSetNormals(Ns, j0, Len);


                    for (int i = 0; i < D; i++)
                    {
                        UA[i].EvaluateGradient(j0, Len, Ns, Grad_UARes.ExtractSubArrayShallow(-1, -1, i, -1), 0, 1);
                    }

                    pA.Evaluate(j0, Len, Ns, pARes);

                    if (LsTrk.GridDat.SpatialDimension == 2)
                    {
                        for (int j = 0; j < Len; j++)
                        {
                            for (int k = 0; k < K; k++)
                            {
                                double acc = 0.0;
                                // pressure
                                switch (d)
                                {
                                case 0:
                                    acc += (pARes[j, k]) * Normals[j, k, 0];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                                    break;

                                case 1:
                                    acc += (pARes[j, k]) * Normals[j, k, 1];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                                    break;

                                default:
                                    throw new NotImplementedException();
                                }

                                result[j, k] = acc;
                            }
                        }
                    }
                    else
                    {
                        for (int j = 0; j < Len; j++)
                        {
                            for (int k = 0; k < K; k++)
                            {
                                double acc = 0.0;

                                // pressure
                                switch (d)
                                {
                                case 0:
                                    acc += pARes[j, k] * Normals[j, k, 0];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 2] * Normals[j, k, 2];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 0] * Normals[j, k, 2];
                                    break;

                                case 1:
                                    acc += pARes[j, k] * Normals[j, k, 1];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 2] * Normals[j, k, 2];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 1] * Normals[j, k, 2];
                                    break;

                                case 2:
                                    acc += pARes[j, k] * Normals[j, k, 2];
                                    acc -= (2 * muA) * Grad_UARes[j, k, 2, 2] * Normals[j, k, 2];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 0] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 2, 1] * Normals[j, k, 1];
                                    acc -= (muA) * Grad_UARes[j, k, 0, 2] * Normals[j, k, 0];
                                    acc -= (muA) * Grad_UARes[j, k, 1, 2] * Normals[j, k, 1];
                                    break;

                                default:
                                    throw new NotImplementedException();
                                }

                                result[j, k] = acc;
                            }
                        }
                    }
                };

                var SchemeHelper = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, RequiredOrder, 1).XQuadSchemeHelper;
                //var SchemeHelper = new XQuadSchemeHelper(LsTrk, momentFittingVariant, );

                //CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());
                CellQuadratureScheme cqs = SchemeHelper.GetLevelSetquadScheme(0, this.cutCells_P(LsTrk));


                CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                             cqs.Compile(LsTrk.GridDat, RequiredOrder), //  agg.HMForder),
                                             delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                    ErrFunc(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
                },
                                             delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                    for (int i = 0; i < Length; i++)
                    {
                        forces[d] += ResultsOfIntegration[i, 0];
                    }
                }
                                             ).Execute();
            }
            #endregion

            #region Torque
            double           torque   = 0;
            ScalarFunctionEx ErrFunc2 = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                int K = result.GetLength(1); // No nof Nodes
                MultidimensionalArray Grad_UARes = MultidimensionalArray.Create(Len, K, D, D);;
                MultidimensionalArray pARes      = MultidimensionalArray.Create(Len, K);

                // Evaluate tangential velocity to level-set surface
                var Normals = LsTrk.DataHistories[0].Current.GetLevelSetNormals(Ns, j0, Len);

                for (int i = 0; i < D; i++)
                {
                    UA[i].EvaluateGradient(j0, Len, Ns, Grad_UARes.ExtractSubArrayShallow(-1, -1, i, -1), 0, 1);
                }

                //var trafo = LsTrk.GridDat.Edges.Edge2CellTrafos;
                //var trafoIdx = LsTrk.GridDat.TransformLocal2Global(Ns)
                //var transFormed = trafo[trafoIdx].Transform(Nodes);
                //var newVertices = transFormed.CloneAs();
                //GridData.TransformLocal2Global(transFormed, newVertices, jCell);


                MultidimensionalArray tempArray = Ns.CloneAs();

                LsTrk.GridDat.TransformLocal2Global(Ns, tempArray, j0);

                pA.Evaluate(j0, Len, Ns, pARes);

                for (int j = 0; j < Len; j++)
                {
                    for (int k = 0; k < K; k++)
                    {
                        double acc  = 0.0;
                        double acc2 = 0.0;

