Beispiel #1
0
        public static void Cuda(
            Real[] mIntraReturn,
            Real[] vClose,
            Real[] vIsAlive,
            Real[] vIsValidDay,
            int m,
            int n)
        {
            var gpu = Gpu.Default;

            using (var cudaIntraReturn = gpu.AllocateDevice(mIntraReturn))
                using (var cudaClose = gpu.AllocateDevice(vClose))
                    using (var cudaIsAlive = gpu.AllocateDevice(vIsAlive))
                        using (var cudaIsValidDay = gpu.AllocateDevice(vIsValidDay))
                        {
                            var timer = Stopwatch.StartNew();

                            var gridSizeX = Util.DivUp(n, 32);
                            var gridSizeY = Util.DivUp(m, 8);
                            var lp        = new LaunchParam(new dim3(gridSizeX, gridSizeY), new dim3(32, 8));

                            gpu.Launch(CudaKernel, lp, cudaIntraReturn.Ptr, cudaClose.Ptr, cudaIsAlive.Ptr, cudaIsValidDay.Ptr, m, n);

                            gpu.Synchronize();
                            Util.PrintPerformance(timer, "IntraReturn.Cuda", 5, m, n);

                            Gpu.Copy(cudaIntraReturn, mIntraReturn);
                        }
        }
 private void OnMouseMove(object sender, MouseEventArgs e)
 {
     if (isMouseDown)
     {
         float2 offset  = new float2((e.X - mouseLocation.x) * mouseSensitivity, (e.Y - mouseLocation.y) * mouseSensitivity);
         float  c1      = DeviceFunction.Cos(offset.x);
         float  s1      = DeviceFunction.Sin(offset.x);
         float  t1      = 1 - c1;
         float  c2      = DeviceFunction.Cos(offset.y);
         float  s2      = DeviceFunction.Sin(offset.y);
         float  t2      = 1 - c2;
         float  camDist = L(camera);
         gpu.Launch(RotateDirection, launchParam, dirDevPtr, y, t1, c1, s1, width, height);
         x      = RotateVec(x, y, t1, c1, s1);
         z      = RotateVec(z, y, t1, c1, s1);
         camera = RotateVec(camera, y, t1, c1, s1);
         gpu.Launch(RotateDirection, launchParam, dirDevPtr, x, t2, c2, s2, width, height);
         y      = RotateVec(y, x, t2, c2, s2);
         z      = RotateVec(z, x, t2, c2, s2);
         camera = RotateVec(camera, x, t2, c2, s2);
         Gpu.Copy(dirDevMem, directions);
         x = D(x, L(x));
         y = D(y, L(y));
         z = D(z, L(z));
         ScreenDivider.Panel2.Invalidate();
     }
     mouseLocation = new int2(e.X, e.Y);
 }
        public static void Cuda(
            Real[] mSquaredDistances,
            Real[] mCoordinates,
            int c,
            int n)
        {
            var gpu = Gpu.Default;

            using (var cudaSquaredDistance = gpu.AllocateDevice(mSquaredDistances))
                using (var cudaCoordinates = gpu.AllocateDevice(mCoordinates))
                {
                    var timer = Stopwatch.StartNew();

                    const int blockSize = 128;

                    var gridSize = Util.DivUp(n * n, blockSize);
                    var lp       = new LaunchParam(gridSize, blockSize);

                    gpu.Launch(Kernel, lp, cudaSquaredDistance.Ptr, cudaCoordinates.Ptr, c, n);

                    gpu.Synchronize();
                    Util.PrintPerformance(timer, "SquaredDistance.Cuda", n, c, n);

                    Gpu.Copy(cudaSquaredDistance, mSquaredDistances);
                }
        }
Beispiel #4
0
        public static void Cuda(Real[] result, Real[] left, Real[] right, int n)
        {
            var gpu = Gpu.Default;

            using (var cudaResult = gpu.AllocateDevice(result))
                using (var cudaLeft = gpu.AllocateDevice(left))
                    using (var cudaRight = gpu.AllocateDevice(right))
                    {
                        var timer = Stopwatch.StartNew();

                        Alea.cuBLAS.Blas.Get(gpu).Gemm(
                            Alea.cuBLAS.Operation.N,
                            Alea.cuBLAS.Operation.N,
                            n, n, n,
                            1, cudaLeft.Ptr, n,
                            cudaRight.Ptr, n, 0,
                            cudaResult.Ptr, n);

                        gpu.Synchronize();

                        PrintPerformance(timer, "MatrixMultiplication.cuBLAS", n, n, n);

                        Gpu.Copy(cudaResult, result);
                    }
        }
Beispiel #5
0
        public static unsafe void Alea(Gpu gpu, Real[] result, Real[] left, Real[] right, int m, int n)
        {
            using (var cudaResult = gpu.AllocateDevice(result))
                using (var cudaLeft = gpu.AllocateDevice(left))
                    using (var cudaRight = gpu.AllocateDevice(right))
                    {
                        var alphas  = new Real[] { 1 };
                        var betas   = new Real[] { 0 };
                        var results = Enumerable.Range(0, m).Select(i => cudaResult.Ptr.Handle + i * n * n * sizeof(Real)).ToArray();
                        var lefts   = Enumerable.Range(0, m).Select(i => cudaLeft.Ptr.Handle + i * n * n * sizeof(Real)).ToArray();
                        var rights  = Enumerable.Range(0, m).Select(i => cudaRight.Ptr.Handle).ToArray();

                        using (var cudaResults = gpu.AllocateDevice(results))
                            using (var cudaLefts = gpu.AllocateDevice(lefts))
                                using (var cudaRights = gpu.AllocateDevice(rights))
                                {
                                    fixed(Real *pAlphas = alphas)
                                    fixed(Real * pBetas = betas)
                                    {
                                        var timer = Stopwatch.StartNew();

                                        var blas    = global::Alea.cuBLAS.Blas.Get(gpu);
                                        var lAlphas = pAlphas;
                                        var lBetas  = pBetas;

                                        gpu.EvalAction(() =>
                                                       global::Alea.cuBLAS.Interop.cublasSafeCall(
#if DOUBLE_PRECISION
                                                           global::Alea.cuBLAS.Interop.cublasDgemmBatched(
#else
                                                           global::Alea.cuBLAS.Interop.cublasSgemmBatched(
#endif
                                                               blas.Handle,
                                                               global::Alea.cuBLAS.Operation.N,
                                                               global::Alea.cuBLAS.Operation.N,
                                                               n,
                                                               n,
                                                               n,
                                                               lAlphas,
                                                               // ReSharper disable AccessToDisposedClosure
                                                               cudaLefts.Ptr.Handle,
                                                               n,
                                                               cudaRights.Ptr.Handle,
                                                               n,
                                                               lBetas,
                                                               cudaResults.Ptr.Handle,
                                                               // ReSharper restore AccessToDisposedClosure
                                                               n,
                                                               m)));

                                        gpu.Synchronize();

                                        PrintPerformance(timer, "ManyMatrixMultiplication.cuBLAS", m * n, n, n);

                                        Gpu.Copy(cudaResult, result);
                                    }
                                }
                    }
        }
        protected override void AllocateCache(double[][] inputs, long[] rneurons, double[] from, double[] to, bool[] rneuronsCache, double[] fromCache, double[] toCache)
        {
            Allocate(inputs, rneurons, from, to);

            rneuronsCacheArr = gpu.Allocate(rneuronsCache);

            Gpu.Copy(fromCache, fromCacheArr);
            Gpu.Copy(toCache, toCacheArr);
        }
        protected override void Allocate(double[][] inputs, long[] rneurons, double[] from, double[] to)
        {
            rneuronsArr = gpu.Allocate(rneurons);
            resultsArr  = gpu.Allocate <long>(rneurons.Length);
            inputsArr   = gpu.Allocate(inputs);

            Gpu.Copy(from, fromArr);
            Gpu.Copy(to, toArr);
        }
        protected virtual void AllocateCache(double[][] inputs, long[] rneurons, double[] from, double[] to, bool[] rneuronsCache, double[] fromCache, double[] toCache)
        {
            Allocate(inputs, rneurons, from, to);

            rneuronsCacheArr = gpu.Allocate <bool>(rneuronsCache.Length);

            Gpu.Copy(rneuronsCache, rneuronsCacheArr);
            Gpu.Copy(fromCache, fromCacheArr);
            Gpu.Copy(toCache, toCacheArr);
        }
        protected virtual void Allocate(double[][] inputs, long[] rneurons, double[] from, double[] to)
        {
            rneuronsArr = gpu.Allocate <long>(rneurons.Length);
            resultsArr  = gpu.Allocate <long>(rneurons.Length);
            inputsArr   = gpu.Allocate <double[]>(inputs.Length);

            Gpu.Copy(rneurons, rneuronsArr);
            Gpu.Copy(inputs, inputsArr);
            Gpu.Copy(from, fromArr);
            Gpu.Copy(to, toArr);
        }
 public void MarchRays()
 {
     gpu.Launch(MarchRay, launchParam, dirDevPtr, pixDevPtr, camera, lightLocation, cols, minDist, maxDist, 1000,
                bytes, width, iterations, side, seed, shift, shadowStrength, ambientOccStrength);
     Gpu.Copy(pixDevMem, pixels);
     b = new Bitmap(width, height, width * bytes,
                    PixelFormat.Format24bppRgb,
                    Marshal.UnsafeAddrOfPinnedArrayElement(pixels, 0));
     //for (int i = 0; i < Width * Height; i++)
     //{
     //   int greyscale = (int)(pixels[i] * 255);
     //    b.SetPixel(i % Width, Height - 1 - i / Width, Color.FromArgb(greyscale, greyscale, greyscale));
     //}
 }
        protected override void LaunchKernel(long[] rneurons, double[][] inputs, double[] from, double[] to, int lparam1, int lparam2)
        {
            var results = new long[rneurons.Length];
            var lp      = new LaunchParam(lparam1, lparam2);

