/// <summary>
        /// Creates a new householder decomposition.
        /// </summary>
        /// <param name="A">The matrix to decompose.</param>
        public HouseholderDecomposition(MatrixValue A)
            : base(A)
        {
            QR    = A.GetComplexMatrix();
            Rdiag = new ScalarValue[n];

            // Main loop.
            for (int k = 0; k < n; k++)
            {
                var nrm = 0.0;

                for (int i = k; i < m; i++)
                {
                    nrm = Helpers.Hypot(nrm, QR[i][k].Re);
                }

                if (nrm != 0.0)
                {
                    // Form k-th Householder vector.

                    if (QR[k][k].Re < 0)
                    {
                        nrm = -nrm;
                    }

                    for (int i = k; i < m; i++)
                    {
                        QR[i][k] /= nrm;
                    }

                    QR[k][k] += ScalarValue.One;

                    // Apply transformation to remaining columns.
                    for (int j = k + 1; j < n; j++)
                    {
                        var s = ScalarValue.Zero;

                        for (int i = k; i < m; i++)
                        {
                            s += QR[i][k] * QR[i][j];
                        }

                        s = (-s) / QR[k][k];

                        for (int i = k; i < m; i++)
                        {
                            QR[i][j] += s * QR[i][k];
                        }
                    }
                }
                else
                {
                    FullRank = false;
                }

                Rdiag[k] = new ScalarValue(-nrm);
            }
        }
        /// <summary>
        /// Least squares solution of A * X = B
        /// </summary>
        /// <param name="b">A Matrix with as many rows as A and any number of columns.</param>
        /// <returns>X that minimizes the two norm of Q*R*X-B.</returns>
        public override MatrixValue Solve(MatrixValue b)
        {
            if (b.DimensionY != m)
            {
                throw new YAMPDifferentDimensionsException(m, 1, b.DimensionY, 1);
            }

            if (!this.FullRank)
            {
                throw new YAMPMatrixFormatException(SpecialMatrixFormat.NonSingular.ToString());
            }

            // Copy right hand side
            var nx = b.DimensionX;
            var X  = b.GetComplexMatrix();

            // Compute Y = transpose(Q)*B
            for (var k = 0; k < n; k++)
            {
                for (var j = 0; j < nx; j++)
                {
                    var s = ScalarValue.Zero;

                    for (var i = k; i < m; i++)
                    {
                        s += QR[i][k] * X[i][j];
                    }

                    s = (-s) / QR[k][k];

                    for (var i = k; i < m; i++)
                    {
                        X[i][j] += s * QR[i][k];
                    }
                }
            }

            // Solve R * X = Y;
            for (var k = n - 1; k >= 0; k--)
            {
                for (var j = 0; j < nx; j++)
                {
                    X[k][j] /= Rdiag[k];
                }

                for (var i = 0; i < k; i++)
                {
                    for (var j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * QR[i][k];
                    }
                }
            }

            return(new MatrixValue(X, n, nx).GetSubMatrix(0, n, 0, nx));
        }
        /// <summary>Solve A*X = B</summary>
        /// <param name="B">  A Matrix with as many rows as A and any number of columns.
        /// </param>
        /// <returns>     X so that L*L'*X = B
        /// </returns>
        /// <exception cref="System.ArgumentException">  Matrix row dimensions must agree.
        /// </exception>
        /// <exception cref="System.SystemException"> Matrix is not symmetric positive definite.
        /// </exception>

        public override MatrixValue Solve(MatrixValue B)
        {
            if (B.DimensionY != n)
            {
                throw new YAMPDifferentDimensionsException(n, 1, B.DimensionY, 1);
            }

            if (!isspd)
            {
                throw new YAMPMatrixFormatException(SpecialMatrixFormat.SymmetricPositiveDefinite);
            }

            // Copy right hand side.
            var X  = B.GetComplexMatrix();
            int nx = B.DimensionX;

            // Solve L*Y = B;
            for (int k = 0; k < n; k++)
            {
                for (int i = k + 1; i < n; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * L[i][k];
                    }
                }

                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= L[k][k];
                }
            }

            // Solve L'*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= L[k][k];
                }

