Beispiel #1
0
        public void ArgumentCheck1()
        {
            int[][] samples =
            {
                new [] { 0, 2, 4 },
                new [] { 1, 5, 2 },
                null,
                new [] { 1, 5, 6 },
            };

            int[] outputs =
            {
                1, 1, 0, 0
            };

            DecisionVariable[] vars = new DecisionVariable[3];
            for (int i = 0; i < vars.Length; i++)
            {
                vars[i] = DecisionVariable.Discrete(i.ToString(), new IntRange(0, 10));
            }

            DecisionTree tree    = new DecisionTree(vars, 2);
            ID3Learning  teacher = new ID3Learning(tree);

            bool thrown = false;

            try { double error = teacher.Run(samples, outputs); }
            catch (ArgumentNullException) { thrown = true; }

            Assert.IsTrue(thrown);
        }
Beispiel #2
0
        public void LargeSampleTest2()
        {
            Accord.Math.Tools.SetupGenerator(0);

            int[][]            dataSamples = Matrix.Random(500, 3, 0, 10).ToInt32().ToArray();
            int[]              target      = Matrix.Random(500, 1, 0, 2).ToInt32().GetColumn(0);
            DecisionVariable[] features    =
            {
                new DecisionVariable("Outlook",     10),
                new DecisionVariable("Temperature", 10),
                new DecisionVariable("Humidity",    10),
            };


            DecisionTree tree        = new DecisionTree(features, 2);
            ID3Learning  id3Learning = new ID3Learning(tree)
            {
                Rejection = false
            };

            double error = id3Learning.Run(dataSamples, target);

            foreach (var node in tree)
            {
                if (node.IsLeaf)
                {
                    Assert.IsNotNull(node.Output);
                }
            }

            Assert.IsTrue(error < 0.15);
        }
Beispiel #3
0
        public void ConsistencyTest1()
        {
            int[,] random = Matrix.Random(1000, 10, 0.0, 10.0).ToInt32();

            int[][] samples = random.ToJagged();
            int[]   outputs = new int[1000];

            for (int i = 0; i < samples.Length; i++)
            {
                if (samples[i][0] > 8)
                {
                    outputs[i] = 1;
                }
            }

            DecisionVariable[] vars = new DecisionVariable[10];
            for (int i = 0; i < vars.Length; i++)
            {
                vars[i] = new DecisionVariable(i.ToString(), new IntRange(0, 10));
            }

            DecisionTree tree = new DecisionTree(vars, 2);

            ID3Learning teacher = new ID3Learning(tree);

            double error = teacher.Run(samples, outputs);

            Assert.AreEqual(0, error);

            Assert.AreEqual(11, tree.Root.Branches.Count);
            for (int i = 0; i < tree.Root.Branches.Count; i++)
            {
                Assert.IsTrue(tree.Root.Branches[i].IsLeaf);
            }
        }
Beispiel #4
0
        public void LargeSampleTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            int[][]            dataSamples = Matrix.Random(500, 3, 0.0, 10.0).ToInt32().ToJagged();
            int[]              target      = Matrix.Random(500, 1, 0.0, 2.0).ToInt32().GetColumn(0);
            DecisionVariable[] features    =
            {
                new DecisionVariable("Outlook",     10),
                new DecisionVariable("Temperature", 10),
                new DecisionVariable("Humidity",    10),
            };


            DecisionTree tree        = new DecisionTree(features, 2);
            ID3Learning  id3Learning = new ID3Learning(tree);

            double error = id3Learning.Run(dataSamples, target);

            Assert.IsTrue(error < 0.2);

            var code = tree.ToCode("MyTree");


            Assert.IsNotNull(code);
            Assert.IsTrue(code.Length > 0);
        }
Beispiel #5
0
        public static void CreateXORExample(out DecisionTree tree, out int[][] inputs, out int[] outputs)
        {
            inputs = new int[][]
            {
                new int[] { 1, 0, 0, 1 },
                new int[] { 0, 1, 0, 0 },
                new int[] { 0, 0, 0, 0 },
                new int[] { 1, 1, 0, 0 },
                new int[] { 0, 1, 1, 1 },
                new int[] { 0, 0, 1, 1 },
                new int[] { 1, 0, 1, 1 }
            };

            outputs = new int[]
            {
                1, 1, 0, 0, 1, 0, 1
            };

            DecisionVariable[] attributes =
            {
                new DecisionVariable("a1", 2),
                new DecisionVariable("a2", 2),
                new DecisionVariable("a3", 2),
                new DecisionVariable("a4", 2)
            };

            int classCount = 2;

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);


            double error = id3.Run(inputs, outputs);
        }
Beispiel #6
0
        private List <productos> revisarProductos(DataTable data)
        {
            var codebook = new Codification(data);

            int numCategorias = db.categorias.Count();

