private const double TOLERANCE_PRICE_CALIBRATION_LS = 5.0E-4;   // Calibration Least Square; result not exact

//JAVA TO C# CONVERTER TODO TASK: Most Java annotations will not have direct .NET equivalent attributes:
//ORIGINAL LINE: @Test public void normal_cube()
        public virtual void normal_cube()
        {
            double  beta         = 0.50;
            Surface betaSurface  = ConstantSurface.of("Beta", beta).withMetadata(DefaultSurfaceMetadata.builder().xValueType(ValueType.YEAR_FRACTION).yValueType(ValueType.YEAR_FRACTION).zValueType(ValueType.SABR_BETA).surfaceName("Beta").build());
            double  shift        = 0.0300;
            Surface shiftSurface = ConstantSurface.of("Shift", shift).withMetadata(DefaultSurfaceMetadata.builder().xValueType(ValueType.YEAR_FRACTION).yValueType(ValueType.YEAR_FRACTION).surfaceName("Shift").build());
            SabrParametersSwaptionVolatilities calibrated = SABR_CALIBRATION.calibrateWithFixedBetaAndShift(DEFINITION, CALIBRATION_TIME, DATA_SPARSE, MULTICURVE, betaSurface, shiftSurface);

            for (int looptenor = 0; looptenor < TENORS.size(); looptenor++)
            {
                double tenor = TENORS.get(looptenor).get(ChronoUnit.YEARS);
                for (int loopexpiry = 0; loopexpiry < EXPIRIES.size(); loopexpiry++)
                {
                    LocalDate     expiry         = EUR_FIXED_1Y_EURIBOR_6M.FloatingLeg.StartDateBusinessDayAdjustment.adjust(CALIBRATION_DATE.plus(EXPIRIES.get(loopexpiry)), REF_DATA);
                    LocalDate     effectiveDate  = EUR_FIXED_1Y_EURIBOR_6M.calculateSpotDateFromTradeDate(expiry, REF_DATA);
                    LocalDate     endDate        = effectiveDate.plus(TENORS.get(looptenor));
                    SwapTrade     swap           = EUR_FIXED_1Y_EURIBOR_6M.toTrade(CALIBRATION_DATE, effectiveDate, endDate, BuySell.BUY, 1.0, 0.0);
                    double        parRate        = SWAP_PRICER.parRate(swap.resolve(REF_DATA).Product, MULTICURVE);
                    ZonedDateTime expiryDateTime = expiry.atTime(11, 0).atZone(ZoneId.of("Europe/Berlin"));
                    double        time           = calibrated.relativeTime(expiryDateTime);
                    for (int loopmoney = 0; loopmoney < MONEYNESS.size(); loopmoney++)
                    {
                        if (!double.IsNaN(DATA_ARRAY_SPARSE[looptenor][loopexpiry][loopmoney]))
                        {
                            double strike        = parRate + MONEYNESS.get(loopmoney);
                            double volBlack      = calibrated.volatility(expiryDateTime, tenor, strike, parRate);
                            double priceComputed = BlackFormulaRepository.price(parRate + shift, parRate + MONEYNESS.get(loopmoney) + shift, time, volBlack, true);
                            double priceNormal   = NormalFormulaRepository.price(parRate, parRate + MONEYNESS.get(loopmoney), time, DATA_ARRAY_SPARSE[looptenor][loopexpiry][loopmoney], PutCall.CALL);
                            assertEquals(priceComputed, priceNormal, TOLERANCE_PRICE_CALIBRATION_LS);
                        }
                    }
                }
            }
        }
Beispiel #2
0
        public virtual void test_price_formula()
        {
            double sampleVol = 0.2;