                        // Calculate the torque around a circular particle with a given radius (Paper Wan and Turek 2005)

                        acc += (pARes[j, k] * Normals[j, k, 0]);
                        acc -= (2 * muA) * Grad_UARes[j, k, 0, 0] * Normals[j, k, 0];
                        acc -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 1];
                        acc -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 1];
                        //acc *= -Normals[j, k, 1] * this.radius_P;
                        acc *= -Normals[j, k, 1] * (this.currentPos_P[0][1] - tempArray[k, 1]).Abs();


                        acc2 += pARes[j, k] * Normals[j, k, 1];
                        acc2 -= (2 * muA) * Grad_UARes[j, k, 1, 1] * Normals[j, k, 1];
                        acc2 -= (muA) * Grad_UARes[j, k, 1, 0] * Normals[j, k, 0];
                        acc2 -= (muA) * Grad_UARes[j, k, 0, 1] * Normals[j, k, 0];
                        //acc2 *= Normals[j, k, 0] * this.radius_P;
                        acc2 *= Normals[j, k, 0] * (this.currentPos_P[0][0] - tempArray[k, 0]).Abs();

                        result[j, k] = acc + acc2;
                    }
                }
            };

            var SchemeHelper2 = LsTrk.GetXDGSpaceMetrics(new[] { LsTrk.GetSpeciesId("A") }, RequiredOrder, 1).XQuadSchemeHelper;
            //var SchemeHelper = new XQuadSchemeHelper(LsTrk, momentFittingVariant, );
            //CellQuadratureScheme cqs2 = SchemeHelper2.GetLevelSetquadScheme(0, LsTrk.Regions.GetCutCellMask());
            CellQuadratureScheme cqs2 = SchemeHelper2.GetLevelSetquadScheme(0, this.cutCells_P(LsTrk));

            CellQuadrature.GetQuadrature(new int[] { 1 }, LsTrk.GridDat,
                                         cqs2.Compile(LsTrk.GridDat, RequiredOrder),
                                         delegate(int i0, int Length, QuadRule QR, MultidimensionalArray EvalResult) {
                ErrFunc2(i0, Length, QR.Nodes, EvalResult.ExtractSubArrayShallow(-1, -1, 0));
            },
                                         delegate(int i0, int Length, MultidimensionalArray ResultsOfIntegration) {
                for (int i = 0; i < Length; i++)
                {
                    torque += ResultsOfIntegration[i, 0];
                }
            }

                                         ).Execute();

            double   underrelaxationFT = 1.0;
            double[] temp_underR       = new double[D + 1];
            for (int k = 0; k < D + 1; k++)
            {
                temp_underR[k] = underrelaxation_factor;
            }
            if (iteration_counter_P == 0)
            {
                underrelaxationFT = 1;
            }
            else if (underrelaxationFT_constant == true)
            {
                underrelaxationFT = underrelaxation_factor * Math.Pow(10, underrelaxationFT_exponent);
            }
            else if (underrelaxationFT_constant == false)
            {
                //double[] temp_underR = new double[D + 1];
                bool underrelaxation_ok = false;
                underrelaxationFT_exponent = 1;
                for (int j = 0; j < D; j++)
                {
                    underrelaxation_ok = false;
                    temp_underR[j]     = underrelaxation_factor;
                    for (int i = 0; underrelaxation_ok == false; i++)
                    {
                        if (Math.Abs(temp_underR[j] * forces[j]) > Math.Abs(forces_P[0][j]))
                        {
                            underrelaxationFT_exponent -= 1;
                            temp_underR[j]              = underrelaxation_factor * Math.Pow(10, underrelaxationFT_exponent);
                        }
                        else
                        {
                            underrelaxation_ok = true;
                            if (underrelaxationFT_exponent > -0)
                            {
                                underrelaxationFT_exponent = -0;
                                temp_underR[j]             = underrelaxation_factor * Math.Pow(10, underrelaxationFT_exponent);
                            }
                        }
                    }
                }
                underrelaxation_ok = false;
                temp_underR[D]     = underrelaxation_factor;
                for (int i = 0; underrelaxation_ok == false; i++)
                {
                    if (Math.Abs(temp_underR[D] * torque) > Math.Abs(torque_P[0]))
                    {
                        underrelaxationFT_exponent -= 1;
                        temp_underR[D]              = underrelaxation_factor * Math.Pow(10, underrelaxationFT_exponent);
                    }
                    else
                    {
                        underrelaxation_ok = true;
                        if (underrelaxationFT_exponent > -0)
                        {
                            underrelaxationFT_exponent = -0;
                            temp_underR[D]             = underrelaxation_factor * Math.Pow(10, underrelaxationFT_exponent);
                        }
                    }
                }
            }