            DecisionVariable[] attributes =
            {
                new DecisionVariable("Categoria", numCategorias),  // 3 possible values (Sunny, overcast, rain)
                                new DecisionVariable("Precio", 5), // 3 possible values (Hot, mild, cool)  
                 
            };

            int classCount = 2; // 2 possible output values for playing tennis: yes or no

            DecisionTree tree = new DecisionTree(attributes, classCount);

            // Create a new instance of the ID3 algorithm
            ID3Learning id3learning = new ID3Learning(tree);

            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(data);

            int[][] inputs  = symbols.ToIntArray("Categoria", "Precio");
            int[]   outputs = symbols.ToIntArray("recomendar").GetColumn(0);

            // Learn the training instances!
            id3learning.Run(inputs, outputs);

            // Compute the training error when predicting training instances
            double error = new ZeroOneLoss(outputs).Loss(tree.Decide(inputs));

            // The tree can now be queried for new examples through
            // its decide method. For example, we can create a query

            List <productos> product = db.productos.ToList();

            foreach (productos item in db.productos.ToList())
            {
                int[] query = codebook.Transform(new[, ] {
                    { "Categoria", Convert.ToString(item.fkCategoria) },
                    { "Precio", devolverTipoPrecio(item.precio) }
                });

                // And then predict the label using
                int predicted = tree.Decide(query);  // result will be 0

                // We can translate it back to strings using
                string answer = codebook.Revert("recomendar", predicted); // Answer will be: "No"
                if (answer.Equals("no"))
                {
                    product.Remove(item);
                }
            }
            return(product);
        }
Beispiel #7
0
        private ColoredTree <string, string> UpdateTree()
        {
            ID3Learning id3 = new ID3Learning();

            id3.Initialize(learning.DataCell);

            ColoredTree <string, string> decisionTree = id3.Run(learning.Dataset, learning.Target);

            this.SerializeTree(decisionTree);
            this.OnTreeUpdated();

            return(decisionTree);
        }
Beispiel #8
0
        //
        //You can use the following additional attributes as you write your tests:
        //
        //Use ClassInitialize to run code before running the first test in the class
        //[ClassInitialize()]
        //public static void MyClassInitialize(TestContext testContext)
        //{
        //}
        //
        //Use ClassCleanup to run code after all tests in a class have run
        //[ClassCleanup()]
        //public static void MyClassCleanup()
        //{
        //}
        //
        //Use TestInitialize to run code before running each test
        //[TestInitialize()]
        //public void MyTestInitialize()
        //{
        //}
        //
        //Use TestCleanup to run code after each test has run
        //[TestCleanup()]
        //public void MyTestCleanup()
        //{
        //}
        //
        #endregion


        public static void CreateMitchellExample(out DecisionTree tree, out int[][] inputs, out int[] outputs)
        {
            DataTable data = new DataTable("Mitchell's Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", codebook["Outlook"].Symbols),         // 3 possible values (Sunny, overcast, rain)
                new DecisionVariable("Temperature", codebook["Temperature"].Symbols), // 3 possible values (Hot, mild, cool)
                new DecisionVariable("Humidity", codebook["Humidity"].Symbols),       // 2 possible values (High, normal)
                new DecisionVariable("Wind", codebook["Wind"].Symbols)                // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);

            inputs  = symbols.ToIntArray("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToIntArray("PlayTennis").GetColumn(0);

            id3.Run(inputs, outputs);
        }
Beispiel #9
0
        public void LargeRunTest2()
        {
            Accord.Math.Random.Generator.Seed = 0;

            int[,] random = Matrix.Random(1000, 10, 0.0, 10.0).ToInt32();

            int[][] samples = random.ToJagged();
            int[]   outputs = new int[1000];

            for (int i = 0; i < samples.Length; i++)
            {
                if (samples[i][0] > 5 || Tools.Random.NextDouble() > 0.85)
                {
                    outputs[i] = 1;
                }
            }

            DecisionVariable[] vars = new DecisionVariable[10];
            for (int i = 0; i < vars.Length; i++)
            {
                vars[i] = new DecisionVariable("x" + i, 10);
            }

            DecisionTree tree = new DecisionTree(vars, 2);

            var teacher = new ID3Learning(tree);

            double error = teacher.Run(samples, outputs);

            Assert.AreEqual(0, error);

            var rules = DecisionSet.FromDecisionTree(tree);

            Simplification simpl = new Simplification(rules)
            {
                Alpha = 0.05
            };

            error = simpl.ComputeError(samples.ToDouble(), outputs);
            Assert.AreEqual(0, error);

            double newError = simpl.Compute(samples.ToDouble(), outputs);

