Beispiel #1
0
        /// <summary>
        /// Compares the decrease in values from the reference Nifti (prior) to the input Nifti (current).
        /// The inputs should be pre-registered and normalised.
        /// </summary>
        /// <param name="input">Current example</param>
        /// <param name="reference">Prior example</param>
        /// <returns>Nifti who's values are the meaningful decrease (less than 0) between prior and current.</returns>
        public static INifti <float> CompareMSLesionDecrease(INifti <float> input, INifti <float> reference)
        {
            INifti <float> output = Compare.GatedSubract(input, reference, backgroundThreshold: 10, minRelevantStd: -1, maxRelevantStd: 5, minChange: 0.8f, maxChange: 5);

            for (int i = 0; i < output.Voxels.Length; ++i)
            {
                if (output.Voxels[i] > 0)
                {
                    output.Voxels[i] = 0;
                }
            }
            output.RecalcHeaderMinMax(); // This will update the header range.
            output.ColorMap = ColorMaps.ReverseGreenScale();

            return(output);
        }
Beispiel #2
0
        private Histogram DoCompare(INifti <float> currentnii, INifti <float> priornii)
        {
            _log.Info("Starting normalization...");
            currentnii = Normalization.ZNormalize(currentnii, priornii);
            _log.Info($@"..done.");

            currentnii.RecalcHeaderMinMax();
            priornii.RecalcHeaderMinMax();

            var tasks     = new List <Task>();
            var histogram = new Histogram
            {
                Prior   = priornii,
                Current = currentnii
            };

            var cs = _recipe.CompareSettings;

            if (cs.CompareIncrease)
            {
                var t = Task.Run(() =>
                {
                    _log.Info("Comparing increased signal...");
                    var increase = Compare.GatedSubract(currentnii, priornii, cs.BackgroundThreshold, cs.MinRelevantStd, cs.MaxRelevantStd, cs.MinChange, cs.MaxChange);
                    for (int i = 0; i < increase.Voxels.Length; ++i)
                    {
                        increase.Voxels[i] = increase.Voxels[i] > 0 ? increase.Voxels[i] : 0;
                    }
                    increase.RecalcHeaderMinMax();
                    increase.ColorMap  = ColorMaps.RedScale();
                    histogram.Increase = increase;
                    var increaseOut    = currentnii.AddOverlay(increase);
                    var outpath        = _currentPath + ".increase.nii";
                    increaseOut.WriteNifti(outpath);
                    Metrics.ResultFiles.Add(new ResultFile()
                    {
                        FilePath = outpath, Description = "Increased Signal", Type = ResultType.CURRENT_PROCESSED
                    });
                });
                tasks.Add(t);
            }
            if (cs.CompareDecrease)
            {
                _log.Info("Comparing decreased signal...");
                // I know the code in these two branches looks similar but there's too many inputs to make a function that much simpler...
                var t = Task.Run(() =>
                {
                    var decrease = Compare.GatedSubract(currentnii, priornii, cs.BackgroundThreshold, cs.MinRelevantStd, cs.MaxRelevantStd, cs.MinChange, cs.MaxChange);
                    for (int i = 0; i < decrease.Voxels.Length; ++i)
                    {
                        decrease.Voxels[i] = decrease.Voxels[i] < 0 ? decrease.Voxels[i] : 0;
                    }
                    decrease.RecalcHeaderMinMax();
                    decrease.ColorMap = ColorMaps.ReverseGreenScale();

                    histogram.Decrease = decrease;
                    var decreaseOut    = currentnii.AddOverlay(decrease);
                    var outpath        = _currentPath + ".decrease.nii";
                    decreaseOut.WriteNifti(outpath);
                    Metrics.ResultFiles.Add(new ResultFile()
                    {
                        FilePath = outpath, Description = "Decreased Signal", Type = ResultType.CURRENT_PROCESSED
                    });
                });
                tasks.Add(t);
            }
            Task.WaitAll(tasks.ToArray());
            _log.Info("...done.");

