Beispiel #1
0
        static public INetwork DecodeToConcurrentNetwork(NeatGenome.NeatGenome g, IActivationFunction activationFn)
        {
            //----- Loop the neuronGenes. Create Neuron for each one.
            // Store a table of neurons keyed by their id.
            Hashtable  neuronTable = new Hashtable(g.NeuronGeneList.Count);
            NeuronList neuronList  = new NeuronList();

            foreach (NeuronGene neuronGene in g.NeuronGeneList)
            {
                Neuron newNeuron = new Neuron(activationFn, neuronGene.NeuronType, neuronGene.InnovationId);
                neuronTable.Add(newNeuron.Id, newNeuron);
                neuronList.Add(newNeuron);
            }

            //----- Loop the connection genes. Create a Connection for each one and bind them to the relevant Neurons.
            foreach (ConnectionGene connectionGene in g.ConnectionGeneList)
            {
                Connection newConnection = new Connection(connectionGene.SourceNeuronId, connectionGene.TargetNeuronId, connectionGene.Weight);

                // Bind the connection to it's source neuron.
                newConnection.SetSourceNeuron((Neuron)neuronTable[connectionGene.SourceNeuronId]);

                // Store the new connection against it's target neuron.
                ((Neuron)(neuronTable[connectionGene.TargetNeuronId])).ConnectionList.Add(newConnection);
            }

            return(new ConcurrentNetwork(neuronList));
        }
		static public INetwork DecodeToConcurrentNetwork(NeatGenome.NeatGenome g, IActivationFunction activationFn)
		{
		//----- Loop the neuronGenes. Create Neuron for each one.
			// Store a table of neurons keyed by their id.
			Hashtable neuronTable = new Hashtable(g.NeuronGeneList.Count);
			NeuronList neuronList = new NeuronList();

			foreach(NeuronGene neuronGene in g.NeuronGeneList)
			{
				Neuron newNeuron = new Neuron(activationFn, neuronGene.NeuronType, neuronGene.InnovationId);
				neuronTable.Add(newNeuron.Id, newNeuron);
				neuronList.Add(newNeuron);
			}

		//----- Loop the connection genes. Create a Connection for each one and bind them to the relevant Neurons.
			foreach(ConnectionGene connectionGene in g.ConnectionGeneList)
			{
				Connection newConnection = new Connection(connectionGene.SourceNeuronId, connectionGene.TargetNeuronId, connectionGene.Weight);

				// Bind the connection to it's source neuron.
				newConnection.SetSourceNeuron((Neuron)neuronTable[connectionGene.SourceNeuronId]);

				// Store the new connection against it's target neuron.
				((Neuron)(neuronTable[connectionGene.TargetNeuronId])).ConnectionList.Add(newConnection);
			}

			return new ConcurrentNetwork(neuronList);
		}
Beispiel #3
0
        public void CreatedNeuronList()
        {
            NeuronList list = new NeuronList(42);

            Assert.IsNotNull(list.Neurons);
            Assert.AreEqual(42, list.Neurons.Count);

            for (int k = 0; k < 42; k++)
            {
                Assert.IsNotNull(list.Neurons[k]);
            }
        }
Beispiel #4
0
        public void CreateWeightedValue()
        {
            NeuronList list = new NeuronList(42);

            var result = list.CreateWeightedValue();

            Assert.IsNotNull(result);

            Assert.IsNotNull(result.Inputs);
            Assert.AreEqual(42, result.Inputs.Count);

            for (int k = 0; k < 42; k++)
            {
                Assert.AreSame(list.Neurons[k], result.Inputs[k]);
                Assert.IsTrue(result.Weights[k] >= -1.0);
                Assert.IsTrue(result.Weights[k] <= 1.0);
                Assert.IsTrue(result.Weights.Any(x => x != 0));
            }
        }
Beispiel #5
0
        /// <summary>
        /// Accepts a list of interconnected neurons that describe the network and loads them into this class instance
        /// so that the network can be run. This primarily means placing input and output nodes into their own Lists
        /// for use during the run.
        /// </summary>
        /// <param name="neuronList"></param>
        private void LoadNeuronList(NeuronList neuronList)
        {
            masterNeuronList = neuronList;

            int loopBound = masterNeuronList.Count;

            for (int j = 0; j < loopBound; j++)
            {
                Neuron neuron = masterNeuronList[j];

                switch (neuron.NeuronType)
                {
                case NeuronType.Input:
                    inputNeuronList.Add(neuron);
                    break;

                case NeuronType.Output:
                    outputNeuronList.Add(neuron);
                    break;
                }
            }
        }
Beispiel #6
0
 public AbstractNetwork(NeuronList neuronList)
 {
     inputNeuronList  = new NeuronList();
     outputNeuronList = new NeuronList();
     LoadNeuronList(neuronList);
 }
Beispiel #7
0
 public ConcurrentNetwork(NeuronList neuronList)
     : base(neuronList)
 {
 }
        private static ConcurrentNetwork ReadNetwork(XmlElement xmlNetwork)
        {
            //--- Read the activation function id.
            string activationFnId            = XmlUtilities.GetAttributeValue(xmlNetwork, "activation-fn-id");
            IActivationFunction activationFn = ActivationFunctionFactory.GetActivationFunction(activationFnId);

            // Read the neurons into a list and also into a table keyed on id.
            Hashtable neuronTable = new Hashtable();

            NeuronList biasNeuronList   = new NeuronList();
            NeuronList inputNeuronList  = new NeuronList();
            NeuronList hiddenNeuronList = new NeuronList();
            NeuronList outputNeuronList = new NeuronList();
            NeuronList masterNeuronList = new NeuronList();