            Assert.AreEqual(0.097, newError);
        }
Beispiel #10
0
        public void LargeSampleTest_WithRepetition()
        {
            Accord.Math.Random.Generator.Seed = 0;

            int[][]            dataSamples = Matrix.Random(500, 3, 0, 10).ToJagged();
            int[]              target      = Matrix.Random(500, 1, 0, 2).GetColumn(0);
            DecisionVariable[] features    =
            {
                new DecisionVariable("Outlook",     10),
                new DecisionVariable("Temperature", 10),
                new DecisionVariable("Humidity",    10),
            };


            DecisionTree tree        = new DecisionTree(features, 2);
            ID3Learning  id3Learning = new ID3Learning(tree)
            {
                Rejection = false,
                Join      = 2 // every variable can join two times
            };

            double error = id3Learning.Run(dataSamples, target);

            int height = tree.GetHeight();

            Assert.AreEqual(6, height);

            foreach (var node in tree)
            {
                if (node.IsLeaf)
                {
                    Assert.IsNotNull(node.Output);
                }
            }

            Assert.IsTrue(error < 0.15);
        }
        public string kararAgaci(DataTable tbl)
        {
            int          classCount = 2;
            Codification codebook   = new Codification(tbl);


            DecisionVariable[] attributes =
            {
                new DecisionVariable("Clump Thickness",         10),
                new DecisionVariable("Uniformity of Cell Size", 10),new DecisionVariable("Uniformity of Cell Shape",     10),
                new DecisionVariable("Marginal Adhesion",       10),new DecisionVariable("Single Epithelial Cell Size",  10),
                new DecisionVariable("Bare Nuclei",             10),new DecisionVariable("Bland Chromatin",              10),
                new DecisionVariable("Normal Nucleoli",         10),new DecisionVariable("Mitoses",                      10),
            };



            DecisionTree tree        = new DecisionTree(attributes, classCount);
            ID3Learning  id3learning = new ID3Learning(tree);

            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(tbl);

            int[][] inputs  = symbols.ToIntArray("Clump Thickness", "Uniformity of Cell Size", "Uniformity of Cell Shape", "Marginal Adhesion", "Single Epithelial Cell Size", "Bare Nuclei", "Bland Chromatin", "Normal Nucleoli", "Mitoses");
            int[]   outputs = symbols.ToIntArray("Class").GetColumn(0);

            // symbols.
            id3learning.Run(inputs, outputs);

            int[] query = codebook.Translate(inputlar[0], inputlar[1], inputlar[2], inputlar[3],
                                             inputlar[4], inputlar[5], inputlar[6], inputlar[7], inputlar[8]);
            int    output = tree.Compute(query);
            string answer = codebook.Translate("Class", output);

            return(answer);
        }
Beispiel #12
0
        public static void Exemplo01()
        {
            //LINK: http://accord-framework.net/docs/html/T_Accord_MachineLearning_DecisionTrees_Learning_ID3Learning.htm
            //LINK: http://accord-framework.net/docs/html/T_Accord_MachineLearning_DecisionTrees_DecisionTree.htm

            DataTable data = new DataTable("Mitchell's Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data,
                                                     "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(data);

            int[][] inputs  = symbols.ToArray <int>("Outlook", "Temperature", "Humidity", "Wind");
            int[]   outputs = symbols.ToArray <int>("PlayTennis");

            // Gather information about decision variables
            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", 3),     // 3 possible values (Sunny, overcast, rain)
                new DecisionVariable("Temperature", 3), // 3 possible values (Hot, mild, cool)
                new DecisionVariable("Humidity", 2),    // 2 possible values (High, normal)
                new DecisionVariable("Wind", 2)         // 2 possible values (Weak, strong)
            };

            int classCount = 2; // 2 possible output values for playing tennis: yes or no

            //Create the decision tree using the attributes and classes
            DecisionTree tree = new DecisionTree(attributes, classCount);

            //Create a new instance of the ID3 algorithm
            ID3Learning id3learning = new ID3Learning(tree);

            // Learn the training instances!
            id3learning.Run(inputs, outputs);

            //Suggest you read the example in the guide carefully. At the very end of the procedure they generate the expression tree with var expression = tree.ToExpression(); and compile it:
            var expression = tree.ToExpression();
            var func       = expression.Compile();
            //The result is a delegate that you can simply execute to get a decision for a given input.In the example, you could do something like
            bool willPlayTennis = func(new double[] { 1.0, 1.0, 1.0, 1.0 }) == 1;

            int[]  query  = codebook.Translate("Sunny", "Hot", "High", "Strong");
            int    output = tree.Decide(query);
            string answer = codebook.Translate("PlayTennis", output);

            Console.WriteLine(answer);
            Console.ReadLine();