                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * L[k][i];
                    }
                }
            }

            return(new MatrixValue(X, n, nx));
        }
        /// <summary>
        /// Cholesky algorithm for symmetric and positive definite matrix.
        /// </summary>
        /// <param name="Arg">Square, symmetric matrix.</param>
        /// <returns>Structure to access L and isspd flag.</returns>
        public CholeskyDecomposition(MatrixValue Arg)
        {
            // Initialize.
            var A = Arg.GetComplexMatrix();

            n = Arg.DimensionY;
            L = new ScalarValue[n][];

            for (int i = 0; i < n; i++)
            {
                L[i] = new ScalarValue[n];
            }

            isspd = Arg.DimensionX == n;

            // Main loop.
            for (int i = 0; i < n; i++)
            {
                var Lrowi = L[i];
                var d     = ScalarValue.Zero;

                for (int j = 0; j < i; j++)
                {
                    var Lrowj = L[j];
                    var s     = new ScalarValue();

                    for (int k = 0; k < j; k++)
                    {
                        s += Lrowi[k] * Lrowj[k].Conjugate();
                    }

                    s        = (A[i][j] - s) / L[j][j];
                    Lrowi[j] = s;
                    d       += s * s.Conjugate();
                    isspd    = isspd && (A[j][i] == A[i][j]);
                }

                d       = A[i][i] - d;
                isspd   = isspd & (d.Abs() > 0.0);
                L[i][i] = d.Sqrt();

                for (int k = i + 1; k < n; k++)
                {
                    L[i][k] = ScalarValue.Zero;
                }
            }
        }
        /// <summary>
        /// Creates a new householder decomposition.
        /// </summary>
        /// <param name="A">The matrix to decompose.</param>
        public HouseholderDecomposition(MatrixValue A)
            : base(A)
        {
            QR = A.GetComplexMatrix();
            Rdiag = new ScalarValue[n];

            // Main loop.
            for (int k = 0; k < n; k++)
            {
                var nrm = 0.0;

                for (int i = k; i < m; i++)
                    nrm = Helpers.Hypot(nrm, QR[i][k].Re);

                if (nrm != 0.0)
                {
                    // Form k-th Householder vector.

                    if (QR[k][k].Re < 0)
                        nrm = -nrm;

                    for (int i = k; i < m; i++)
                        QR[i][k] /= nrm;

                    QR[k][k] += ScalarValue.One;

                    // Apply transformation to remaining columns.
                    for (int j = k + 1; j < n; j++)
                    {
                        var s = ScalarValue.Zero;

                        for (int i = k; i < m; i++)
                            s += QR[i][k] * QR[i][j];

                        s = (-s) / QR[k][k];

                        for (int i = k; i < m; i++)
                            QR[i][j] += s * QR[i][k];
                    }
                }
                else
                    FullRank = false;

                Rdiag[k] = new ScalarValue(-nrm);
            }
        }
        /// <summary>
        /// LU Decomposition
        /// </summary>
        /// <param name="A">Rectangular matrix</param>
        /// <returns>Structure to access L, U and piv.</returns>
        public LUDecomposition(MatrixValue A)
        {
            // Use a "left-looking", dot-product, Crout / Doolittle algorithm.
            LU  = A.GetComplexMatrix();
            m   = A.DimensionY;
            n   = A.DimensionX;
            piv = new int[m];

            for (int i = 0; i < m; i++)
            {
                piv[i] = i;
            }

            pivsign = 1;
            var LUrowi = new ScalarValue[0];
            var LUcolj = new ScalarValue[m];

            // Outer loop.
            for (int j = 0; j < n; j++)
            {
                // Make a copy of the j-th column to localize references.
                for (int i = 0; i < m; i++)
                {
                    LUcolj[i] = LU[i][j];
                }

                // Apply previous transformations.
                for (int i = 0; i < m; i++)
                {
                    LUrowi = LU[i];

                    // Most of the time is spent in the following dot product.
                    var kmax = Math.Min(i, j);
                    var s    = ScalarValue.Zero;

                    for (int k = 0; k < kmax; k++)
                    {
                        s += LUrowi[k] * LUcolj[k];
                    }

