Beispiel #1
0
        /// <summary>
        /// Case 18: Calculation of capacity state in symmetric section for fixed negative (tensioning) axial force
        /// </summary>
        public void Case18()
        {
            // Case 18a
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.0, 0.6);
            geometry.Add(0.3, 0.6);
            geometry.Add(0.3, 0.0);
            // rebars definition
            List <Rebar> rebars    = new List <Rebar>();
            double       rebarArea = 0.040 * 0.040 * Math.PI / 4.0;

            rebars.Add(new Rebar(0.03, 0.03, rebarArea));
            rebars.Add(new Rebar(0.03, 0.57, rebarArea));
            rebars.Add(new Rebar(0.27, 0.57, rebarArea));
            rebars.Add(new Rebar(0.27, 0.03, rebarArea));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(17.12e6, 0.0035, 32e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(310e6, 0.01, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistanceM(-493.06E3, Axis.x, false);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);
            double      angle  = solver.GetNeutralAxisAngle();
            double      dist   = solver.GetNeutralAxisDistance();

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 18a: Calculation of capacity state in symmetric section for fixed negative (tensioning) axial force");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));

            // Case 18b
            // geometry definition
            geometry = new Geometry();
            geometry.Add(0.0, 0.0);
            geometry.Add(0.0, 0.3);
            geometry.Add(0.6, 0.3);
            geometry.Add(0.6, 0.0);
            // rebars definition
            rebars.Clear();
            rebarArea = 0.036 * 0.036 * Math.PI / 4.0;
            rebars.Add(new Rebar(0.09, 0.06, rebarArea));
            rebars.Add(new Rebar(0.09, 0.12, rebarArea));
            rebars.Add(new Rebar(0.09, 0.18, rebarArea));
            rebars.Add(new Rebar(0.09, 0.24, rebarArea));
            rebars.Add(new Rebar(0.51, 0.06, rebarArea));
            rebars.Add(new Rebar(0.51, 0.12, rebarArea));
            rebars.Add(new Rebar(0.51, 0.18, rebarArea));
            rebars.Add(new Rebar(0.51, 0.24, rebarArea));
            // steel parameters
            steel = new Steel();
            steel.DesignStrength      = 420e6;
            steel.HardeningFactor     = 1.0;
            steel.ModulusOfElasticity = 200e9;
            steel.StrainUltimateLimit = 0.01;
            // solver creation and parameterization
            solver = RCSolver.CreateNewSolver(geometry);
            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistanceM(-862.85E3, Axis.x, true);
            // result for rebars
            forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            Acc            = solver.GetConcreteStressArea();
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            angle  = solver.GetNeutralAxisAngle();
            dist   = solver.GetNeutralAxisDistance();
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 18b: Calculation of capacity state in symmetric section for fixed negative (tensioning) axial force");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));
        }
Beispiel #2
0
        /// <summary>
        /// Case 7 Calculation of internal forces for given state of strain in the section and inclined branch model of steel
        /// </summary>
        public void Case7()
        {
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.0, 0.6);
            geometry.Add(0.3, 0.6);
            geometry.Add(0.3, 0.0);
            // rebars definition
            List <Rebar> rebars = new List <Rebar>();

            rebars.Add(new Rebar(0.05, 0.05, 0.032 * 0.032 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.15, 0.05, 0.032 * 0.032 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.05, 0.032 * 0.032 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.05, 0.15, 0.020 * 0.020 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.15, 0.020 * 0.020 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.05, 0.55, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.55, 0.012 * 0.012 * Math.PI / 4.0));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelLinear(20e6, 0.0035, 30e9);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelWithHardening(500e6, 0.075, 200e9, 1.05);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveForces(ResultType.Section, 0.0035, -0.0070);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 7 Calculation of internal forces for given state of strain in the section and inclined branch model of steel ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }
Beispiel #3
0
        /// <summary>
        /// Case 15: Calculation of capacity state in asymmetric section for bidirectional bending with axial force
        /// </summary>
        public void Case15()
        {
            // Case 15a
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.00, 0.00);
            geometry.Add(0.00, 0.60);
            geometry.Add(0.25, 0.60);
            geometry.Add(0.25, 0.25);
            geometry.Add(0.70, 0.25);
            geometry.Add(0.70, 0.00);
            // rebars definition
            List <Rebar> rebars    = new List <Rebar>();
            double       rebarArea = 0.020 * 0.020 * Math.PI / 4.0;