            //RESULT:
            //In the above example, answer will be "No".
        }
        public void Run()
        {
            DataTable data = new DataTable("Mitchell's Tennis Example");

            data.Columns.Add("Day");
            data.Columns.Add("Outlook");
            data.Columns.Add("Temperature");
            data.Columns.Add("Humidity");
            data.Columns.Add("Wind");
            data.Columns.Add("PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data, "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(data);



            CreateDic("Outlook", symbols);
            CreateDic("Temperature", symbols);
            CreateDic("Humidity", symbols);
            CreateDic("Wind", symbols);
            CreateDic("PlayTennis", symbols);


            int[][] inputs = (from p in symbols.AsEnumerable()
                              select new int[]
            {
                GetIndex("Outlook", p["Outlook"].ToString()),
                GetIndex("Temperature", p["Temperature"].ToString()),
                GetIndex("Humidity", p["Humidity"].ToString()),
                GetIndex("Wind", p["Wind"].ToString())
            }).Cast <int[]>().ToArray();


            int[] outputs = (from p in symbols.AsEnumerable()
                             select GetIndex("PlayTennis", p["PlayTennis"].ToString())).Cast <int>().ToArray();



            /*
             * // Gather information about decision variables
             * DecisionVariable[] attributes =
             * {
             * new DecisionVariable("Outlook",     3), // 3 possible values (Sunny, overcast, rain)
             * new DecisionVariable("Temperature", 3), // 3 possible values (Hot, mild, cool)
             * new DecisionVariable("Humidity",    2), // 2 possible values (High, normal)
             * new DecisionVariable("Wind",        2)  // 2 possible values (Weak, strong)
             * };
             *
             */
            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", GetCount("Outlook")),         // 3 possible values (Sunny, overcast, rain)
                new DecisionVariable("Temperature", GetCount("Temperature")), // 3 possible values (Hot, mild, cool)
                new DecisionVariable("Humidity", GetCount("Humidity")),       // 2 possible values (High, normal)
                new DecisionVariable("Wind", GetCount("Wind"))                // 2 possible values (Weak, strong)
            };


            int classCount = GetCount("PlayTennis"); // 2 possible output values for playing tennis: yes or no

            //Create the decision tree using the attributes and classes
            DecisionTree tree = new DecisionTree(attributes, classCount);

            // Create a new instance of the ID3 algorithm
            ID3Learning id3learning = new ID3Learning(tree);

            // Learn the training instances!
            id3learning.Run(inputs, outputs);


            string answer = codebook.Translate("PlayTennis",
                                               tree.Compute(codebook.Translate("Sunny", "Hot", "High", "Strong")));

            Console.WriteLine("Calculate for: Sunny, Hot, High, Strong");
            Console.WriteLine("Answer: " + answer);


            var expression = tree.ToExpression();

            Console.WriteLine(tree.ToCode("ClassTest"));

            DecisionSet s = tree.ToRules();

            Console.WriteLine(s.ToString());

            // Compiles the expression to IL
            var func = expression.Compile();
        }
Beispiel #14
0
        private void button2_Click(object sender, EventArgs e)
        {
            c1 = 0; c2 = 0; c3 = 0; c4 = 0; c5 = 0;
            groupBox4.Enabled = true;
            codebook          = new Codification(data);


            DataTable symbols = codebook.Apply(data);

            inputs  = symbols.ToArray <int>("Outlook", "Temp", "Humid", "Wind");
            outputs = symbols.ToArray <int>("Tennis");

            row = dataGridView1.RowCount;
            n1  = new String[row];
            n2  = new String[row];
            n3  = new String[row];
            n4  = new String[row];
            n5  = new String[row];

            for (int i = 0; i < row; i++)
            {
                n1[i] = Convert.ToString(dataGridView1.Rows[i].Cells[1].Value);
                n2[i] = Convert.ToString(dataGridView1.Rows[i].Cells[2].Value);
                n3[i] = Convert.ToString(dataGridView1.Rows[i].Cells[3].Value);
                n4[i] = Convert.ToString(dataGridView1.Rows[i].Cells[4].Value);
                n5[i] = Convert.ToString(dataGridView1.Rows[i].Cells[5].Value);
            }


            bn1 = n1.Distinct();
            bn2 = n2.Distinct();
            bn3 = n3.Distinct();
            bn4 = n4.Distinct();
            bn5 = n5.Distinct();

            foreach (String i in bn1)
            {
                c1 = c1 + 1;
            }
            foreach (String i in bn2)
            {
                c2 = c2 + 1;
            }
            foreach (String i in bn3)
            {
                c3 = c3 + 1;
            }
            foreach (String i in bn4)
            {
                c4 = c4 + 1;
            }
            foreach (String i in bn5)
            {
                c5 = c5 + 1;
            }


            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", 3),
                new DecisionVariable("Temp",    3),
                new DecisionVariable("Humid",   2),
                new DecisionVariable("Wind", 2)
            };

            int classCount = 2;