                    LUrowi[j] = LUcolj[i] -= s;
                }

                // Find pivot and exchange if necessary.
                var p = j;

                for (int i = j + 1; i < m; i++)
                {
                    if (LUcolj[i].Abs() > LUcolj[p].Abs())
                    {
                        p = i;
                    }
                }

                if (p != j)
                {
                    for (int k = 0; k < n; k++)
                    {
                        var t = LU[p][k];
                        LU[p][k] = LU[j][k];
                        LU[j][k] = t;
                    }

                    var k2 = piv[p];
                    piv[p]  = piv[j];
                    piv[j]  = k2;
                    pivsign = -pivsign;
                }

                // Compute multipliers.

                if (j < m & LU[j][j] != 0.0)
                {
                    for (int i = j + 1; i < m; i++)
                    {
                        LU[i][j] = LU[i][j] / LU[j][j];
                    }
                }
            }
        }
Beispiel #7
0
        /// <summary>
        /// LU Decomposition
        /// </summary>
        /// <param name="A">Rectangular matrix</param>
        /// <returns>Structure to access L, U and piv.</returns>
        public LUDecomposition(MatrixValue A)
        {
            // Use a "left-looking", dot-product, Crout / Doolittle algorithm.
            LU = A.GetComplexMatrix();
            m = A.DimensionY;
            n = A.DimensionX;
            piv = new int[m];

            for (int i = 0; i < m; i++)
                piv[i] = i;

            pivsign = 1;
            var LUrowi = new ScalarValue[0];
            var LUcolj = new ScalarValue[m];

            // Outer loop.
            for (int j = 0; j < n; j++)
            {
                // Make a copy of the j-th column to localize references.
                for (int i = 0; i < m; i++)
                    LUcolj[i] = LU[i][j];

                // Apply previous transformations.
                for (int i = 0; i < m; i++)
                {
                    LUrowi = LU[i];

                    // Most of the time is spent in the following dot product.
                    var kmax = Math.Min(i, j);
                    var s = ScalarValue.Zero;

                    for (int k = 0; k < kmax; k++)
                        s += LUrowi[k] * LUcolj[k];

                    LUrowi[j] = LUcolj[i] -= s;
                }

                // Find pivot and exchange if necessary.
                var p = j;

                for (int i = j + 1; i < m; i++)
                {
                    if (LUcolj[i].Abs() > LUcolj[p].Abs())
                        p = i;
                }

                if (p != j)
                {
                    for (int k = 0; k < n; k++)
                    {
                        var t = LU[p][k];
                        LU[p][k] = LU[j][k];
                        LU[j][k] = t;
                    }

                    var k2 = piv[p];
                    piv[p] = piv[j];
                    piv[j] = k2;
                    pivsign = -pivsign;
                }

                // Compute multipliers.

                if (j < m & LU[j][j] != 0.0)
                {
                    for (int i = j + 1; i < m; i++)
                        LU[i][j] = LU[i][j] / LU[j][j];
                }
            }
        }
        /// <summary>
        /// Least squares solution of A * X = B
        /// </summary>
        /// <param name="b">A Matrix with as many rows as A and any number of columns.</param>
        /// <returns>X that minimizes the two norm of Q*R*X-B.</returns>
        public override MatrixValue Solve(MatrixValue b)
        {
            if (b.DimensionY != m)
                throw new YAMPDifferentDimensionsException(m, 1, b.DimensionY, 1);

            if (!this.FullRank)
                throw new YAMPMatrixFormatException(SpecialMatrixFormat.NonSingular.ToString());

            // Copy right hand side
            var nx = b.DimensionX;
            var X = b.GetComplexMatrix();

            // Compute Y = transpose(Q)*B
            for (var k = 0; k < n; k++)
            {
                for (var j = 0; j < nx; j++)
                {
                    var s = ScalarValue.Zero;

                    for (var i = k; i < m; i++)
                    {
                        s += QR[i][k] * X[i][j];
                    }

                    s = (-s) / QR[k][k];

                    for (var i = k; i < m; i++)
                    {
                        X[i][j] += s * QR[i][k];
                    }
                }
            }

            // Solve R * X = Y;
            for (var k = n - 1; k >= 0; k--)
            {
                for (var j = 0; j < nx; j++)
                {
                    X[k][j] /= Rdiag[k];
                }

                for (var i = 0; i < k; i++)
                {
                    for (var j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * QR[i][k];
                    }
                }
            }

            return new MatrixValue(X, n, nx).GetSubMatrix(0, n, 0, nx);
        }