Beispiel #1
0
        void InitializeLightConstants(NativeArray <VisibleLight> lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightAttenuation, out Vector4 lightSpotDir, out Vector4 lightOcclusionProbeChannel, out LightCookie cookie)
        {
            lightPos                   = k_DefaultLightPosition;
            lightColor                 = k_DefaultLightColor;
            lightAttenuation           = k_DefaultLightAttenuation;
            lightSpotDir               = k_DefaultLightSpotDirection;
            lightOcclusionProbeChannel = k_DefaultLightsProbeChannel;
            cookie = null;

            // When no lights are visible, main light will be set to -1.
            // In this case we initialize it to default values and return
            if (lightIndex < 0)
            {
                return;
            }

            VisibleLight lightData = lights[lightIndex];

            if (lightData.lightType == LightType.Directional)
            {
                Vector4 dir = -lightData.localToWorldMatrix.GetColumn(2);
                lightPos = new Vector4(dir.x, dir.y, dir.z, 0.0f);
            }
            else
            {
                Vector4 pos = lightData.localToWorldMatrix.GetColumn(3);
                lightPos = new Vector4(pos.x, pos.y, pos.z, 1.0f);
            }

            // VisibleLight.finalColor already returns color in active color space
            lightColor = lightData.finalColor;

            // Directional Light attenuation is initialize so distance attenuation always be 1.0
            if (lightData.lightType != LightType.Directional)
            {
                // Light attenuation in universal matches the unity vanilla one.
                // attenuation = 1.0 / distanceToLightSqr
                // We offer two different smoothing factors.
                // The smoothing factors make sure that the light intensity is zero at the light range limit.
                // The first smoothing factor is a linear fade starting at 80 % of the light range.
                // smoothFactor = (lightRangeSqr - distanceToLightSqr) / (lightRangeSqr - fadeStartDistanceSqr)
                // We rewrite smoothFactor to be able to pre compute the constant terms below and apply the smooth factor
                // with one MAD instruction
                // smoothFactor =  distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr)
                //                 distanceSqr *           oneOverFadeRangeSqr             +              lightRangeSqrOverFadeRangeSqr

                // The other smoothing factor matches the one used in the Unity lightmapper but is slower than the linear one.
                // smoothFactor = (1.0 - saturate((distanceSqr * 1.0 / lightrangeSqr)^2))^2
                float lightRangeSqr                 = lightData.range * lightData.range;
                float fadeStartDistanceSqr          = 0.8f * 0.8f * lightRangeSqr;
                float fadeRangeSqr                  = (fadeStartDistanceSqr - lightRangeSqr);
                float oneOverFadeRangeSqr           = 1.0f / fadeRangeSqr;
                float lightRangeSqrOverFadeRangeSqr = -lightRangeSqr / fadeRangeSqr;
                float oneOverLightRangeSqr          = 1.0f / Mathf.Max(0.0001f, lightData.range * lightData.range);

                // On mobile: Use the faster linear smoothing factor.
                // On other devices: Use the smoothing factor that matches the GI.
                lightAttenuation.x = Application.isMobilePlatform ? oneOverFadeRangeSqr : oneOverLightRangeSqr;
                lightAttenuation.y = lightRangeSqrOverFadeRangeSqr;
            }

            if (lightData.lightType == LightType.Spot)
            {
                Vector4 dir = lightData.localToWorldMatrix.GetColumn(2);
                lightSpotDir = new Vector4(-dir.x, -dir.y, -dir.z, 0.0f);