            for (int i = 0; i < NB_TEST; i++)
            {
                double expiryTime = VOLS.relativeTime(TEST_OPTION_EXPIRY[i]);
                for (int j = 0; j < NB_TEST; j++)
                {
                    foreach (PutCall putCall in new PutCall[] { PutCall.CALL, PutCall.PUT })
                    {
                        double price = VOLS.price(expiryTime, putCall, TEST_STRIKE[j], TEST_FORWARD, sampleVol);
                        double delta = VOLS.priceDelta(expiryTime, putCall, TEST_STRIKE[j], TEST_FORWARD, sampleVol);
                        double gamma = VOLS.priceGamma(expiryTime, putCall, TEST_STRIKE[j], TEST_FORWARD, sampleVol);
                        double theta = VOLS.priceTheta(expiryTime, putCall, TEST_STRIKE[j], TEST_FORWARD, sampleVol);
                        double vega  = VOLS.priceVega(expiryTime, putCall, TEST_STRIKE[j], TEST_FORWARD, sampleVol);
                        assertEquals(price, NormalFormulaRepository.price(TEST_FORWARD, TEST_STRIKE[j], expiryTime, sampleVol, putCall));
                        assertEquals(delta, NormalFormulaRepository.delta(TEST_FORWARD, TEST_STRIKE[j], expiryTime, sampleVol, putCall));
                        assertEquals(gamma, NormalFormulaRepository.gamma(TEST_FORWARD, TEST_STRIKE[j], expiryTime, sampleVol, putCall));
                        assertEquals(theta, NormalFormulaRepository.theta(TEST_FORWARD, TEST_STRIKE[j], expiryTime, sampleVol, putCall));
                        assertEquals(vega, NormalFormulaRepository.vega(TEST_FORWARD, TEST_STRIKE[j], expiryTime, sampleVol, putCall));
                    }
                }
            }
        }
Beispiel #3
0
//JAVA TO C# CONVERTER TODO TASK: Most Java annotations will not have direct .NET equivalent attributes:
//ORIGINAL LINE: @SuppressWarnings("unused") @Test public void normal_atm()
        public virtual void normal_atm()
        {
            double  beta         = 0.50;
            Surface betaSurface  = ConstantSurface.of("Beta", beta).withMetadata(DefaultSurfaceMetadata.builder().xValueType(ValueType.YEAR_FRACTION).yValueType(ValueType.YEAR_FRACTION).zValueType(ValueType.SABR_BETA).surfaceName("Beta").build());
            double  shift        = 0.0300;
            Surface shiftSurface = ConstantSurface.of("Shift", shift).withMetadata(DefaultSurfaceMetadata.builder().xValueType(ValueType.YEAR_FRACTION).yValueType(ValueType.YEAR_FRACTION).surfaceName("Shift").build());
            SabrParametersSwaptionVolatilities calibratedSmile = SABR_CALIBRATION.calibrateWithFixedBetaAndShift(DEFINITION, CALIBRATION_TIME, DATA_SIMPLE, MULTICURVE, betaSurface, shiftSurface);
            SabrParametersSwaptionVolatilities calibratedAtm   = SABR_CALIBRATION.calibrateAlphaWithAtm(NAME_SABR, calibratedSmile, MULTICURVE, ATM_NORMAL_SIMPLE, TENORS_SIMPLE, EXPIRIES_SIMPLE_2, INTERPOLATOR_2D);
            int nbExp   = EXPIRIES_SIMPLE_2.size();
            int nbTenor = TENORS_SIMPLE.size();

            for (int loopexpiry = 0; loopexpiry < nbExp; loopexpiry++)
            {
                for (int looptenor = 0; looptenor < nbTenor; looptenor++)
                {
                    double        tenor          = TENORS_SIMPLE.get(looptenor).get(ChronoUnit.YEARS);
                    LocalDate     expiry         = EUR_FIXED_1Y_EURIBOR_6M.FloatingLeg.StartDateBusinessDayAdjustment.adjust(CALIBRATION_DATE.plus(EXPIRIES_SIMPLE_2.get(loopexpiry)), REF_DATA);
                    LocalDate     effectiveDate  = EUR_FIXED_1Y_EURIBOR_6M.calculateSpotDateFromTradeDate(expiry, REF_DATA);
                    LocalDate     endDate        = effectiveDate.plus(TENORS_SIMPLE.get(looptenor));
                    SwapTrade     swap           = EUR_FIXED_1Y_EURIBOR_6M.toTrade(CALIBRATION_DATE, effectiveDate, endDate, BuySell.BUY, 1.0, 0.0);
                    double        parRate        = SWAP_PRICER.parRate(swap.resolve(REF_DATA).Product, MULTICURVE);
                    ZonedDateTime expiryDateTime = expiry.atTime(11, 0).atZone(ZoneId.of("Europe/Berlin"));
                    double        time           = calibratedAtm.relativeTime(expiryDateTime);
                    double        volBlack       = calibratedAtm.volatility(expiryDateTime, tenor, parRate, parRate);
                    double        priceComputed  = BlackFormulaRepository.price(parRate + shift, parRate + shift, time, volBlack, true);
                    double        priceNormal    = NormalFormulaRepository.price(parRate, parRate, time, DATA_NORMAL_ATM_SIMPLE[looptenor + loopexpiry * nbTenor], PutCall.CALL);
                    assertEquals(priceComputed, priceNormal, TOLERANCE_PRICE_CALIBRATION_ROOT);
                }
            }
        }
        private void checkCalibrationNormal(DoubleArray moneyness, DoubleArray normalVol, DoubleArray startParameters, BitArray @fixed, double shift, double tolerance)
        {
            Pair <LeastSquareResultsWithTransform, DoubleArray> rComputed = SABR_CALIBRATION.calibrateLsShiftedFromNormalVolatilities(BDA, CALIBRATION_TIME, ACT_365F, EXPIRY_PERIOD, FORWARD, moneyness, ValueType.SIMPLE_MONEYNESS, normalVol, startParameters, @fixed, shift);
            SabrFormulaData sabrComputed = SabrFormulaData.of(rComputed.First.ModelParameters.toArrayUnsafe());