            return(histogram);
        }
Beispiel #3
0
        private void CheckBrainExtractionMatch(
            INifti <float> currentNifti, INifti <float> priorNifti,
            INifti <float> currentNiftiWithSkull, INifti <float> priorNiftiWithSkull, MSMetrics qaResults)
        {
            var volCurrent       = 0d;
            var volPrior         = 0d;
            var volWSkullCurrent = 0;
            var volWSkullPrior   = 0;

            for (int i = 0; i < currentNifti.Voxels.Length; ++i)
            {
                if (currentNifti.Voxels[i] > 0)
                {
                    volCurrent++;
                }
                if (currentNiftiWithSkull.Voxels[i] > 30)
                {
                    volWSkullCurrent++;
                }
                if (priorNifti.Voxels[i] > 0)
                {
                    volPrior++;
                }
                if (priorNiftiWithSkull.Voxels[i] > 30)
                {
                    volWSkullPrior++;
                }
            }
            var match = Math.Min(volPrior, volCurrent) / Math.Max(volPrior, volCurrent);

            // Add results to QA list
            qaResults.VoxelVolPrior   = volPrior;
            qaResults.VoxelVolCurrent = volCurrent;
            qaResults.BrainMatch      = match;

            _log.Info($@"Percentage of current volume that's brain: {(int)(volCurrent / volWSkullCurrent * 100d)}%");
            _log.Info($@"Percentage of prior volume that's brain: {(int)(volPrior / volWSkullPrior * 100d)}%");
            _log.Info($@"Brain extraction match: {(int)(match * 100)}%");

            // If the match is sub-80% it's probably because one of the brains didn't extract so
            // the compare operation will automatically use the intersection of the two. On the
            // other hand if we're above 80% but less than 95% one of the extractions probably cut
            // out a chunk of brain. So we'll make a mask of the union and apply it to both sides.
            if (match > 0.7 && match < 0.95)
            {
                _log.Info($@"Brain extraction match not good enough, taking the union...");
                // Let's try to make the brain mask an OR of the two.
                var mask = currentNifti.DeepCopy();
                for (int i = 0; i < mask.Voxels.Length; ++i)
                {
                    if (currentNifti.Voxels[i] != 0 || priorNifti.Voxels[i] != 0)
                    {
                        mask.Voxels[i] = 1;
                    }
                    else
                    {
                        mask.Voxels[i] = 0;
                    }
                }

                currentNifti = currentNiftiWithSkull.DeepCopy();
                priorNifti   = priorNiftiWithSkull.DeepCopy();

                for (int i = 0; i < currentNifti.Voxels.Length; ++i)
                {
                    currentNifti.Voxels[i] = currentNifti.Voxels[i] * mask.Voxels[i];
                    priorNifti.Voxels[i]   = priorNifti.Voxels[i] * mask.Voxels[i];
                }

                currentNifti.RecalcHeaderMinMax();
                priorNifti.RecalcHeaderMinMax();

                // Check brain extraction match again...
                volCurrent = 0d;
                volPrior   = 0d;
                for (int i = 0; i < currentNifti.Voxels.Length; ++i)
                {
                    if (currentNifti.Voxels[i] > 0)
                    {
                        volCurrent++;
                    }
                    if (priorNifti.Voxels[i] > 0)
                    {
                        volPrior++;
                    }
                }
                match = Math.Min(volPrior, volCurrent) / Math.Max(volPrior, volCurrent);
                _log.Info($@"Brain extraction match after mask: {(int)(match * 100)}%");
            }
            else if (match < 0.7)
            {
                qaResults.Passed = false;
            }

