private void ProcessTrain()
        {
            if (network == null)
            {
                return;
            }

            String strMode           = GetArg("mode");
            String strMinutes        = GetArg("minutes");
            String strStrategyError  = GetArg("strategyerror");
            String strStrategyCycles = GetArg("strategycycles");

            app.WriteLine("Training Beginning... Output patterns="
                          + outputCount);

            double strategyError  = double.Parse(strStrategyError);
            int    strategyCycles = int.Parse(strStrategyCycles);

            var train = new ResilientPropagation(network, training);

            train.AddStrategy(new ResetStrategy(strategyError, strategyCycles));

            if (String.Compare(strMode, "gui", true) == 0)
            {
                EncogUtility.TrainDialog(train, network, training);
            }
            else
            {
                int minutes = int.Parse(strMinutes);
                EncogUtility.TrainConsole(train, network, training,
                                          minutes);
            }
            app.WriteLine("Training Stopped...");
        }
Beispiel #2
0
        /// <inheritdoc/>
        public override void CreateTrainer(OpenCLTrainingProfile profile, bool singleThreaded)
        {
            Propagation.Propagation train = new ResilientPropagation(Network,
                                                                     Training, profile, InitialUpdate, MaxStep);

            if (singleThreaded)
            {
                train.NumThreads = 1;
            }
            else
            {
                train.NumThreads = 0;
            }


            foreach (IStrategy strategy in Strategies)
            {
                train.AddStrategy(strategy);
            }

            Train = train;
        }
Beispiel #3
0
        /// <summary>
        /// Perform an individual job unit, which is a single network to train and
        /// evaluate.
        /// </summary>
        ///
        /// <param name="context">Contains information about the job unit.</param>
        public override sealed void PerformJobUnit(JobUnitContext context)
        {
            var network = (BasicNetwork)context.JobUnit;
            BufferedMLDataSet buffer      = null;
            IMLDataSet        useTraining = _training;

            if (_training is BufferedMLDataSet)
            {
                buffer      = (BufferedMLDataSet)_training;
                useTraining = (buffer.OpenAdditional());
            }

            // train the neural network

            double error = Double.PositiveInfinity;

            for (int z = 0; z < _weightTries; z++)
            {
                network.Reset();
                Propagation train = new ResilientPropagation(network,
                                                             useTraining);
                var strat = new StopTrainingStrategy(0.001d,
                                                     5);

                train.AddStrategy(strat);
                train.ThreadCount = 1; // force single thread mode

                for (int i = 0;
                     (i < _iterations) && !ShouldStop &&
                     !strat.ShouldStop();
                     i++)
                {
                    train.Iteration();
                }

                error = Math.Min(error, train.Error);
            }

            if (buffer != null)
            {
                buffer.Close();
            }

            if (!ShouldStop)
            {
                // update min and max

                _high = Math.Max(_high, error);
                _low  = Math.Min(_low, error);

                if (_hidden1Size > 0)
                {
                    int networkHidden1Count;
                    int networkHidden2Count;

                    if (network.LayerCount > 3)
                    {
                        networkHidden2Count = network.GetLayerNeuronCount(2);
                        networkHidden1Count = network.GetLayerNeuronCount(1);
                    }
                    else
                    {
                        networkHidden2Count = 0;
                        networkHidden1Count = network.GetLayerNeuronCount(1);
                    }

                    int row, col;

                    if (_hidden2Size == 0)
                    {
                        row = networkHidden1Count - _hidden[0].Min;
                        col = 0;
                    }
                    else
                    {
                        row = networkHidden1Count - _hidden[0].Min;
                        col = networkHidden2Count - _hidden[1].Min;
                    }

                    if ((row < 0) || (col < 0))
                    {
                        Console.Out.WriteLine("STOP");
                    }
                    _results[row][col] = error;
                }

                // report status
                _currentTry++;

                UpdateBest(network, error);
                ReportStatus(
                    context,
                    "Current: "
                    + NetworkToString(network)
                    + "; Best: "
                    + NetworkToString(_bestNetwork));
            }
        }