            for (int i = 0; i < moneyness.size(); i++)
            {
                double ivComputed    = SABR_FORMULA.volatility(FORWARD + shift, FORWARD + moneyness.get(i) + shift, TIME_EXPIRY, sabrComputed.Alpha, sabrComputed.Beta, sabrComputed.Rho, sabrComputed.Nu);
                double priceComputed = BlackFormulaRepository.price(FORWARD + shift, FORWARD + moneyness.get(i) + shift, TIME_EXPIRY, ivComputed, true);
                double priceNormal   = NormalFormulaRepository.price(FORWARD, FORWARD + moneyness.get(i), TIME_EXPIRY, normalVol.get(i), PutCall.CALL);
                assertEquals(priceComputed, priceNormal, tolerance);
            }
        }
Beispiel #5
0
        //-------------------------------------------------------------------------
        /// <summary>
        /// Computes the implied normal volatility from the present value of a swaption.
        /// <para>
        /// The guess volatility for the start of the root-finding process is 1%.
        ///
        /// </para>
        /// </summary>
        /// <param name="swaption">  the product </param>
        /// <param name="ratesProvider">  the rates provider </param>
        /// <param name="dayCount">  the day-count used to estimate the time between valuation date and swaption expiry </param>
        /// <param name="presentValue">  the present value of the swaption product </param>
        /// <returns> the implied volatility associated with the present value </returns>
        public virtual double impliedVolatilityFromPresentValue(ResolvedSwaption swaption, RatesProvider ratesProvider, DayCount dayCount, double presentValue)
        {
            double sign = swaption.LongShort.sign();

            ArgChecker.isTrue(presentValue * sign > 0, "Present value sign must be in line with the option Long/Short flag ");
            validateSwaption(swaption);
            LocalDate valuationDate = ratesProvider.ValuationDate;
            LocalDate expiryDate    = swaption.ExpiryDate;

            ArgChecker.isTrue(expiryDate.isAfter(valuationDate), "Expiry must be after valuation date to compute an implied volatility");
            double          expiry     = dayCount.yearFraction(valuationDate, expiryDate);
            ResolvedSwap    underlying = swaption.Underlying;
            ResolvedSwapLeg fixedLeg   = this.fixedLeg(underlying);
            double          forward    = SwapPricer.parRate(underlying, ratesProvider);
            double          numeraire  = calculateNumeraire(swaption, fixedLeg, forward, ratesProvider);
            double          strike     = calculateStrike(fixedLeg);
            PutCall         putCall    = PutCall.ofPut(fixedLeg.PayReceive.Receive);

            return(NormalFormulaRepository.impliedVolatility(Math.Abs(presentValue), forward, strike, expiry, 0.01, numeraire, putCall));
        }
 public double priceVega(double expiry, PutCall putCall, double strike, double forward, double volatility)
 {
     return(NormalFormulaRepository.vega(forward, strike, expiry, volatility, putCall));
 }
        //-------------------------------------------------------------------------
        /// <summary>
        /// Runs the calibration of swaptions and print the calibrated smile results on the console.
        /// </summary>
        /// <param name="args">  -s to use the sparse data, i.e. a cube with missing data points </param>
        public static void Main(string[] args)
        {
            // select data
            TenorRawOptionData data = DATA_FULL;

            if (args.Length > 0)
            {
                if (args[0].Equals("-s"))
                {
                    data = DATA_SPARSE;
                }
            }
            Console.WriteLine("Start calibration");
            double          beta         = 0.50;
            SurfaceMetadata betaMetadata = DefaultSurfaceMetadata.builder().xValueType(ValueType.YEAR_FRACTION).yValueType(ValueType.YEAR_FRACTION).zValueType(ValueType.SABR_BETA).surfaceName("Beta").build();
            Surface         betaSurface  = ConstantSurface.of(betaMetadata, beta);
            double          shift        = 0.0300;
            Surface         shiftSurface = ConstantSurface.of("Shift", shift);
            SabrParametersSwaptionVolatilities calibrated = SABR_CALIBRATION.calibrateWithFixedBetaAndShift(DEFINITION, CALIBRATION_TIME, data, MULTICURVE, betaSurface, shiftSurface);