            // In theory this should stop the skull highlights darkening the output images...
            priorNifti.RecalcHeaderMinMax();
            currentNifti.RecalcHeaderMinMax();
            priorNiftiWithSkull.Header.cal_max   = priorNifti.Header.cal_max;
            currentNiftiWithSkull.Header.cal_max = currentNifti.Header.cal_max;
        }
Beispiel #4
0
        /// <summary>
        /// Compares the meaningful change in value between the reference Nifti (prior) and the input Nifti (current).
        /// This function also allows significant fine-tuning of the cut-off values.
        /// </summary>
        /// <param name="input">Current Nifti</param>
        /// <param name="reference">Prior Nifti</param>
        /// <param name="backgroundThreshold">Absolute value of background threashold. Any voxels with a value less than this are considered background and ignored.</param>
        /// <param name="minRelevantStd">Minimum relevant value in number of standard deviations from the mean. e.g. a value of -1 will mean that the minimum relevant value will be the mean - 1 standard deviation. Voxels below this threashold are ignored.</param>
        /// <param name="maxRelevantStd">Maximum relevant value in number of standard deviations from the mean. e.g. a value of 3 will mean that the maximum relevant value will be the mean + 3 standard deviations. Voxels above this threashold are ignored.</param>
        /// <param name="minChange">Minimum difference to be considered significant (e.g. noise threshold). Value is given in multiples of the standard deviation for the input voxels (ignoring background).</param>
        /// <param name="maxChange">Maximum difference to be considered significant. Value is given in multiples of the standard deviation for the input voxels (ignoring background).</param>
        /// <returns>INifti object which contains the relevant difference between the reference nifti and the input nifti.</returns>
        public static INifti <float> GatedSubract(INifti <float> input, INifti <float> reference, float backgroundThreshold = 10, float minRelevantStd = -1, float maxRelevantStd = 5, float minChange = 0.8f, float maxChange = 5)
        {
            INifti <float> output = input.DeepCopy();

            //var mean = (float)input.Voxels.Where(val => val > backgroundThreshold).MeanStandardDeviation();
            var meanstddev = input.Voxels.Where(val => val > backgroundThreshold).MeanStandardDeviation();
            var mean       = meanstddev.Item1;
            var stdDev     = meanstddev.Item2; //(Not sure why decompose stopped working here).
            //float range = input.voxels.Max() - input.voxels.Min();
            // Values from trial and error....
            float minRelevantValue = (float)(mean + (minRelevantStd * stdDev));
            float maxRelevantValue = (float)(mean + (maxRelevantStd * stdDev));

            if (input.Voxels.Length != reference.Voxels.Length)
            {
                throw new Exception("Input and reference don't match size");
            }

            for (int i = 0; i < input.Voxels.Length; ++i)
            {
                output.Voxels[i] = input.Voxels[i] - reference.Voxels[i];


                // We want to ignore changes below the minimum relevant value.
                if (input.Voxels[i] < minRelevantValue)
                {
                    output.Voxels[i] = 0;
                }
                if (reference.Voxels[i] < minRelevantValue)
                {
                    output.Voxels[i] = 0;
                }

                // And above the maximum relevant value.
                if (input.Voxels[i] > maxRelevantValue)
                {
                    output.Voxels[i] = 0;
                }
                if (reference.Voxels[i] > maxRelevantValue)
                {
                    output.Voxels[i] = 0;
                }

                // If we haven't changed by at least 1 stdDev we're not significant
                if (Math.Abs(output.Voxels[i]) < Math.Abs(minChange * stdDev))
                {
                    output.Voxels[i] = 0;
                }
                if (Math.Abs(output.Voxels[i]) > Math.Abs(maxChange * stdDev))
                {
                    output.Voxels[i] = 0;
                }
                if (reference.Voxels[i] < backgroundThreshold)
                {
                    output.Voxels[i] = 0;
                }
                if (input.Voxels[i] < backgroundThreshold)
                {
                    output.Voxels[i] = 0;
                }
            }

            for (int i = 1; i < output.Voxels.Length - 1; ++i)
            {
                if (output.Voxels[i - 1] == 0 && output.Voxels[i + 1] == 0)
                {
                    output.Voxels[i] = 0;
                }
            }

            output.RecalcHeaderMinMax(); // Update header range.

            var stdDv = output.Voxels.StandardDeviation();
            var mean2 = output.Voxels.Where(val => val > 0).Mean();

            System.Console.WriteLine($"Compared. Mean={mean2}, stdDv={stdDv}, size={output.Voxels.Where(val => val > 0).Count()}");

            return(output);
        }