Beispiel #1
0
        public static GaussLegendreCoefficients GaussLegendre(int N)
        {
            var beta = from i in 1.To(N - 1)
                       select 0.5 / Math.Sqrt(1.0 - (2.0 * i).Pow(-2));

            SymmetricMatrix T = new SymmetricMatrix(N); // how to use TridiagonalMatrix?

            beta.ForEach((b, i) =>
            {
                T[i + 1, i] = b;
                T[i, i + 1] = b;
            });

            RealEigensystem e = T.Eigensystem();

            var indices = from i in 0.To(N - 1)
                          orderby e.Eigenvalue(i)
                          select i;

            return(new GaussLegendreCoefficients
            {
                mu = indices.Select(i => e.Eigenvalue(i)).ToArray(),
                wt = indices.Select(i => 2 * e.Eigenvector(i)[0].Pow(2)).ToArray()
            });
        }
Beispiel #2
0
        public void SymmetricRandomMatrixEigenvectors()
        {
            for (int d = 1; d <= 100; d = d + 11)
            {
                Console.WriteLine("d={0}", d);

                SymmetricMatrix M = CreateSymmetricRandomMatrix(d, 1);

                double tr = M.Trace();

                RealEigensystem E = M.Eigensystem();

                Assert.IsTrue(E.Dimension == M.Dimension);

                SquareMatrix D  = new SquareMatrix(E.Dimension);
                double[]     es = new double[E.Dimension];
                for (int i = 0; i < E.Dimension; i++)
                {
                    double       e = E.Eigenvalue(i);
                    ColumnVector v = E.Eigenvector(i);
                    Assert.IsTrue(TestUtilities.IsNearlyEigenpair(M, v, e));
                    D[i, i] = e;
                    es[i]   = e;
                }

                Assert.IsTrue(TestUtilities.IsSumNearlyEqual(es, tr));
                Assert.IsTrue(TestUtilities.IsNearlyEqual(
                                  D, E.TransformMatrix.Transpose() * M * E.TransformMatrix
                                  ));
            }
        }
Beispiel #3
0
        public void RealEigenvalueOrdering()
        {
            int d = 10;

            Random          rng = new Random(d + 1);
            SymmetricMatrix A   = new SymmetricMatrix(d);

            A.Fill((int r, int c) => - 1.0 + 2.0 * rng.NextDouble());
            RealEigensystem E = A.Eigensystem();

            for (int i = 0; i < E.Dimension; i++)
            {
                Console.WriteLine(E.Eigenvalue(i));
            }

            E.Sort(OrderBy.ValueAscending);
            for (int i = 1; i < E.Dimension; i++)
            {
                Assert.IsTrue(E.Eigenvalue(i - 1) <= E.Eigenvalue(i));
                Assert.IsTrue(TestUtilities.IsNearlyEigenpair(A, E.Eigenvector(i), E.Eigenvalue(i)));
            }

            E.Sort(OrderBy.ValueDescending);
            for (int i = 1; i < E.Dimension; i++)
            {
                Assert.IsTrue(E.Eigenvalue(i - 1) >= E.Eigenvalue(i));
                Assert.IsTrue(TestUtilities.IsNearlyEigenpair(A, E.Eigenvector(i), E.Eigenvalue(i)));
            }

            E.Sort(OrderBy.MagnitudeAscending);
            for (int i = 1; i < E.Dimension; i++)
            {
                Assert.IsTrue(Math.Abs(E.Eigenvalue(i - 1)) <= Math.Abs(E.Eigenvalue(i)));
                Assert.IsTrue(TestUtilities.IsNearlyEigenpair(A, E.Eigenvector(i), E.Eigenvalue(i)));
            }

            E.Sort(OrderBy.MagnitudeDescending);
            for (int i = 1; i < E.Dimension; i++)
            {
                Assert.IsTrue(Math.Abs(E.Eigenvalue(i - 1)) >= Math.Abs(E.Eigenvalue(i)));
                Assert.IsTrue(TestUtilities.IsNearlyEigenpair(A, E.Eigenvector(i), E.Eigenvalue(i)));
            }
        }