Beispiel #1
0
        internal void StudentIsPositiveTest4()
        {
            double shape     = 1;
            Gamma  precPrior = Gamma.FromShapeAndRate(shape, shape);
            // mean=-1 causes improper messages
            double   mean      = -1;
            Gaussian meanPrior = Gaussian.PointMass(mean);
            double   evExpected;
            Gaussian xExpected = StudentIsPositiveExact(mean, precPrior, out evExpected);

            GaussianOp.ForceProper       = false;
            GaussianOp_Laplace.modified  = true;
            GaussianOp_Laplace.modified2 = true;
            Gaussian xF = Gaussian.Uniform();
            Gaussian xB = Gaussian.Uniform();
            Gamma    q  = GaussianOp_Laplace.QInit();
            double   r0 = 0.38;

            r0 = 0.1;
            for (int iter = 0; iter < 20; iter++)
            {
                q = GaussianOp_Laplace.Q(xB, meanPrior, precPrior, q);
                //xF = GaussianOp_Laplace.SampleAverageConditional(xB, meanPrior, precPrior, q);
                xF = Gaussian.FromMeanAndPrecision(mean, r0);
                xB = IsPositiveOp.XAverageConditional(true, xF);
                Console.WriteLine("xF = {0} xB = {1}", xF, xB);
            }
            Console.WriteLine("x = {0} should be {1}", xF * xB, xExpected);

            double[] precs     = EpTests.linspace(1e-3, 5, 100);
            double[] evTrue    = new double[precs.Length];
            double[] evApprox  = new double[precs.Length];
            double[] evApprox2 = new double[precs.Length];
            //r0 = q.GetMean();
            double sum = 0, sum2 = 0;

            for (int i = 0; i < precs.Length; i++)
            {
                double   r   = precs[i];
                Gaussian xFt = Gaussian.FromMeanAndPrecision(mean, r);
                evTrue[i]    = IsPositiveOp.LogAverageFactor(true, xFt) + precPrior.GetLogProb(r);
                evApprox[i]  = IsPositiveOp.LogAverageFactor(true, xF) + precPrior.GetLogProb(r) + xB.GetLogAverageOf(xFt) - xB.GetLogAverageOf(xF);
                evApprox2[i] = IsPositiveOp.LogAverageFactor(true, xF) + precPrior.GetLogProb(r0) + q.GetLogProb(r) - q.GetLogProb(r0);
                sum         += System.Math.Exp(evApprox[i]);
                sum2        += System.Math.Exp(evApprox2[i]);
            }
            Console.WriteLine("r0 = {0}: {1} {2} {3}", r0, sum, sum2, q.GetVariance() + System.Math.Pow(r0 - q.GetMean(), 2));
            //TODO: change path for cross platform using
            using (var writer = new MatlabWriter(@"..\..\..\Tests\student.mat"))
            {
                writer.Write("z", evTrue);
                writer.Write("z2", evApprox);
                writer.Write("z3", evApprox2);
                writer.Write("precs", precs);
            }
        }
Beispiel #2
0
        private Gaussian StudentIsPositiveExact(double mean, Gamma precPrior, out double evidence)
        {
            // importance sampling for true answer
            GaussianEstimator est = new GaussianEstimator();
            int nSamples          = 1000000;

            evidence = 0;
            for (int iter = 0; iter < nSamples; iter++)
            {
                double   precSample = precPrior.Sample();
                Gaussian xPrior     = Gaussian.FromMeanAndPrecision(mean, precSample);
                double   logWeight  = IsPositiveOp.LogAverageFactor(true, xPrior);
                evidence += System.Math.Exp(logWeight);
                double xSample = xPrior.Sample();
                if (xSample > 0)
                {
                    est.Add(xSample);
                }
            }
            evidence /= nSamples;
            return(est.GetDistribution(new Gaussian()));
        }
Beispiel #3
0
        internal void StudentIsPositiveTest2()
        {
            GaussianOp.ForceProper = false;
            double   shape     = 1;
            double   mean      = -1;
            Gamma    precPrior = Gamma.FromShapeAndRate(shape, shape);
            Gaussian meanPrior = Gaussian.PointMass(mean);
            double   evExpected;
            Gaussian xExpected = StudentIsPositiveExact(mean, precPrior, out evExpected);

            Gaussian xF2 = Gaussian.FromMeanAndVariance(-1, 1);
            // the energy has a stationary point here (min in both dimensions), even though xF0 is improper
            Gaussian xB0 = new Gaussian(2, 1);

            xF2 = Gaussian.FromMeanAndVariance(-4.552, 6.484);
            //xB0 = new Gaussian(1.832, 0.9502);
            //xB0 = new Gaussian(1.792, 1.558);
            //xB0 = new Gaussian(1.71, 1.558);
            //xB0 = new Gaussian(1.792, 1.5);
            Gaussian xF0 = GaussianOp_Slow.SampleAverageConditional(xB0, meanPrior, precPrior);