                // Spot Attenuation with a linear falloff can be defined as
                // (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle)
                // This can be rewritten as
                // invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle)
                // SdotL * invAngleRange + (-cosOuterAngle * invAngleRange)
                // If we precompute the terms in a MAD instruction
                float cosOuterAngle = Mathf.Cos(Mathf.Deg2Rad * lightData.spotAngle * 0.5f);
                // We neeed to do a null check for particle lights
                // This should be changed in the future
                // Particle lights will use an inline function
                float cosInnerAngle;
                if (lightData.light != null)
                {
                    cosInnerAngle = Mathf.Cos(lightData.light.innerSpotAngle * Mathf.Deg2Rad * 0.5f);
                }
                else
                {
                    cosInnerAngle = Mathf.Cos((2.0f * Mathf.Atan(Mathf.Tan(lightData.spotAngle * 0.5f * Mathf.Deg2Rad) * (64.0f - 18.0f) / 64.0f)) * 0.5f);
                }
                float smoothAngleRange = Mathf.Max(0.001f, cosInnerAngle - cosOuterAngle);
                float invAngleRange    = 1.0f / smoothAngleRange;
                float add = -cosOuterAngle * invAngleRange;
                lightAttenuation.z = invAngleRange;
                lightAttenuation.w = add;
            }

            Light light = lightData.light;

            if (light.cookie)
            {
                cookie        = new LightCookie();
                cookie.texure = light.cookie;

                cookie.worldToLight = light.transform.worldToLocalMatrix;
                if (lightData.lightType == LightType.Directional)
                {
                    cookie.worldToLight = Matrix4x4.Scale(new Vector3(1.0f / light.cookieSize, 1.0f / light.cookieSize, 1.0f)) * cookie.worldToLight;
                }
            }

            // Set the occlusion probe channel.
            int occlusionProbeChannel = light != null ? light.bakingOutput.occlusionMaskChannel : -1;

            // If we have baked the light, the occlusion channel is the index we need to sample in 'unity_ProbesOcclusion'
            // If we have not baked the light, the occlusion channel is -1.
            // In case there is no occlusion channel is -1, we set it to zero, and then set the second value in the
            // input to one. We then, in the shader max with the second value for non-occluded lights.
            lightOcclusionProbeChannel.x = occlusionProbeChannel == -1 ? 0f : occlusionProbeChannel;
            lightOcclusionProbeChannel.y = occlusionProbeChannel == -1 ? 1f : 0f;

            // TODO: Add support to shadow mask
            if (light != null && light.bakingOutput.mixedLightingMode == MixedLightingMode.Subtractive && light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed)
            {
                if (m_MixedLightingSetup == MixedLightingSetup.None && lightData.light.shadows != LightShadows.None)
                {
                    m_MixedLightingSetup = MixedLightingSetup.Subtractive;
                }
            }
        }
        void InitializeLightConstants(NativeArray <VisibleLight> lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightAttenuation, out Vector4 lightSpotDir, out LightCookie cookie)
        {
            lightPos         = k_DefaultLightPosition;
            lightColor       = k_DefaultLightColor;
            lightAttenuation = k_DefaultLightAttenuation;
            lightSpotDir     = k_DefaultLightSpotDirection;
            cookie           = null;
            // When no lights are visible, main light will be set to -1.
            // In this case we initialize it to default values and return
            if (lightIndex < 0)
            {
                return;
            }

            VisibleLight lightData = lights[lightIndex];

            if (lightData.lightType == LightType.Directional)
            {
                Vector4 dir = -lightData.localToWorldMatrix.GetColumn(2);
                lightPos = new Vector4(dir.x, dir.y, dir.z, 1.0f);
            }
            else
            {
                Vector4 pos = lightData.localToWorldMatrix.GetColumn(3);
                lightPos = new Vector4(pos.x, pos.y, pos.z, 1.0f);
            }

            // VisibleLight.finalColor already returns color in active color space
            lightColor = lightData.finalColor;