            double[] forces_underR = new double[D];
            for (int i = 0; i < D; i++)
            {
                forces_underR[i] = temp_underR[i] * forces[i] + (1 - temp_underR[i]) * forces_P[0][i];
            }
            double torque_underR = temp_underR[D] * torque + (1 - temp_underR[D]) * torque_P[0];
            this.forces_P.Insert(0, forces_underR);
            forces_P.Remove(forces_P.Last());
            this.torque_P.Remove(torque_P.Last());
            this.torque_P.Insert(0, torque_underR);

            #endregion
        }
Beispiel #23
0
        /// <summary>
        /// Correction of LevelSet with escaped particles.
        /// First all particle are assigned with a recalculated level set phi
        /// Then they are marked as escaped depending on their position in the level set DGField.
        /// Finally a spherical local level set function is constructed around every escaped particle.
        /// These functions are overlapped using the following rules:
        /// For the plus(minus) particles the maximum(minimum) of the function is used.
        /// Positiv and negative particles are overlapped by prioritizing the level set corrections that are nearer to the interface.
        /// Method has to be called after the advection step but before the radius adjustment
        /// </summary>
        protected override void CorrectLevelSet(int timestepNo, CellMask CellsToCorrect = null, bool ReIteration = false)
        {
            DGField Interface_old = Interface.CloneAs();

            ScalarFunctionEx Particle_LevelSetCorrection = delegate(int cell0, int Len, NodeSet Ns, MultidimensionalArray result)
            {
                Interface_old.Evaluate(cell0, Len, Ns, result);

                MultidimensionalArray GlobalNodes = this.Grid.GlobalNodes.GetValue_Cell(Ns, cell0, Len);

                int c = 0;
                for (int cell = cell0; cell < cell0 + Len; cell++, c++)
                {
                    if (NarrowBandCells.Contains(cell))
                    {
                        List <int> listindex = new List <int>();
                        if (CelltoArrayindex.ContainsKey(cell))
                        {
                            listindex.Add(cell);
                        }

                        Grid.GetCellNeighbours(cell, GetCellNeighbours_Mode.ViaVertices, out int[] NeighbourIndex, out int[] ConnectingEntities);
                        foreach (int j in NeighbourIndex)
                        {
                            if (CelltoArrayindex.ContainsKey(j))
                            {
                                listindex.Add(j);
                            }
                        }
                        if (listindex.IsNullOrEmpty())
                        {
                            continue;
                        }

                        for (int l = 0; l < listindex.Count; l++)
                        {
                            listindex[l] = CelltoArrayindex[listindex[l]];
                        }


                        for (int i = 0; i < Ns.NoOfNodes; i++)
                        {
                            Dictionary <int, double> Phi_correction = new Dictionary <int, double>
                            {
                                [-1] = result[c, i],
                                [1]  = result[c, i]
                            };
                            if (MinimalDistanceSearch == MinimalDistanceSearchMode.FullSearch)
                            {
                                foreach (int index in listindex)
                                {
                                    foreach (KeyValuePair <int, List <SingleLvlSetParticle> > DictEntry in Points[index].ItemList)
                                    {
                                        foreach (SingleLvlSetParticle SingleParticle in DictEntry.Value)
                                        {
                                            if (SingleParticle.Escaped == false || SingleParticle.Active == false)
                                            {
                                                continue;
                                            }
                                            double dist = 0;
                                            for (int dim = 0; dim < SpatialDimension; dim++)
                                            {
                                                dist += (GlobalNodes[c, i, dim] - SingleParticle.Coordinates[0, dim]).Pow2();
                                            }
                                            dist = Math.Sqrt(dist);
                                            double Phi_p = DictEntry.Key * (SingleParticle.Radius - dist);
                                            Phi_correction[DictEntry.Key] = (DictEntry.Key * Phi_correction[DictEntry.Key] > DictEntry.Key * Phi_p)
                                            ? Phi_correction[DictEntry.Key] : Phi_p;
                                        }
                                    }
                                }
                            }
                            if (Math.Abs(Phi_correction[1]) <= Math.Abs(Phi_correction[-1]))
                            {
                                result[c, i] = Phi_correction[1];
                            }
                            else
                            {
                                result[c, i] = Phi_correction[-1];
                            }
                        }
                    }
                    else
                    {
                        for (int i = 0; i < Ns.NoOfNodes; i++)
                        {
                            if (result[c, i] > 0.0)
                            {
                                result[c, i] = 1;
                            }
                            else
                            {
                                result[c, i] = -1;
                            }
                        }
                    }
                }
            };