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3learning = new ID3Learning(tree);

            id3learning.Run(inputs, outputs);
            inputs  = null;
            outputs = null;


            myTree               = new TreeBuilder(GetTreeData());
            myTree.BoxHeight     = 30;
            myTree.BoxWidth      = 90;
            myTree.VerticalSpace = 60;
            pict.Image           = Image.FromStream(myTree.GenerateTree(-1, -1, "1", System.Drawing.Imaging.ImageFormat.Bmp));
        }
        static void Main(string[] args)
        {
            DataTable data = new DataTable("Should I Go To Work For Company X");

            data.Columns.Add("Scenario");
            data.Columns.Add("Pay");
            data.Columns.Add("Benefits");
            data.Columns.Add("Culture");
            data.Columns.Add("WorkFromHome");
            data.Columns.Add("ShouldITakeJob");

            data.Rows.Add("D1", "Good", "Good", "Mean", "Yes", "Yes");
            data.Rows.Add("D2", "Good", "Good", "Mean", "No", "Yes");
            data.Rows.Add("D3", "Average", "Good", "Good", "Yes", "Yes");
            data.Rows.Add("D4", "Average", "Good", "Good", "No", "Yes");
            data.Rows.Add("D5", "Bad", "Good", "Good", "Yes", "No");
            data.Rows.Add("D6", "Bad", "Good", "Good", "No", "No");
            data.Rows.Add("D7", "Good", "Average", "Mean", "Yes", "Yes");
            data.Rows.Add("D8", "Good", "Average", "Mean", "No", "Yes");
            data.Rows.Add("D9", "Average", "Average", "Good", "Yes", "No");
            data.Rows.Add("D10", "Average", "Average", "Good", "No", "No");
            data.Rows.Add("D11", "Bad", "Average", "Good", "Yes", "No");
            data.Rows.Add("D12", "Bad", "Average", "Good", "No", "No");
            data.Rows.Add("D13", "Good", "Bad", "Mean", "Yes", "Yes");
            data.Rows.Add("D14", "Good", "Bad", "Mean", "No", "Yes");
            data.Rows.Add("D15", "Average", "Bad", "Good", "Yes", "No");
            data.Rows.Add("D16", "Average", "Bad", "Good", "No", "No");
            data.Rows.Add("D17", "Bad", "Bad", "Good", "Yes", "No");
            data.Rows.Add("D18", "Bad", "Bad", "Good", "No", "No");
            data.Rows.Add("D19", "Good", "Good", "Good", "Yes", "Yes");
            data.Rows.Add("D20", "Good", "Good", "Good", "No", "Yes");


            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
                new DecisionVariable("Pay",          3),
                new DecisionVariable("Benefits",     3),
                new DecisionVariable("Culture",      3),
                new DecisionVariable("WorkFromHome", 2)
            };

            int          outputValues = 2; // 2 possible output values: yes or no
            DecisionTree tree         = new DecisionTree(attributes, outputValues);
            ID3Learning  id3          = new ID3Learning(tree);

#pragma warning disable CS0618 // Type or member is obsolete
            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(data);
            int[][]   inputs  = symbols.ToArray <int>("Pay", "Benefits", $"Culture", "WorkFromHome");
            int[]     outputs = symbols.ToIntArray("ShouldITakeJob").GetColumn(0);

            // Learn the training instances!
            id3.Run(inputs, outputs);


            int[]  query  = codebook.Translate("D19", "Good", "Good", "Good", "Yes");
            int    output = tree.Compute(query);
            string answer = codebook.Translate("ShouldITakeJob", output); // answer will be "Yes".

#pragma warning restore CS0618                                            // Type or member is obsolete

            Console.WriteLine("Answer is: " + answer);
            Console.ReadKey();
        }
Beispiel #16
0
        public void IncompleteDiscreteVariableTest()
        {
            DecisionTree tree;

            int[][] inputs;
            int[]   outputs;

            DataTable data = new DataTable("Degenerated Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", codebook["Outlook"].Symbols + 200),   // 203 possible values, 200 undefined
                new DecisionVariable("Temperature", codebook["Temperature"].Symbols), // 3 possible values (Hot, mild, cool)
                new DecisionVariable("Humidity", codebook["Humidity"].Symbols),       // 2 possible values (High, normal)
                new DecisionVariable("Wind", codebook["Wind"].Symbols)                // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);

            inputs  = symbols.ToArray <int>("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToArray <int>("PlayTennis");

            double error = id3.Run(inputs, outputs);

            Assert.AreEqual(0, error);