            //Console.WriteLine("xB0 = {0} xF0 = {1}", xB0, xF0);
            //Console.WriteLine(xF0*xB0);
            //Console.WriteLine(xF2*xB0);

            xF2 = new Gaussian(0.8651, 1.173);
            xB0 = new Gaussian(-4, 2);
            xB0 = new Gaussian(7, 7);
            if (false)
            {
                xF2 = new Gaussian(mean, 1);
                double[] xs      = EpTests.linspace(0, 100, 1000);
                double[] logTrue = Util.ArrayInit(xs.Length, i => GaussianOp.LogAverageFactor(xs[i], mean, precPrior));
                Normalize(logTrue);
                xF2 = FindxF4(xs, logTrue, xF2);
                xF2 = Gaussian.FromNatural(-0.85, 0);
                xB0 = IsPositiveOp.XAverageConditional(true, xF2);
                Console.WriteLine("xF = {0} xB = {1}", xF2, xB0);
                Console.WriteLine("x = {0} should be {1}", xF2 * xB0, xExpected);
                Console.WriteLine("proj[T*xB] = {0}", GaussianOp_Slow.SampleAverageConditional(xB0, meanPrior, precPrior) * xB0);
                double ev = System.Math.Exp(IsPositiveOp.LogAverageFactor(true, xF2) + GaussianOp_Slow.LogAverageFactor(xB0, meanPrior, precPrior) - xF2.GetLogAverageOf(xB0));
                Console.WriteLine("evidence = {0} should be {1}", ev, evExpected);
                return;
            }
            if (false)
            {
                xF2 = new Gaussian(mean, 1);
                xF2 = FindxF3(xExpected, evExpected, meanPrior, precPrior, xF2);
                xB0 = IsPositiveOp.XAverageConditional(true, xF2);
                Console.WriteLine("xF = {0} xB = {1}", xF2, xB0);
                Console.WriteLine("x = {0} should be {1}", xF2 * xB0, xExpected);
                //double ev = Math.Exp(IsPositiveOp.LogAverageFactor(true, xF2) + GaussianOp.LogAverageFactor_slow(xB0, meanPrior, precPrior) - xF2.GetLogAverageOf(xB0));
                //Console.WriteLine("evidence = {0} should be {1}", ev, evExpected);
                return;
            }
            if (false)
            {
                xF2 = new Gaussian(-2, 10);
                xF2 = FindxF2(meanPrior, precPrior, xF2);
                xB0 = IsPositiveOp.XAverageConditional(true, xF2);
                xF0 = GaussianOp_Slow.SampleAverageConditional(xB0, meanPrior, precPrior);
                Console.WriteLine("xB = {0}", xB0);
                Console.WriteLine("xF = {0} should be {1}", xF0, xF2);
                return;
            }
            if (false)
            {
                xF2 = new Gaussian(-3998, 4000);
                xF2 = new Gaussian(0.8651, 1.173);
                xB0 = new Gaussian(-4, 2);
                xB0 = new Gaussian(2000, 1e-5);
                xB0 = FindxB(xB0, meanPrior, precPrior, xF2);
                xF0 = GaussianOp_Slow.SampleAverageConditional(xB0, meanPrior, precPrior);
                Console.WriteLine("xB = {0}", xB0);
                Console.WriteLine("xF = {0} should be {1}", xF0, xF2);
                return;
            }
            if (false)
            {
                //xF2 = new Gaussian(-7, 10);
                //xF2 = new Gaussian(-50, 52);
                xB0 = new Gaussian(-1.966, 5.506e-08);
                //xF2 = new Gaussian(-3998, 4000);
                xF0 = FindxF(xB0, meanPrior, precPrior, xF2);
                Gaussian xB2 = IsPositiveOp.XAverageConditional(true, xF0);
                Console.WriteLine("xF = {0}", xF0);
                Console.WriteLine("xB = {0} should be {1}", xB2, xB0);
                return;
            }
            if (true)
            {
                xF0 = new Gaussian(-3.397e+08, 5.64e+08);
                xF0 = new Gaussian(-2.373e+04, 2.8e+04);
                xB0 = new Gaussian(2.359, 1.392);
                xF0 = Gaussian.FromNatural(-0.84, 0);
                //xF0 = Gaussian.FromNatural(-0.7, 0);
                for (int iter = 0; iter < 10; iter++)
                {
                    xB0 = FindxB(xB0, meanPrior, precPrior, xF0);
                    Gaussian xFt = GaussianOp_Slow.SampleAverageConditional(xB0, meanPrior, precPrior);
                    Console.WriteLine("xB = {0}", xB0);
                    Console.WriteLine("xF = {0} should be {1}", xFt, xF0);
                    xF0 = FindxF0(xB0, meanPrior, precPrior, xF0);
                    Gaussian xBt = IsPositiveOp.XAverageConditional(true, xF0);
                    Console.WriteLine("xF = {0}", xF0);
                    Console.WriteLine("xB = {0} should be {1}", xBt, xB0);
                }
                Console.WriteLine("x = {0} should be {1}", xF0 * xB0, xExpected);
                double ev = System.Math.Exp(IsPositiveOp.LogAverageFactor(true, xF0) + GaussianOp_Slow.LogAverageFactor(xB0, meanPrior, precPrior) - xF0.GetLogAverageOf(xB0));
                Console.WriteLine("evidence = {0} should be {1}", ev, evExpected);
                return;
            }