            Console.WriteLine("End calibration");
            /* Graph calibration */
            int    nbStrikesGraph = 50;
            double moneyMin       = -0.0250;
            double moneyMax       = +0.0300;

            double[] moneyGraph = new double[nbStrikesGraph + 1];
            for (int i = 0; i < nbStrikesGraph + 1; i++)
            {
                moneyGraph[i] = moneyMin + i * (moneyMax - moneyMin) / nbStrikesGraph;
            }
//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][][] strikesGraph = new double[NB_TENORS][NB_EXPIRIES][nbStrikesGraph + 1];
            double[][][] strikesGraph = RectangularArrays.ReturnRectangularDoubleArray(NB_TENORS, NB_EXPIRIES, nbStrikesGraph + 1);
//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][][] volLNGraph = new double[NB_TENORS][NB_EXPIRIES][nbStrikesGraph + 1];
            double[][][] volLNGraph = RectangularArrays.ReturnRectangularDoubleArray(NB_TENORS, NB_EXPIRIES, nbStrikesGraph + 1);
//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][][] volNGraph = new double[NB_TENORS][NB_EXPIRIES][nbStrikesGraph + 1];
            double[][][] volNGraph = RectangularArrays.ReturnRectangularDoubleArray(NB_TENORS, NB_EXPIRIES, nbStrikesGraph + 1);
//JAVA TO C# CONVERTER NOTE: The following call to the 'RectangularArrays' helper class reproduces the rectangular array initialization that is automatic in Java:
//ORIGINAL LINE: double[][] parRate = new double[NB_TENORS][NB_EXPIRIES];
            double[][] parRate = RectangularArrays.ReturnRectangularDoubleArray(NB_TENORS, NB_EXPIRIES);
            for (int looptenor = 0; looptenor < TENORS.size(); looptenor++)
            {
                double tenor = TENORS.get(looptenor).get(ChronoUnit.YEARS);
                for (int loopexpiry = 0; loopexpiry < EXPIRIES.size(); loopexpiry++)
                {
                    LocalDate expiry        = EUR_FIXED_1Y_EURIBOR_6M.FloatingLeg.StartDateBusinessDayAdjustment.adjust(CALIBRATION_DATE.plus(EXPIRIES.get(loopexpiry)), REF_DATA);
                    LocalDate effectiveDate = EUR_FIXED_1Y_EURIBOR_6M.calculateSpotDateFromTradeDate(expiry, REF_DATA);
                    LocalDate endDate       = effectiveDate.plus(TENORS.get(looptenor));
                    SwapTrade swap          = EUR_FIXED_1Y_EURIBOR_6M.toTrade(CALIBRATION_DATE, effectiveDate, endDate, BuySell.BUY, 1.0, 0.0);
                    parRate[looptenor][loopexpiry] = SWAP_PRICER.parRate(swap.resolve(REF_DATA).Product, MULTICURVE);
                    ZonedDateTime expiryDateTime = expiry.atTime(11, 0).atZone(ZoneId.of("Europe/Berlin"));
                    double        time           = calibrated.relativeTime(expiryDateTime);
                    for (int i = 0; i < nbStrikesGraph + 1; i++)
                    {
                        strikesGraph[looptenor][loopexpiry][i] = parRate[looptenor][loopexpiry] + moneyGraph[i];
                        volLNGraph[looptenor][loopexpiry][i]   = calibrated.volatility(expiryDateTime, tenor, strikesGraph[looptenor][loopexpiry][i], parRate[looptenor][loopexpiry]);
                        volNGraph[looptenor][loopexpiry][i]    = NormalFormulaRepository.impliedVolatilityFromBlackApproximated(parRate[looptenor][loopexpiry] + shift, strikesGraph[looptenor][loopexpiry][i] + shift, time, volLNGraph[looptenor][loopexpiry][i]);
                    }
                }
            }

            /* Graph export */
            string svn = "Moneyness";

            for (int looptenor = 0; looptenor < TENORS.size(); looptenor++)
            {
                for (int loopexpiry = 0; loopexpiry < EXPIRIES.size(); loopexpiry++)
                {
                    svn = svn + ", Strike_" + EXPIRIES.get(loopexpiry).ToString() + "x" + TENORS.get(looptenor).ToString() + ", NormalVol_" + EXPIRIES.get(loopexpiry).ToString() + "x" + TENORS.get(looptenor).ToString();
                }
            }
            svn = svn + "\n";
            for (int i = 0; i < nbStrikesGraph + 1; i++)
            {
                svn = svn + moneyGraph[i];
                for (int looptenor = 0; looptenor < TENORS.size(); looptenor++)
                {
                    for (int loopexpiry = 0; loopexpiry < EXPIRIES.size(); loopexpiry++)
                    {
                        svn = svn + ", " + strikesGraph[looptenor][loopexpiry][i];
                        svn = svn + ", " + volNGraph[looptenor][loopexpiry][i];
                    }
                }
                svn = svn + "\n";
            }
            Console.WriteLine(svn);
        }