Beispiel #1
0
    static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();

        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // check number of command line parameters
        if (args.Length < 1)
        {
            Usage("Not enough arguments.");
        }

        // read command line parameters
        string method = args[0];

        RecommenderParameters parameters = null;

        try     { parameters = new RecommenderParameters(args, 1); }
        catch (ArgumentException e) { Usage(e.Message); }

        // arguments for iteration search
        find_iter  = parameters.GetRemoveInt32("find_iter", 0);
        max_iter   = parameters.GetRemoveInt32("max_iter", 500);
        epsilon    = parameters.GetRemoveDouble("epsilon", 1);
        err_cutoff = parameters.GetRemoveDouble("err_cutoff", 2);

        // data arguments
        string data_dir = parameters.GetRemoveString("data_dir");

        if (data_dir != string.Empty)
        {
            data_dir = data_dir + "/mml-track2";
        }
        else
        {
            data_dir = "mml-track2";
        }
        sample_data   = parameters.GetRemoveBool("sample_data", false);
        predict_rated = parameters.GetRemoveBool("predict_rated", false);
        predict_score = parameters.GetRemoveBool("predict_score", false);

        // other arguments
        save_model_file = parameters.GetRemoveString("save_model");
        load_model_file = parameters.GetRemoveString("load_model");
        int random_seed = parameters.GetRemoveInt32("random_seed", -1);

        prediction_file = parameters.GetRemoveString("prediction_file");

        if (predict_rated)
        {
            predict_score = true;
        }

        Console.Error.WriteLine("predict_score={0}", predict_score);

        if (random_seed != -1)
        {
            MyMediaLite.Util.Random.InitInstance(random_seed);
        }

        recommender_validate = Recommender.CreateItemRecommender(method);
        if (recommender_validate == null)
        {
            Usage(string.Format("Unknown method: '{0}'", method));
        }

        Recommender.Configure(recommender_validate, parameters, Usage);
        recommender_final = recommender_validate.Clone() as ItemRecommender;

        if (parameters.CheckForLeftovers())
        {
            Usage(-1);
        }

        // load all the data
        LoadData(data_dir);

        if (load_model_file != string.Empty)
        {
            Recommender.LoadModel(recommender_validate, load_model_file + "-validate");
            Recommender.LoadModel(recommender_final, load_model_file + "-final");
        }

        Console.Write(recommender_validate.ToString());

        DoTrack2();
    }
Beispiel #2
0
    static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();

        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        double min_rating = 0;
        double max_rating = 100;

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // check number of command line parameters
        if (args.Length < 1)
        {
            Usage("Not enough arguments.");
        }

        // read command line parameters
        string method = args[0];

        RecommenderParameters parameters = null;

        try     { parameters = new RecommenderParameters(args, 1); }
        catch (ArgumentException e) { Usage(e.Message); }

        // arguments for iteration search
        find_iter   = parameters.GetRemoveInt32("find_iter", 0);
        max_iter    = parameters.GetRemoveInt32("max_iter", 500);
        compute_fit = parameters.GetRemoveBool("compute_fit", false);
        epsilon     = parameters.GetRemoveDouble("epsilon", 0);
        rmse_cutoff = parameters.GetRemoveDouble("rmse_cutoff", double.MaxValue);
        mae_cutoff  = parameters.GetRemoveDouble("mae_cutoff", double.MaxValue);

        // data arguments
        string data_dir = parameters.GetRemoveString("data_dir");

        track2 = parameters.GetRemoveBool("track2", false);
        if (data_dir != string.Empty)
        {
            data_dir = data_dir + (track2 ? "/mml-track2" : "/track1");
        }
        else
        {
            data_dir = track2 ? "/mml-track2" : "track1";
        }
        sample_data = parameters.GetRemoveBool("sample_data", false);

        // other arguments
        save_model_file = parameters.GetRemoveString("save_model");
        load_model_file = parameters.GetRemoveString("load_model");
        int random_seed = parameters.GetRemoveInt32("random_seed", -1);

        no_eval          = parameters.GetRemoveBool("no_eval", false);
        prediction_file  = parameters.GetRemoveString("prediction_file");
        cross_validation = parameters.GetRemoveInt32("cross_validation", 0);
        good_rating_prob = parameters.GetRemoveBool("good_rating_prob", false);

        if (good_rating_prob)
        {
            max_rating = 1;
        }

        if (random_seed != -1)
        {
            MyMediaLite.Util.Random.InitInstance(random_seed);
        }

        recommender = Recommender.CreateRatingPredictor(method);
        if (recommender == null)
        {
            Usage(string.Format("Unknown method: '{0}'", method));
        }

        Recommender.Configure(recommender, parameters, Usage);

        if (parameters.CheckForLeftovers())
        {
            Usage(-1);
        }

        // load all the data
        TimeSpan loading_time = Utils.MeasureTime(delegate() { LoadData(data_dir); });

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "loading_time {0,0:0.##}", loading_time.TotalSeconds));

        recommender.Ratings = training_ratings;

        recommender.MinRating = min_rating;
        recommender.MaxRating = max_rating;
        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating));

        if (load_model_file != string.Empty)
        {
            Recommender.LoadModel(recommender, load_model_file);
        }