            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.55, rebarArea));
            rebars.Add(new Rebar(0.20, 0.55, rebarArea));
            rebars.Add(new Rebar(0.20, 0.05, rebarArea));
            rebars.Add(new Rebar(0.65, 0.05, rebarArea));
            rebars.Add(new Rebar(0.65, 0.20, rebarArea));
            rebars.Add(new Rebar(0.05, 0.20, rebarArea));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(20e6, 0.0035, 35e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(310e6, 0.075, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);
            double      angle  = solver.GetNeutralAxisAngle();
            double      dist   = solver.GetNeutralAxisDistance();

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15a: Calculation of capacity state in asymmetric section for bidirectional bending with axial force ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));


            // Case 15b
            // concrete parameters (rectangular)
            concrete.SetStrainStressModelRectangular(20e6, 0.0035, 35e9, 0.8);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (rectangular)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters(linear)
            concrete.SetStrainStressModelLinear(25e6, 0.0035, 32e9);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (linear)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters (bilinear)
            concrete.SetStrainStressModelBiLinear(25e6, 0.0035, 32e9, 0.0020);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (bilinear)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters (parabolic-rectangular)
            concrete.SetStrainStressModelParabolicRectangular(25e6, 0.0035, 32e9, 0.0020);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (parabolic-rectangular)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters (power-rectangular)
            concrete.SetStrainStressModelPowerRectangular(25e6, 0.0035, 32e9, 0.002, 1.5);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (parabolic-rectangular)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }
Beispiel #4
0
        /// <summary>
        ///Case 13: Calculation of capacity state in symmetric section for bending moment My with axial force
        /// </summary>
        public void Case13()
        {
            // Case 13a
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.6, 0.0);
            geometry.Add(0.6, 0.3);
            geometry.Add(0.0, 0.3);
            //rebars definition
            List <Rebar> rebars    = new List <Rebar>();
            double       rebarArea = 0.012 * 0.012 * Math.PI / 4.0;

            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.25, rebarArea));
            rebars.Add(new Rebar(0.55, 0.25, rebarArea));
            rebars.Add(new Rebar(0.55, 0.05, rebarArea));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(20e6, 0.0035, 30e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(500e6, 0.075, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(3331.408571E3, 0, -82.84952381E3);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);
            double      angle  = solver.GetNeutralAxisAngle();
            double      dist   = solver.GetNeutralAxisDistance();

            // result presentation
            sb.AppendLine("Case 12a:  Calculation of capacity state in symmetric section for bending moment Mx with axial force ");
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));

            // Case 13b
            rebars.Clear();
            rebarArea = 0.016 * 0.016 * Math.PI / 4.0;
            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.25, rebarArea));
            rebars.Add(new Rebar(0.55, 0.25, rebarArea));
            rebars.Add(new Rebar(0.55, 0.05, rebarArea));
            // concrete parameters
            concrete.SetStrainStressModelParabolicRectangular(30e6, 0.0035, 32e9, 0.0020);
            // steel parameters
            steel.DesignStrength      = 400e6;
            steel.StrainUltimateLimit = 0.1;
            steel.ModulusOfElasticity = 200e9;
            steel.HardeningFactor     = 1.0;
            // solver parameterization
            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(5095500, 0, -137860);
            // result for rebars
            forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            Acc            = solver.GetConcreteStressArea();
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 13b: Calculation of capacity state in symmetric section for bending moment My with axial force ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }
Beispiel #5
0
        /// <summary>
        /// Case 1: Cross section characteristics
        /// </summary>
        public void Case1()
        {
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.0, 0.2);
            geometry.Add(0.2, 0.2);
            geometry.Add(0.2, 0.6);
            geometry.Add(0.5, 0.6);
            geometry.Add(0.5, 0.3);
            geometry.Add(0.8, 0.3);
            geometry.Add(0.8, 0.0);
            // rebars definition
            List <Rebar> rebars = new List <Rebar>();

            // rebar area A = d*d*pi/4
            rebars.Add(new Rebar(0.05, 0.05, 0.010 * 0.010 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.75, 0.05, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.75, 0.25, 0.020 * 0.020 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.45, 0.55, 0.050 * 0.050 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.55, 0.020 * 0.020 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.05, 0.15, 0.015 * 0.015 * Math.PI / 4.0));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.ModulusOfElasticity = 30e9;
            // steel parameters
            Steel steel = new Steel();

            steel.ModulusOfElasticity = 200e9;
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            // result for concrete
            double  Ac  = solver.GetArea(ResultType.Concrete);
            Point2D Cc  = solver.GetCenterOfInertia(ResultType.Concrete);
            double  Icx = solver.GetMomentOfInertiaX(ResultType.Concrete);
            double  Icy = solver.GetMomentOfInertiaY(ResultType.Concrete);
            // result for rebars
            double  As  = solver.GetArea(ResultType.Rebars);
            Point2D Cs  = solver.GetCenterOfInertia(ResultType.Rebars);
            double  Isx = solver.GetMomentOfInertiaX(ResultType.Rebars);
            double  Isy = solver.GetMomentOfInertiaY(ResultType.Rebars);
            // result for reduced
            double  Aeff  = solver.GetArea(ResultType.Section);
            Point2D Ceff  = solver.GetCenterOfInertia(ResultType.Section);
            double  Ieffx = solver.GetMomentOfInertiaX(ResultType.Section);

            double Ieffy = solver.GetMomentOfInertiaY(ResultType.Section);