            //var precs = EpTests.linspace(1e-6, 1e-5, 200);
            var precs = EpTests.linspace(xB0.Precision / 11, xB0.Precision, 100);

            //var precs = EpTests.linspace(xF0.Precision/20, xF0.Precision/3, 100);
            precs = EpTests.linspace(1e-9, 1e-5, 100);
            //precs = new double[] { xB0.Precision };
            var ms = EpTests.linspace(xB0.GetMean() - 1, xB0.GetMean() + 1, 100);

            //var ms = EpTests.linspace(xF0.GetMean()-1, xF0.GetMean()+1, 100);
            //precs = EpTests.linspace(1.0/10, 1.0/8, 200);
            ms = EpTests.linspace(2000, 4000, 100);
            //ms = new double[] { xB0.GetMean() };
            Matrix result  = new Matrix(precs.Length, ms.Length);
            Matrix result2 = new Matrix(precs.Length, ms.Length);

            //ms = new double[] { 0.7 };
            for (int j = 0; j < ms.Length; j++)
            {
                double   maxZ  = double.NegativeInfinity;
                double   minZ  = double.PositiveInfinity;
                Gaussian maxxF = Gaussian.Uniform();
                Gaussian minxF = Gaussian.Uniform();
                Gaussian maxxB = Gaussian.Uniform();
                Gaussian minxB = Gaussian.Uniform();
                Vector   v     = Vector.Zero(3);
                for (int i = 0; i < precs.Length; i++)
                {
                    Gaussian xF = Gaussian.FromMeanAndPrecision(ms[j], precs[i]);
                    xF = xF2;
                    Gaussian xB = IsPositiveOp.XAverageConditional(true, xF);
                    xB = Gaussian.FromMeanAndPrecision(ms[j], precs[i]);
                    //xB = xB0;
                    v[0] = IsPositiveOp.LogAverageFactor(true, xF);
                    v[1] = GaussianOp.LogAverageFactor_slow(xB, meanPrior, precPrior);
                    //v[1] = GaussianOp_Slow.LogAverageFactor(xB, meanPrior, precPrior);
                    v[2] = -xF.GetLogAverageOf(xB);
                    double logZ = v.Sum();
                    double Z    = logZ;
                    if (Z > maxZ)
                    {
                        maxZ  = Z;
                        maxxF = xF;
                        maxxB = xB;
                    }
                    if (Z < minZ)
                    {
                        minZ  = Z;
                        minxF = xF;
                        minxB = xB;
                    }
                    result[i, j]  = Z;
                    result2[i, j] = IsPositiveOp.LogAverageFactor(true, xF) + xF0.GetLogAverageOf(xB) - xF.GetLogAverageOf(xB);
                    //Gaussian xF3 = GaussianOp.SampleAverageConditional_slower(xB, meanPrior, precPrior);
                    //result[i, j] = Math.Pow(xF3.Precision - xF.Precision, 2);
                    //result2[i, j] = Math.Pow((xF2*xB).Precision - (xF*xB).Precision, 2);
                    //result2[i, j] = -xF.GetLogAverageOf(xB);
                    //Gaussian xF2 = GaussianOp.SampleAverageConditional_slow(xB, Gaussian.PointMass(0), precPrior);
                    Gaussian xMarginal = xF * xB;
                    //Console.WriteLine("xF = {0} Z = {1} x = {2}", xF, Z.ToString("g4"), xMarginal);
                }
                double delta = v[1] - v[2];
                //Console.WriteLine("xF = {0} xB = {1} maxZ = {2} x = {3}", maxxF, maxxB, maxZ.ToString("g4"), maxxF*maxxB);
                //Console.WriteLine("xF = {0} maxZ = {1} delta = {2}", maxxF, maxZ.ToString("g4"), delta.ToString("g4"));
                Console.WriteLine("xF = {0} xB = {1} minZ = {2} x = {3}", minxF, minxB, minZ.ToString("g4"), minxF * minxB);
            }
            //TODO: change path for cross platform using
            using (var writer = new MatlabWriter(@"..\..\..\Tests\student.mat"))
            {
                writer.Write("z", result);
                writer.Write("z2", result2);
                writer.Write("precs", precs);
                writer.Write("ms", ms);
            }
        }