            Interface.ProjectField(Particle_LevelSetCorrection);
        }
Beispiel #24
0
        public static ScalarFunctionEx GetEnergyJumpFunc(LevelSetTracker LsTrk, VectorField <XDGField> Velocity, XDGField Pressure, double muA, double muB, bool squared)
        {
            var UA = Velocity.Select(u => u.GetSpeciesShadowField("A")).ToArray();
            var UB = Velocity.Select(u => u.GetSpeciesShadowField("B")).ToArray();

            ConventionalDGField pA = null, pB = null;
            bool UsePressure = Pressure != null;

            if (UsePressure)
            {
                pA = Pressure.GetSpeciesShadowField("A");
                pB = Pressure.GetSpeciesShadowField("B");
            }

            int D = LsTrk.GridDat.SpatialDimension;

            ScalarFunctionEx EnergyJumpFunc = delegate(int j0, int Len, NodeSet Ns, MultidimensionalArray result) {
                int K = result.GetLength(1); // No nof Nodes
                MultidimensionalArray UA_res     = MultidimensionalArray.Create(Len, K, D);
                MultidimensionalArray UB_res     = MultidimensionalArray.Create(Len, K, D);
                MultidimensionalArray GradUA_res = MultidimensionalArray.Create(Len, K, D, D);
                MultidimensionalArray GradUB_res = MultidimensionalArray.Create(Len, K, D, D);
                MultidimensionalArray pA_res     = MultidimensionalArray.Create(Len, K);
                MultidimensionalArray pB_res     = MultidimensionalArray.Create(Len, K);

                for (int i = 0; i < D; i++)
                {
                    UA[i].Evaluate(j0, Len, Ns, UA_res.ExtractSubArrayShallow(-1, -1, i));
                    UB[i].Evaluate(j0, Len, Ns, UB_res.ExtractSubArrayShallow(-1, -1, i));

                    UA[i].EvaluateGradient(j0, Len, Ns, GradUA_res.ExtractSubArrayShallow(-1, -1, i, -1));
                    UB[i].EvaluateGradient(j0, Len, Ns, GradUB_res.ExtractSubArrayShallow(-1, -1, i, -1));
                }
                if (UsePressure)
                {
                    pA.Evaluate(j0, Len, Ns, pA_res);
                    pB.Evaluate(j0, Len, Ns, pB_res);
                }
                else
                {
                    pA_res.Clear();
                    pB_res.Clear();
                }

                var Normals = LsTrk.DataHistories[0].Current.GetLevelSetNormals(Ns, j0, Len);

                for (int j = 0; j < Len; j++)
                {
                    for (int k = 0; k < K; k++)
                    {
                        double acc = 0.0;

                        for (int d = 0; d < D; d++)
                        {
                            // pressure
                            if (UsePressure)
                            {
                                acc += (pB_res[j, k] * UB_res[j, k, d] - pA_res[j, k] * UA_res[j, k, d]) * Normals[j, k, d];
                            }

                            // Nabla U + (Nabla U) ^T
                            for (int dd = 0; dd < D; dd++)
                            {
                                acc -= (muB * GradUB_res[j, k, d, dd] * UB_res[j, k, dd] - muA * GradUA_res[j, k, d, dd] * UA_res[j, k, dd]) * Normals[j, k, d];
                                acc -= (muB * GradUB_res[j, k, dd, d] * UB_res[j, k, dd] - muA * GradUA_res[j, k, dd, d] * UA_res[j, k, dd]) * Normals[j, k, d];     // Transposed Term
                            }
                        }
                        if (squared)
                        {
                            result[j, k] = acc.Pow2();
                        }
                        else
                        {
                            result[j, k] = acc;
                        }
                    }
                }
            };

            return(EnergyJumpFunc);
        }