            XmlNodeList listNeurons = xmlNetwork.SelectNodes("neurons/neuron");

            foreach (XmlElement xmlNeuron in listNeurons)
            {
                Neuron neuron = ReadNeuron(xmlNeuron);
                neuronTable.Add(neuron.Id, neuron);

                switch (neuron.NeuronType)
                {
                case NeuronType.Bias:
                    biasNeuronList.Add(neuron);
                    break;

                case NeuronType.Input:
                    inputNeuronList.Add(neuron);
                    break;

                case NeuronType.Hidden:
                    hiddenNeuronList.Add(neuron);
                    break;

                case NeuronType.Output:
                    outputNeuronList.Add(neuron);
                    break;
                }
            }

            //----- Build a master list of neurons. Neurons must be ordered by type - bias,input,hidden,output.
            if (biasNeuronList.Count != 1)
            {
                throw new SharpNeatLib.Xml.XmlException("Neural Network XML must contain exactly 1 bias node.");
            }

            foreach (Neuron neuron in biasNeuronList)
            {
                masterNeuronList.Add(neuron);
            }

            foreach (Neuron neuron in inputNeuronList)
            {
                masterNeuronList.Add(neuron);
            }

            foreach (Neuron neuron in hiddenNeuronList)
            {
                masterNeuronList.Add(neuron);
            }

            foreach (Neuron neuron in outputNeuronList)
            {
                masterNeuronList.Add(neuron);
            }

            //----- Read Connections and store against target neurons.
            XmlNodeList listConnections = xmlNetwork.SelectNodes("connections/connection");

            foreach (XmlElement xmlConnection in listConnections)
            {
                Connection connection = ReadConnection(xmlConnection);

                // Store the connection with it's target neuron.
                ((Neuron)neuronTable[connection.TargetNeuronId]).ConnectionList.Add(connection);

                // Bind the connection to it's source neuron.
                connection.SetSourceNeuron((Neuron)neuronTable[connection.SourceNeuronId]);
            }

            return(new ConcurrentNetwork(masterNeuronList));
        }
		public AbstractNetwork(NeuronList neuronList)
		{
			inputNeuronList = new NeuronList();
			outputNeuronList = new NeuronList();
			LoadNeuronList(neuronList);
		}
		/// <summary>
		/// Accepts a list of interconnected neurons that describe the network and loads them into this class instance
		/// so that the network can be run. This primarily means placing input and output nodes into their own Lists
		/// for use during the run.
		/// </summary>
		/// <param name="neuronList"></param>
		private void LoadNeuronList(NeuronList neuronList)
		{
			masterNeuronList = neuronList;

			int loopBound = masterNeuronList.Count;
			for(int j=0; j<loopBound; j++)
			{
				Neuron neuron = masterNeuronList[j];

				switch(neuron.NeuronType)
				{
					case NeuronType.Input:
						inputNeuronList.Add(neuron);
						break;

					case NeuronType.Output:
						outputNeuronList.Add(neuron);
						break;
				}
			}
		}
        private static ConcurrentNetwork ReadNetwork(XmlElement xmlNetwork)
        {
            //--- Read the activation function id.
            string activationFnId = XmlUtilities.GetAttributeValue(xmlNetwork, "activation-fn-id");
            IActivationFunction activationFn = ActivationFunctionFactory.GetActivationFunction(activationFnId);

            // Read the neurons into a list and also into a table keyed on id.
            Hashtable neuronTable = new Hashtable();

            NeuronList biasNeuronList = new NeuronList();
            NeuronList inputNeuronList = new NeuronList();
            NeuronList hiddenNeuronList = new NeuronList();
            NeuronList outputNeuronList = new NeuronList();
            NeuronList masterNeuronList = new NeuronList();

            XmlNodeList listNeurons = xmlNetwork.SelectNodes("neurons/neuron");
            foreach(XmlElement xmlNeuron in listNeurons)
            {
                Neuron neuron = ReadNeuron(xmlNeuron);
                neuronTable.Add(neuron.Id, neuron);

                switch(neuron.NeuronType)
                {
                    case NeuronType.Bias:
                        biasNeuronList.Add(neuron);
                        break;
                    case NeuronType.Input:
                        inputNeuronList.Add(neuron);
                        break;
                    case NeuronType.Hidden:
                        hiddenNeuronList.Add(neuron);
                        break;
                    case NeuronType.Output:
                        outputNeuronList.Add(neuron);
                        break;
                }
            }

            //----- Build a master list of neurons. Neurons must be ordered by type - bias,input,hidden,output.
            if(biasNeuronList.Count != 1)
                throw new SharpNeatLib.Xml.XmlException("Neural Network XML must contain exactly 1 bias node.");

            foreach(Neuron neuron in biasNeuronList)
                masterNeuronList.Add(neuron);

            foreach(Neuron neuron in inputNeuronList)
                masterNeuronList.Add(neuron);

            foreach(Neuron neuron in hiddenNeuronList)
                masterNeuronList.Add(neuron);

            foreach(Neuron neuron in outputNeuronList)
                masterNeuronList.Add(neuron);

            //----- Read Connections and store against target neurons.
            XmlNodeList listConnections = xmlNetwork.SelectNodes("connections/connection");
            foreach(XmlElement xmlConnection in listConnections)
            {
                Connection connection = ReadConnection(xmlConnection);

                // Store the connection with it's target neuron.
                ((Neuron)neuronTable[connection.TargetNeuronId]).ConnectionList.Add(connection);

                // Bind the connection to it's source neuron.
                connection.SetSourceNeuron((Neuron)neuronTable[connection.SourceNeuronId]);
            }

            return new ConcurrentNetwork(masterNeuronList);
        }
		public ConcurrentNetwork(NeuronList neuronList)
		: base(neuronList)
		{
		}