        DoTrack1();

        Console.Error.WriteLine("memory {0}", Memory.Usage);
    }
Beispiel #3
0
    static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();
        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // check number of command line parameters
        if (args.Length < 1)
            Usage("Not enough arguments.");

        // read command line parameters
        string method = args[0];

        RecommenderParameters parameters = null;
        try	{ parameters = new RecommenderParameters(args, 1); }
        catch (ArgumentException e) { Usage(e.Message);	}

        // arguments for iteration search
        find_iter   = parameters.GetRemoveInt32(  "find_iter",   0);
        max_iter    = parameters.GetRemoveInt32(  "max_iter",    500);
        epsilon     = parameters.GetRemoveDouble( "epsilon",     1);
        err_cutoff  = parameters.GetRemoveDouble( "err_cutoff",  2);

        // data arguments
        string data_dir  = parameters.GetRemoveString( "data_dir");
        if (data_dir != string.Empty)
            data_dir = data_dir + "/mml-track2";
        else
            data_dir = "mml-track2";
        sample_data      = parameters.GetRemoveBool(   "sample_data",   false);
        predict_rated    = parameters.GetRemoveBool(   "predict_rated", false);
        predict_score    = parameters.GetRemoveBool(   "predict_score", false);

        // other arguments
        save_model_file  = parameters.GetRemoveString( "save_model");
        load_model_file  = parameters.GetRemoveString( "load_model");
        int random_seed  = parameters.GetRemoveInt32(  "random_seed",  -1);
        prediction_file  = parameters.GetRemoveString( "prediction_file");

        if (predict_rated)
            predict_score = true;

        Console.Error.WriteLine("predict_score={0}", predict_score);

        if (random_seed != -1)
            MyMediaLite.Util.Random.InitInstance(random_seed);

        recommender_validate = Recommender.CreateItemRecommender(method);
        if (recommender_validate == null)
            Usage(string.Format("Unknown method: '{0}'", method));

         		Recommender.Configure(recommender_validate, parameters, Usage);
        recommender_final = recommender_validate.Clone() as ItemRecommender;

        if (parameters.CheckForLeftovers())
            Usage(-1);

        // load all the data
        LoadData(data_dir);

        if (load_model_file != string.Empty)
        {
            Recommender.LoadModel(recommender_validate, load_model_file + "-validate");
            Recommender.LoadModel(recommender_final,    load_model_file + "-final");
        }

        Console.Write(recommender_validate.ToString());

        DoTrack2();
    }
Beispiel #4
0
    static void Main(string[] args)
    {
        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // check number of command line parameters
        if (args.Length < 1)
            Usage("Not enough arguments.");

        // read command line parameters
        string method = args[0];

        RecommenderParameters parameters = null;
        try	{ parameters = new RecommenderParameters(args, 1); }
        catch (ArgumentException e) { Usage(e.Message);	}

        // arguments for iteration search
        find_iter   = parameters.GetRemoveInt32(  "find_iter",   0);
        max_iter    = parameters.GetRemoveInt32(  "max_iter",    500);
        compute_fit = parameters.GetRemoveBool(   "compute_fit", false);
        epsilon     = parameters.GetRemoveDouble( "epsilon",     0);
        rmse_cutoff = parameters.GetRemoveDouble( "rmse_cutoff", double.MaxValue);
        mae_cutoff  = parameters.GetRemoveDouble( "mae_cutoff",  double.MaxValue);

        // data arguments
        string data_dir  = parameters.GetRemoveString( "data_dir");
        track2           = parameters.GetRemoveBool(   "track2", false);
        if (data_dir != string.Empty)
            data_dir = data_dir + (track2 ? "/mml-track2" : "/track1");
        else
            data_dir = track2 ? "/mml-track2" : "track1";
        sample_data      = parameters.GetRemoveBool(   "sample_data", false);

        // other arguments
        save_model_file  = parameters.GetRemoveString( "save_model");
        load_model_file  = parameters.GetRemoveString( "load_model");
        int random_seed  = parameters.GetRemoveInt32(  "random_seed",      -1);
        no_eval          = parameters.GetRemoveBool(   "no_eval",          false);
        prediction_file  = parameters.GetRemoveString( "prediction_file");
        cross_validation = parameters.GetRemoveUInt32( "cross_validation", 0);
        good_rating_prob = parameters.GetRemoveBool(   "good_rating_prob", false);

        if (random_seed != -1)
            MyMediaLite.Util.Random.Seed = random_seed;

        recommender = Recommender.CreateRatingPredictor(method);
        if (recommender == null)
            Usage(string.Format("Unknown method: '{0}'", method));

        Recommender.Configure(recommender, parameters, Usage);

        if (parameters.CheckForLeftovers())
            Usage(-1);

        // load all the data
        TimeSpan loading_time = Wrap.MeasureTime(delegate() { LoadData(data_dir); });
        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "loading_time {0,0:0.##}", loading_time.TotalSeconds));

        recommender.Ratings = training_ratings;

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating));

        if (load_model_file != string.Empty)
            Model.Load(recommender, load_model_file);

        DoTrack1();

        Console.Error.WriteLine("memory {0}", Memory.Usage);
    }