            Assert.AreEqual(203, tree.Root.Branches.Count);
            Assert.IsTrue(tree.Root.Branches[100].IsLeaf);
            Assert.IsNull(tree.Root.Branches[100].Output);

            for (int i = 0; i < inputs.Length; i++)
            {
                int y = tree.Compute(inputs[i]);
                Assert.AreEqual(outputs[i], y);
            }
        }
Beispiel #17
0
        public static void CreateMitchellExample(out DecisionTree tree, out int[][] inputs, out int[] outputs)
        {
            DataTable data = new DataTable("Mitchell's Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data,
                                                     "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", codebook["Outlook"].Symbols),         // 3 possible values (Sunny, overcast, rain)
                new DecisionVariable("Temperature", codebook["Temperature"].Symbols), // 3 possible values (Hot, mild, cool)
                new DecisionVariable("Humidity", codebook["Humidity"].Symbols),       // 2 possible values (High, normal)
                new DecisionVariable("Wind", codebook["Wind"].Symbols)                // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);

            inputs  = symbols.ToArray <int>("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToArray <int>("PlayTennis");

            double error = id3.Run(inputs, outputs);

            Assert.AreEqual(0, error);


            {
                int[] query = codebook.Translate("Sunny", "Hot", "High", "Strong");

                int output = tree.Compute(query);

                string answer = codebook.Translate("PlayTennis", output);

                Assert.AreEqual("No", answer);
            }


            foreach (DataRow row in data.Rows)
            {
                var x = codebook.Translate(row, "Outlook", "Temperature", "Humidity", "Wind");

                int y = tree.Compute(x);

                string actual   = codebook.Translate("PlayTennis", y);
                string expected = row["PlayTennis"] as string;

                Assert.AreEqual(expected, actual);
            }

            {
                string answer = codebook.Translate("PlayTennis",
                                                   tree.Compute(codebook.Translate("Sunny", "Hot", "High", "Strong")));

                Assert.AreEqual("No", answer);
            }
        }
Beispiel #18
0
        public void RunTest()
        {
            int[][] inputs =
            {
                new int[] { 0, 0 },
                new int[] { 0, 1 },
                new int[] { 1, 0 },
                new int[] { 1, 1 },
            };

            int[] outputs = // xor
            {
                0,
                1,
                1,
                0
            };

            DecisionVariable[] attributes =
            {
                new DecisionVariable("x", DecisionVariableKind.Discrete),
                new DecisionVariable("y", DecisionVariableKind.Discrete),
            };


            DecisionTree tree = new DecisionTree(attributes, 2);

            ID3Learning teacher = new ID3Learning(tree);

            double error = teacher.Run(inputs, outputs);

            Assert.AreEqual(0, error);

            Assert.AreEqual(0, tree.Root.Branches.AttributeIndex); // x
            Assert.AreEqual(2, tree.Root.Branches.Count);
            Assert.IsNull(tree.Root.Value);
            Assert.IsNull(tree.Root.Value);

            Assert.AreEqual(0.0, tree.Root.Branches[0].Value); // x = [0]
            Assert.AreEqual(1.0, tree.Root.Branches[1].Value); // x = [1]

            Assert.AreEqual(tree.Root, tree.Root.Branches[0].Parent);
            Assert.AreEqual(tree.Root, tree.Root.Branches[1].Parent);

            Assert.AreEqual(2, tree.Root.Branches[0].Branches.Count);
            Assert.AreEqual(2, tree.Root.Branches[1].Branches.Count);

            Assert.IsTrue(tree.Root.Branches[0].Branches[0].IsLeaf);
            Assert.IsTrue(tree.Root.Branches[0].Branches[1].IsLeaf);

            Assert.IsTrue(tree.Root.Branches[1].Branches[0].IsLeaf);
            Assert.IsTrue(tree.Root.Branches[1].Branches[1].IsLeaf);

            Assert.AreEqual(0.0, tree.Root.Branches[0].Branches[0].Value); // y = [0]
            Assert.AreEqual(1.0, tree.Root.Branches[0].Branches[1].Value); // y = [1]

            Assert.AreEqual(0.0, tree.Root.Branches[1].Branches[0].Value); // y = [0]
            Assert.AreEqual(1.0, tree.Root.Branches[1].Branches[1].Value); // y = [1]

            Assert.AreEqual(0, tree.Root.Branches[0].Branches[0].Output);  // 0 ^ 0 = 0
            Assert.AreEqual(1, tree.Root.Branches[0].Branches[1].Output);  // 0 ^ 1 = 1
            Assert.AreEqual(1, tree.Root.Branches[1].Branches[0].Output);  // 1 ^ 0 = 1
            Assert.AreEqual(0, tree.Root.Branches[1].Branches[1].Output);  // 1 ^ 1 = 0
        }
Beispiel #19
0
        public void ConstantDiscreteVariableTest()
        {
            DecisionTree tree;

            int[][] inputs;
            int[]   outputs;