            // result presentation

            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 1: Cross section characteristics");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ac", Ac, 6));
            sb.AppendLine(FormatOutput("Ccx", Cc.X, 6));
            sb.AppendLine(FormatOutput("Ccy", Cc.Y, 6));
            sb.AppendLine(FormatOutput("Icx", Icx, 6));
            sb.AppendLine(FormatOutput("Icy", Icy, 6));
            sb.AppendLine(FormatOutput("As", As, 6));
            sb.AppendLine(FormatOutput("Csx", Cs.X, 6));
            sb.AppendLine(FormatOutput("Csy", Cs.Y, 6));
            sb.AppendLine(FormatOutput("Isx", Isx, 6));
            sb.AppendLine(FormatOutput("Isy", Isy, 6));
            sb.AppendLine(FormatOutput("Aeff", Aeff, 6));
            sb.AppendLine(FormatOutput("Ceffx", Ceff.X, 6));
            sb.AppendLine(FormatOutput("Ceffy", Ceff.Y, 6));
            sb.AppendLine(FormatOutput("Ieffx", Ieffx, 6));
            sb.AppendLine(FormatOutput("Ieffy", Ieffy, 6));
        }
Beispiel #6
0
        /// <summary>
        /// Case 8: Calculation of internal forces in asymmetric section for given state of strain with horizontal neutral axis
        /// </summary>
        public void Case8()
        {
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.0, 0.3);
            geometry.Add(0.2, 0.3);
            geometry.Add(0.2, 0.7);
            geometry.Add(0.9, 0.7);
            geometry.Add(0.9, 0.5);
            geometry.Add(0.5, 0.5);
            geometry.Add(0.5, 0.0);

            // rebars definition
            List <Rebar> rebars = new List <Rebar>();

            rebars.Add(new Rebar(0.05, 0.05, 0.025 * 0.025 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.45, 0.05, 0.025 * 0.025 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.85, 0.55, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.85, 0.65, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.45, 0.65, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.65, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.05, 0.025 * 0.025 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.05, 0.25, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.45, 0.25, 0.012 * 0.012 * Math.PI / 4.0));
            rebars.Add(new Rebar(0.25, 0.55, 0.012 * 0.012 * Math.PI / 4.0));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(50e6, 0.0035, 37e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(500e6, 0.075, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveForces(ResultType.Section, 0.0035, -0.00875);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 8: Calculation of internal forces in asymmetric section for given state of strain with horizontal neutral axis");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }
Beispiel #7
0
        /// <summary>
        /// Case 2: Calculation of internal forces for given state of strain in the section and rectangular model of concrete
        /// Case 2a, Case 2b and Case 2c - common geometry, concrete and steel parameters different rebars and calculation
        /// </summary>
        public void Case2()
        {
            // Case 2a:
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.0, 0.6);
            geometry.Add(0.3, 0.6);
            geometry.Add(0.3, 0.0);
            // rebars definition
            List <Rebar> rebars    = new List <Rebar>();
            double       rebarArea = 0.012 * 0.012 * Math.PI / 4.0;

            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.05, rebarArea));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(20e6, 0.0035, 30e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(500e6, 0.075, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveForces(ResultType.Section, 0.0035, 0.0005);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 2a: Calculation of internal forces for given state of strain in the section and rectangular model of concrete ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            //
            // Case 2b
            rebars.Clear();
            rebarArea = 0.032 * 0.032 * Math.PI / 4.0;
            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.05, rebarArea));
            solver.SetRebars(rebars);
            //calulation
            solver.SolveForces(ResultType.Section, 0.0035, -0.022029);
            // result for rebars
            forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            Acc            = solver.GetConcreteStressArea();
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 2b: Calculation of internal forces for given state of strain in the section and rectangular model of concrete ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            //
            // Case 2c
            rebars.Clear();
            rebarArea = 0.032 * 0.032 * Math.PI / 4.0;
            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.25, 0.05, rebarArea));
            solver.SetRebars(rebars);
            //calulation
            solver.SolveForces(ResultType.Section, 0.0015, -0.002);
            // result for rebars
            forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            Acc            = solver.GetConcreteStressArea();
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 2c: Calculation of internal forces for given state of strain in the section and rectangular model of concrete");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }