public override int GetHashCode() { unchecked { return((Rho.GetHashCode() * 397) ^ Theta.GetHashCode()); } }
public override bool Equals(object obj) { Model test = obj as Model; if (test == null) { return(false); } bool same = ClassLabels.IsEqual(test.ClassLabels); same = same && NumberOfClasses == test.NumberOfClasses; same = same && NumberOfSVPerClass.IsEqual(test.NumberOfSVPerClass); if (PairwiseProbabilityA != null) { same = same && PairwiseProbabilityA.IsEqual(test.PairwiseProbabilityA); } if (PairwiseProbabilityB != null) { same = same && PairwiseProbabilityB.IsEqual(test.PairwiseProbabilityB); } same = same && Parameter.Equals(test.Parameter); same = same && Rho.IsEqual(test.Rho); same = same && SupportVectorCoefficients.IsEqual(test.SupportVectorCoefficients); same = same && SupportVectorCount == test.SupportVectorCount; same = same && SupportVectors.IsEqual(test.SupportVectors); return(same); }
public override void Optimize() { GradientClipper.Clip(this); foreach (var data in Data) { if (data.Variable.Type == VariableType.Parameter) { if (data.Variable.DataType == typeof(float)) { var a = _weights[data.Variable].Cast <float>(); var p = data.Tensor.Cast <float>(); var g = data.Gradient.Cast <float>(); Context.Assign(a, Rho.AsScalar <float>() * a + (1.0.AsScalar <float>() - Rho.AsScalar <float>()) * g * g); Context.Assign(p, p - LearningRate.AsScalar <float>() * g / (Sqrt(a) + Epsilon.AsScalar <float>())); } else if (data.Variable.DataType == typeof(double)) { var a = _weights[data.Variable].Cast <double>(); var p = data.Tensor.Cast <double>(); var g = data.Gradient.Cast <double>(); Context.Assign(a, Rho.AsScalar <double>() * a + (1.0.AsScalar <double>() - Rho.AsScalar <double>()) * g * g); Context.Assign(p, p - LearningRate.AsScalar <double>() * g / (Sqrt(a) + Epsilon.AsScalar <double>())); } else { throw new InvalidOperationException(); } } } }
override public void initialize() { setProblemClass(); int total_nodes = this.Ranks.Length; maxcells = Convert.ToInt32(Math.Sqrt(total_nodes)); ncells = Convert.ToInt32(Math.Sqrt(total_nodes)); MAX_CELL_DIM = (problem_size / maxcells) + 1; IMAX = JMAX = KMAX = MAX_CELL_DIM; _grid_points_[0] = _grid_points_[1] = _grid_points_[2] = problem_size; IMAXP = IMAX / 2 * 2 + 1; JMAXP = JMAX / 2 * 2 + 1; set_constants(0, dt_default); U.initialize_field("u", maxcells, KMAX + 4, JMAXP + 4, IMAXP + 4, 5); Rhs.initialize_field("rhs", maxcells, KMAX + 2, JMAXP + 2, IMAXP + 2, 5); Lhs.initialize_field("lhs", maxcells, KMAX + 2, JMAXP + 2, IMAXP + 2, 15); Forcing.initialize_field("forcing", maxcells, KMAX + 2, JMAXP + 2, IMAXP + 2, 5); Us.initialize_field("us", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Vs.initialize_field("vs", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Ws.initialize_field("ws", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Qs.initialize_field("qs", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Ainv.initialize_field("ainv", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Rho.initialize_field("rho", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Speed.initialize_field("speed", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); Square.initialize_field("square", maxcells, KMAX + 3, JMAX + 3, IMAX + 3); //Lhsa.initialize_field("lhsa", maxcells, KMAX+2, JMAXP+2, IMAXP+2, 15); //Lhsb.initialize_field("lhsb", maxcells, KMAX+2, JMAXP+2, IMAXP+2, 15); //Lhsc.initialize_field("lhsc", maxcells, KMAX+2, JMAXP+2, IMAXP+2, 15); }
protected override void EncodeParameterCore(ref string res) { res += OutScale.ToString() + " "; res += KernelSize.ToString() + " "; res += KernelExpand.ToString() + " "; res += OptimizerType.ToString() + " "; res += Rho.ToString() + " "; }
protected bool Equals(Greeks other) { return(Gamma.AlmostEqual(other.Gamma, 4) && Delta.AlmostEqual(other.Delta, 4) && Theta.AlmostEqual(other.Theta, 4) && Vega.AlmostEqual(other.Vega, 4) && Rho.AlmostEqual(other.Rho, 4) && RhoFx.AlmostEqual(other.RhoFx, 4) && Sigma.AlmostEqual(other.Sigma, 4)); }
public SVMModel Clone() { SVMModel y = new SVMModel(); if (Parameter != null) { y.Parameter = Parameter.Clone(); } y.ClassCount = ClassCount; y.TotalSVCount = TotalSVCount; if (SV != null) { y.SV = SV.Select(a => a.Select(b => b.Clone()).ToArray()).ToList(); } if (SVCoefs != null) { y.SVCoefs = SVCoefs.Select(a => a.Select(b => b).ToArray()).ToList(); } if (Rho != null) { y.Rho = Rho.Select(a => a).ToArray(); } if (ProbabilityA != null) { y.ProbabilityA = ProbabilityA.Select(a => a).ToArray(); } if (ProbabilityB != null) { y.ProbabilityB = ProbabilityB.Select(a => a).ToArray(); } if (SVIndices != null) { y.SVIndices = SVIndices.Select(a => a).ToArray(); } if (Labels != null) { y.Labels = Labels.Select(a => a).ToArray(); } if (SVCounts != null) { y.SVCounts = SVCounts.Select(a => a).ToArray(); } y.Creation = Creation; return(y); }
public override int GetHashCode() { return(ClassLabels.ComputeHashcode() + NumberOfClasses.GetHashCode() + NumberOfSVPerClass.ComputeHashcode() + PairwiseProbabilityA.ComputeHashcode() + PairwiseProbabilityB.ComputeHashcode() + Parameter.GetHashCode() + Rho.ComputeHashcode() + SupportVectorCoefficients.ComputeHashcode() + SupportVectorCount.GetHashCode() + SupportVectors.ComputeHashcode()); }
public override int GetHashCode() { unchecked { int hashCode = Gamma.GetHashCode(); hashCode = (hashCode * 397) ^ Delta.GetHashCode(); hashCode = (hashCode * 397) ^ Theta.GetHashCode(); hashCode = (hashCode * 397) ^ Vega.GetHashCode(); hashCode = (hashCode * 397) ^ Rho.GetHashCode(); hashCode = (hashCode * 397) ^ RhoFx.GetHashCode(); hashCode = (hashCode * 397) ^ Sigma.GetHashCode(); return(hashCode); } }
public override string ToString() { string returnString = ""; returnString += "T: " + EnginesGUI.GUIUnitsSettings.TemperatureUnits.Format(T); returnString += " P: " + EnginesGUI.GUIUnitsSettings.PressureUnits.Format(P); returnString += " Rho: " + Rho.ToString("F2"); returnString += "\n FF: " + FF.ToString("F3"); returnString += "\n Cp: " + Cp.ToString("F2"); returnString += " Cv: " + Cv.ToString("F2"); returnString += "\nGamma: " + Gamma.ToString("F2"); returnString += " R: " + R.ToString("F2"); return(returnString); }
private Dictionary <char, string> MakeDictionary() { var dict = new Dictionary <char, string>(); dict['s'] = "Sample " + Samples; dict['f'] = "Feature " + Dimension; dict['n'] = "Nu " + Nu; dict['t'] = "Time " + ExecutionTime; dict['i'] = "Iteration " + Iteration; dict['v'] = "#SupportVector " + CountSupportVectors; dict['w'] = MakeStringW(); dict['b'] = "B " + B.ToString(); dict['r'] = "Rho " + Rho.ToString(); dict['c'] = "C " + C.ToString(); dict['o'] = "OptimalValue " + OptValue; dict['a'] = "Accuracy " + Accuracy; dict['l'] = MakeLable(); return(dict); }
protected bool Equals(PolarPointF other) { return(Rho.Equals(other.Rho) && Theta.Equals(other.Theta)); }
protected override void EncodeParameterCore(ref string res) { res += OptimizerType.ToString() + " "; res += Rho.ToString() + " "; }
public static ValPosPlr ValPosPlr(Theta t, Rho r, double value = 0) => new ValPosPlr(t, r, value);