            DataTable data = new DataTable("Degenerated Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Hot", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Hot", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Hot", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Hot", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Hot", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", codebook["Outlook"].Symbols),         // 3 possible values (Sunny, overcast, rain)
                new DecisionVariable("Temperature", codebook["Temperature"].Symbols), // 1 constant value (Hot)
                new DecisionVariable("Humidity", codebook["Humidity"].Symbols),       // 2 possible values (High, normal)
                new DecisionVariable("Wind", codebook["Wind"].Symbols)                // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)


            bool thrown = false;

            try
            {
                tree = new DecisionTree(attributes, classCount);
            }
            catch
            {
                thrown = true;
            }

            Assert.IsTrue(thrown);


            attributes[1] = new DecisionVariable("Temperature", 2);
            tree          = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);

            inputs  = symbols.ToJagged <int>("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToArray <int>("PlayTennis");

            double error = id3.Run(inputs, outputs);

            Assert.AreEqual(0, error);

            for (int i = 0; i < inputs.Length; i++)
            {
                int y = tree.Compute(inputs[i]);
                Assert.AreEqual(outputs[i], y);
            }
        }
Beispiel #20
0
        public static void TestAccord()
        {
            /*
             * http://crsouza.com/2012/01/decision-trees-in-c/
             * */


            DataTable data = new DataTable("Memory");

            /*add People names/ID to columns dynamically*/
            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            /*possibly add sentences to this?
             * maybe keywords*/
            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data, "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            /* NO IDEA FOR THIS */
            DecisionVariable[] attributes =
            {
                new DecisionVariable("Outlook", 3),                     // 3 possible values (Sunny, overcast, rain)
                                new DecisionVariable("Temperature", 3), // 3 possible values (Hot, mild, cool)  
                                new DecisionVariable("Humidity", 2),    // 2 possible values (High, normal)   
                                new DecisionVariable("Wind", 2)         // 2 possible values (Weak, strong)
                 
            };


            /* For possible values, make it one so it narrows to one individual fact about a word*/
            int classCount = 2; // 2 possible output values for playing tennis: yes or no


            DecisionTree tree = new DecisionTree(attributes, classCount);

            // Create a new instance of the ID3 algorithm
            ID3Learning id3learning = new ID3Learning(tree);

            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(data);

            int[][] inputs  = symbols.ToArray <int>("Outlook", "Temperature", "Humidity", "Wind");
            int[]   outputs = symbols.ToIntArray("PlayTennis").GetColumn(0);

            // Learn the training instances!
            id3learning.Run(inputs, outputs);

            /*This is how we will query the memory*/
            int[] query  = codebook.Translate("Sunny", "Hot", "High", "Strong");
            int   output = tree.Compute(query);


            /*Respond to user*/
            string answer = codebook.Translate("PlayTennis", output); // answer will be "No".

            Console.WriteLine(answer);
        }
Beispiel #21
0
        public Data.DecisionTree runDecisionSupport(int codTask, int totalExecutions, int classCount)
        {
            Data.DecisionTree decisionTree = new Data.DecisionTree();

            // Utilizado se já existe uma árvore de decisão prévia criada, serve para reutilização de alguns parâmetros
            Data.DecisionTree serializedTree = null;

            // Verifica se já existe uma árvore gerada anteriormente
            bool hasSerializedTree = decisionTree.Serialization.hasSerializedTree(codTask);

            // Carregar a árvore existente
            if (hasSerializedTree)
            {
                serializedTree = decisionTree.deserializeTree(codTask);
            }

            // Número total de execuções da tarefa
            //int totalExecutions = getTotalExecutions(codTask);

            Dictionary <dynamic, int> fieldSymbols = new Dictionary <dynamic, int>();

            // Preenche o dicionário com a lista de campos do processo e a quantidade de símbolos para cada campo
            fillSymbolsCount(codTask, ref fieldSymbols);

            // Preenche a relevância dos campos de acordo com a taxa de variação e de nulos
            setSymbolsRelevance(ref fieldSymbols, totalExecutions, codTask);

            StringBuilder CodFieldListSB       = new StringBuilder();
            StringBuilder CodFieldListSBIsNull = new StringBuilder();
            StringBuilder DsFieldNameList      = new StringBuilder();
            List <string> codFieldList         = new List <string>();

            // Prepara lista de campos
            List <string> codFieldListComDsFlowResult = prepareFieldList(ref fieldSymbols, ref CodFieldListSB, ref CodFieldListSBIsNull, ref DsFieldNameList, ref codFieldList);

            // Consulta os dados de treino
            DataTable data = getData(codTask, CodFieldListSB, CodFieldListSBIsNull);

            decisionTree.Data = data;

            // Criando o objeto TRAINING
            decisionTree.Training.setTrainingData(data);

            // Preenchendo o VALIDATION do DecisionTree
            decisionTree.Validation.setValidationData(data);

            // ############################################# Passado para a classe Training.