            // Directional Light attenuation is initialize so distance attenuation always be 1.0
            if (lightData.lightType != LightType.Directional)
            {
                // Light attenuation in lightweight matches the unity vanilla one.
                // attenuation = 1.0 / distanceToLightSqr
                // We offer two different smoothing factors.
                // The smoothing factors make sure that the light intensity is zero at the light range limit.
                // The first smoothing factor is a linear fade starting at 80 % of the light range.
                // smoothFactor = (lightRangeSqr - distanceToLightSqr) / (lightRangeSqr - fadeStartDistanceSqr)
                // We rewrite smoothFactor to be able to pre compute the constant terms below and apply the smooth factor
                // with one MAD instruction
                // smoothFactor =  distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr)
                //                 distanceSqr *           oneOverFadeRangeSqr             +              lightRangeSqrOverFadeRangeSqr

                // The other smoothing factor matches the one used in the Unity lightmapper but is slower than the linear one.
                // smoothFactor = (1.0 - saturate((distanceSqr * 1.0 / lightrangeSqr)^2))^2
                float lightRangeSqr                 = lightData.range * lightData.range;
                float fadeStartDistanceSqr          = 0.8f * 0.8f * lightRangeSqr;
                float fadeRangeSqr                  = (fadeStartDistanceSqr - lightRangeSqr);
                float oneOverFadeRangeSqr           = 1.0f / fadeRangeSqr;
                float lightRangeSqrOverFadeRangeSqr = -lightRangeSqr / fadeRangeSqr;
                float oneOverLightRangeSqr          = 1.0f / Mathf.Max(0.0001f, lightData.range * lightData.range);

                // On mobile: Use the faster linear smoothing factor.
                // On other devices: Use the smoothing factor that matches the GI.
                lightAttenuation.x = Application.isMobilePlatform ? oneOverFadeRangeSqr : oneOverLightRangeSqr;
                lightAttenuation.y = lightRangeSqrOverFadeRangeSqr;
            }

            if (lightData.lightType == LightType.Spot)
            {
                Vector4 dir = lightData.localToWorldMatrix.GetColumn(2);
                lightSpotDir = new Vector4(-dir.x, -dir.y, -dir.z, 0.0f);

                // Spot Attenuation with a linear falloff can be defined as
                // (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle)
                // This can be rewritten as
                // invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle)
                // SdotL * invAngleRange + (-cosOuterAngle * invAngleRange)
                // If we precompute the terms in a MAD instruction
                float cosOuterAngle = Mathf.Cos(Mathf.Deg2Rad * lightData.spotAngle * 0.5f);
                // We neeed to do a null check for particle lights
                // This should be changed in the future
                // Particle lights will use an inline function
                float cosInnerAngle;
                if (lightData.light != null)
                {
                    cosInnerAngle = Mathf.Cos(LightmapperUtils.ExtractInnerCone(lightData.light) * 0.5f);
                }
                else
                {
                    cosInnerAngle = Mathf.Cos((2.0f * Mathf.Atan(Mathf.Tan(lightData.spotAngle * 0.5f * Mathf.Deg2Rad) * (64.0f - 18.0f) / 64.0f)) * 0.5f);
                }
                float smoothAngleRange = Mathf.Max(0.001f, cosInnerAngle - cosOuterAngle);
                float invAngleRange    = 1.0f / smoothAngleRange;
                float add = -cosOuterAngle * invAngleRange;
                lightAttenuation.z = invAngleRange;
                lightAttenuation.w = add;
            }

            Light   light                = lightData.light;
            Texture lightTex             = light.cookie;
            LWRPAdditionalLightData data = light.gameObject.GetComponent <LWRPAdditionalLightData>();

            if (lightTex && data)
            {
                cookie = new LightCookie
                {
                    Tex         = lightTex,
                    LightMat    = light.transform.worldToLocalMatrix,
                    CookieSize  = light.cookieSize,
                    Falloff     = data.lightCookieFalloff,
                    cookieColor = data.lightCookieColor,
                };
            }
            if (light != null && light.bakingOutput.mixedLightingMode == MixedLightingMode.Subtractive && light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed)
            {
                if (m_MixedLightingSetup == MixedLightingSetup.None && lightData.light.shadows != LightShadows.None)
                {
                    m_MixedLightingSetup = MixedLightingSetup.Subtractive;
                }
            }
        }