            Allocate(inputs, rneurons, from, to);

            gpu.Launch(RlmAleaGpu.Kernel, lp, rneuronsArr, inputsArr, resultsArr, fromArr, toArr);
            Gpu.Copy(resultsArr, results);

            Free();

            FindBestSolution(results);
        }
        protected override RlmCacheDataArray LaunchKernel(long[] rneurons, double[][] inputs, double[] from, double[] to, bool[] rneuronsCache, double[] fromCache, double[] toCache, int lparam1, int lparam2)
        {
            var results = new long[rneurons.Length];
            var lp      = new LaunchParam(lparam1, lparam2);

            AllocateCache(inputs, rneurons, from, to, rneuronsCache, fromCache, toCache);

            gpu.Launch(RlmAleaGpu.KernelCache, lp, rneuronsArr, inputsArr, resultsArr, fromArr, toArr, rneuronsCacheArr, fromCacheArr, toCacheArr);
            Gpu.Copy(resultsArr, results);
            Gpu.Copy(rneuronsCacheArr, rneuronsCache);

            FreeCache();

            return(FindBestSolutionAndBuildCache(rneurons, results, inputs, rneuronsCache));
        }
Beispiel #13
0
        public static void Alea(Gpu gpu, Real[] matrix, Real[] vector, int m, int n)
        {
            using (var cudaMatrix = gpu.AllocateDevice(matrix))
                using (var cudaVector = gpu.AllocateDevice(vector))
                {
                    var timer = Stopwatch.StartNew();

                    var gridSizeX = Util.DivUp(n, 32);
                    var gridSizeY = Util.DivUp(m, 8);
                    var lp        = new LaunchParam(new dim3(gridSizeX, gridSizeY), new dim3(32, 8));

                    gpu.Launch(AleaKernel, lp, cudaMatrix.Ptr, cudaVector.Ptr, m, n);

                    gpu.Synchronize();
                    Util.PrintPerformance(timer, "AddVector.Alea", 3, m, n);

                    Gpu.Copy(cudaMatrix, matrix);
                }
        }
Beispiel #14
0
        public static void RunGpu()
        {
            var n            = GetData(out var x, out var y);
            var result       = new float[n];
            var gpu          = Gpu.Default;
            var xDevice      = gpu.Allocate <float>(n);
            var yDevice      = gpu.Allocate <float>(n);
            var resultDevice = gpu.Allocate <float>(n);

            Gpu.Copy(x, xDevice);
            Gpu.Copy(y, yDevice);

            var lp = new LaunchParam(16, 256);

            gpu.Launch(Kernel, lp, resultDevice, xDevice, yDevice);
            Gpu.Copy(resultDevice, result);

            Gpu.Free(xDevice);
            Gpu.Free(yDevice);
            Gpu.Free(resultDevice);
        }
        private static double[,] CosineSimilarityGpu(Gpu gpu, double[][] dataset)
        {
            int size       = dataset.Length * dataset.Length;
            var gpuDataset = gpu.Allocate(dataset);

            // Allocate directly on gpu.
            var gpuDistances = gpu.Allocate <double>(dataset.Length, dataset.Length);

            gpu.For(0, size, index =>
            {
                int i               = index / dataset.Length;
                int j               = index % dataset.Length;
                double dotProduct   = 0;
                double magnitudeOne = 0;
                double magnitudeTwo = 0;
                for (int k = 0; k < dataset[i].Length; k++)
                {
                    dotProduct   += (dataset[i][k] * dataset[j][k]);
                    magnitudeOne += (dataset[i][k] * dataset[i][k]);
                    magnitudeTwo += (dataset[j][k] * dataset[j][k]);
                }
                double distance    = Math.Max(0, 1 - (dotProduct / Math.Sqrt(magnitudeOne * magnitudeTwo)));
                gpuDistances[i, j] = distance;
            });

            // Gpu -> Cpu.
            var result = new double[dataset.Length, dataset.Length];

            Gpu.Copy(gpuDistances, result);

            // Release gpu memory.
            Gpu.Free(gpuDataset);
            Gpu.Free(gpuDistances);

            return(result);
        }
 public void GetDirections()
 {
     gpu.Launch(GetDirection, launchParam, dirDevPtr, focalLength, (float)width, (float)height);
     Gpu.Copy(dirDevMem, directions);
 }