            // Passando o data para criação do codebook
            // Converte em números inteiros as strings
            Codification codebook = new Codification(data, codFieldListComDsFlowResult.ToArray());

            // Montando a tabela de variáveis de decisão
            List <DecisionVariable> decisionaVariableList = new List <DecisionVariable>();

            foreach (KeyValuePair <dynamic, int> entry in fieldSymbols.Where(p => ((DecisionSupportField)p.Key).relevante == true))
            {
                DecisionSupportField c = entry.Key;
                c.simbolos = entry.Value;
                decisionaVariableList.Add(new DecisionVariable(c.codigo.ToString(), c.simbolos + 1)); // Adicionando + 1 do possível nulo
            }

            int qtdCamposRelevantes = fieldSymbols.Count(i => ((DecisionSupportField)i.Key).relevante == true);

            DecisionVariable[] attributes = new DecisionVariable[qtdCamposRelevantes];

            // Tabela de variáveis que impactam na decisão
            attributes = decisionaVariableList.ToArray();

            //List<string> DsFlowResults = getTaskResults(codTask);

            // Número de possíveis resultados para a tarefa sendo analisada
            //int classCount = DsFlowResults.Count;

            // Cria a árvore de decisão
            Accord.MachineLearning.DecisionTrees.DecisionTree tree = new Accord.MachineLearning.DecisionTrees.DecisionTree(attributes, classCount);

            // Cria uma instância do algoritmo de aprendizado utilizado, o ID3
            ID3Learning id3learning = new ID3Learning(tree);

            // Traduz os dados de treino em simbolos inteiros utilizando o codebook
            DataTable symbols = codebook.Apply(decisionTree.Training.TrainingData);

            // Colunas de entrada
            // *** Quantidade de colunas dos inputs deve ser o mesmo número de DecisionVariables(attributes)
            int[][] inputs = symbols.ToArray <int>(codFieldList.ToArray());

            // Coluna com a saída
            int[] outputs = symbols.ToArray <int>("DsFlowResult");

            // Aprendendo com as instâncias de treino
            id3learning.Run(inputs, outputs);

            // ############################################# Passado para a classe Training.

            decisionTree.Tree = tree;

            // Atribuindo as listas de códigos de campos e nomes ao objeto decisionTree
            // Utilizado para manter o uso da palavra chave 'ref'
            decisionTree.CodFieldListSB              = CodFieldListSB;
            decisionTree.CodFieldListSBIsNull        = CodFieldListSBIsNull;
            decisionTree.DsFieldNameList             = DsFieldNameList;
            decisionTree.codFieldList                = codFieldList;
            decisionTree.codFieldListComDsFlowResult = codFieldListComDsFlowResult;
            decisionTree.fieldSymbols                = fieldSymbols;
            decisionTree.Codebook = codebook;

            decisionTree.serializeTree(codTask);

            return(decisionTree);
        }
Beispiel #22
0
        public void Run(String filename)
        {
            ReadFile(filename);

            // Create a new codification codebook to
            // convert strings into integer symbols


            Codification codebook = new Codification(data, inputColumns.ToArray());

            // Translate our training data into integer symbols using our codebook:
            DataTable symbols = codebook.Apply(data);


            foreach (String s in inputColumns)
            {
                CreateDic(s, symbols);
            }

            CreateDic(outputColumn, symbols);


            int[][] inputs = (from p in symbols.AsEnumerable()
                              select GetInputRow(p)
                              ).Cast <int[]>().ToArray();


            int[] outputs = (from p in symbols.AsEnumerable()
                             select GetIndex(outputColumn, p[outputColumn].ToString())).Cast <int>().ToArray();


            // Gather information about decision variables

            DecisionVariable[] attributes = GetDecisionVariables();


            int classCount = GetCount(outputColumn); // 2 possible output values for playing tennis: yes or no

            //Create the decision tree using the attributes and classes
            DecisionTree tree = new DecisionTree(attributes, classCount);

            // Create a new instance of the ID3 algorithm
            ID3Learning id3learning = new ID3Learning(tree);

            //C45Learning c45learning = new C45Learning(tree);

            // Learn the training instances!
            id3learning.Run(inputs, outputs);
            //c45learning.Run(inputs2, outputs);

            /*
             * string answer = codebook.Translate(outputColumn,
             *  tree.Compute(codebook.Translate("Sunny", "Hot", "High", "Strong")));
             *
             * Console.WriteLine("Calculate for: Sunny, Hot, High, Strong");
             * Console.WriteLine("Answer: " + answer);
             */

            var expression = tree.ToExpression();

            Console.WriteLine(tree.ToCode("ClassTest"));

            DecisionSet rules = tree.ToRules();

            Console.WriteLine(rules.ToString());

            // Compiles the expression to IL
            var func = expression.Compile();
        }