Beispiel #1
0
        public void AddToPeaks(ref GlypID.Peaks.clsPeak[] peak, ref GlypID.Peaks.clsPeak[] peaksToAdd)
        {
            if (peak.Length != peaksToAdd.Length)
                throw new Exception("Peaks to sum must be equal length");

            for (int i = 0; i < peaksToAdd.Length; i++)
            {
                peak[i].mdbl_intensity = peak[i].mdbl_intensity + peaksToAdd[i].mdbl_intensity;
            }
        }
        public MultiNGlycanESIMultiThreads(string argGlycanCompound, 
                                                                          string argRawFile, 
                                                                          int argStartScan,
                                                                          int argEndScan,
                                                                          int argNoThreads,
                                                                          float argMassPPM ,
                                                                          float argGlycanMass,
                                                                          float argMergeDurationMin, 
                                                                          bool argPermenthylated, 
                                                                          bool argReducedReducingEnd,
                                                                          GlypID.Peaks.clsPeakProcessorParameters argPeakProcessorPara,
                                                                          GlypID.HornTransform.clsHornTransformParameters argTransformPara)
        {
            glycanFile = argGlycanCompound;
            rawFiles = new Stack<string>();
            rawFiles.Push(argRawFile);
            StartScan = argStartScan;
            EndScan = argEndScan;
            _noOfThreads = argNoThreads;
            _MassPPM = argMassPPM;
            _GlycanPPM = argGlycanMass;
            _MergeDurationMin = argMergeDurationMin;
            _Permenthylated = argPermenthylated;
            _ReducedReducingEnd = argReducedReducingEnd;
            _peakParameter = argPeakProcessorPara;
            _transformParameter = argTransformPara;

            _pool = new Semaphore(0, _noOfThreads);
            //doneEvents = new ManualResetEvent[_noOfThreads];

            _multiESIThreads = new MultiNGlycanESI[_noOfThreads];
            //Copy Dataset
            for (int i = 1; i < _noOfThreads; i++)  // only need n-1 copies
            {
                string newFilename = Path.GetDirectoryName(argRawFile) + "\\" + Path.GetFileNameWithoutExtension(argRawFile) + "-" + i.ToString() + Path.GetExtension(argRawFile);
                File.Copy(argRawFile, newFilename);
                rawFiles.Push(newFilename);
            }
            //Split Dataset
            SplitDataset();
        }
Beispiel #3
0
        /// <summary>
        /// Function to normalize peaks into bins of set width 
        /// </summary>
        /// <param name="?"></param>
        public void BinNormalize(ref GlypID.Peaks.clsPeak[] peaks, float min_mz, float max_mz, double bin_size)
        {
            int num_bins = (int)((max_mz - min_mz) / bin_size)+1;
            GlypID.Peaks.clsPeak[] baseSpectrumPeaks = new GlypID.Peaks.clsPeak[num_bins];

            for (int i = 0; i < baseSpectrumPeaks.Length; i++)
            {
                baseSpectrumPeaks[i] = new GlypID.Peaks.clsPeak();
                baseSpectrumPeaks[i].mdbl_mz = min_mz + i * bin_size;
                baseSpectrumPeaks[i].mdbl_intensity = 0;
            }

            for (int i = 0; i < peaks.Length; i++)
            {
                int bin = (int) ((peaks[i].mdbl_mz - min_mz) / bin_size);
                baseSpectrumPeaks[i].mdbl_intensity += peaks[i].mdbl_intensity;
            }

            Array.Clear(peaks, 0, peaks.Length);
            peaks = baseSpectrumPeaks;
        }
        /// <summary>
        /// Add a bunch of peaks to a list of spectra, bin them and add the binned spectra to another list
        /// </summary>
        /// <param name="peaks"></param>
        /// <param name="spectraName"></param>
        public void AddPeaksToList(ref GlypID.Peaks.clsPeak[] peaks, string spectraName)
        {
            // add original spectrum
            List<GlypID.Peaks.clsPeak> thisOrigSpectra = new List<GlypID.Peaks.clsPeak>();
            for (int i = 0; i < peaks.Length; i++)
            {
                thisOrigSpectra.Add(peaks[i]);
            }
            _AllOriginalSpectra.Add(thisOrigSpectra);

            // Bin spectrum
            List<double> thisBinnedSpectra = new List<double>() ;
            BinNormalize(ref peaks, ref thisBinnedSpectra, _minMz, _maxMz, _binsize) ;

            // Add binned spectrum to another list and to Cluster object
            _AllBinnedSpectra.Add(thisBinnedSpectra);
            _Clusters.Add(thisBinnedSpectra);

            // Store names to keep track
            _ClusterNames.Add(spectraName);
            _SpectraNames.Add(spectraName);
        }
Beispiel #5
0
        private static MSScan GetScanFromFile(int argScanNo, double argSingleToNoise, double argPeakBackground, double argPeptideBackground, short argMaxCharge, GlypID.Readers.clsRawData Raw)
        {
            float[] _cidMzs = null;
            float[] _cidIntensities = null;
            GlypID.Peaks.clsPeak[] _cidPeaks = new GlypID.Peaks.clsPeak[1];
            GlypID.Peaks.clsPeak[] _parentPeaks = new GlypID.Peaks.clsPeak[1];

            GlypID.HornTransform.clsHornTransform mobjTransform = new GlypID.HornTransform.clsHornTransform();
            GlypID.HornTransform.clsHornTransformParameters mobjTransformParameters = new GlypID.HornTransform.clsHornTransformParameters() ;
            GlypID.HornTransform.clsHornTransformResults[] _transformResult;

            GlypID.Peaks.clsPeakProcessor cidPeakProcessor = new GlypID.Peaks.clsPeakProcessor();
            GlypID.Peaks.clsPeakProcessorParameters cidPeakParameters = new GlypID.Peaks.clsPeakProcessorParameters();

            GlypID.Peaks.clsPeakProcessor parentPeakProcessor = new GlypID.Peaks.clsPeakProcessor() ;
            GlypID.Peaks.clsPeakProcessorParameters parentPeakParameters = new GlypID.Peaks.clsPeakProcessorParameters();

            //Start Read Scan
            MSScan scan = new MSScan(argScanNo);

            Raw.GetSpectrum(argScanNo, ref _cidMzs, ref  _cidIntensities);
            scan.MsLevel = Raw.GetMSLevel(Convert.ToInt32(argScanNo));

            double min_peptide_intensity = 0;
            scan.Time = Raw.GetScanTime(scan.ScanNo);
            scan.ScanHeader = Raw.GetScanDescription(scan.ScanNo);
            if (scan.MsLevel != 1)
            {
                float[] _parentRawMzs = null;
                float[] _parentRawIntensitys = null;

                string Header = Raw.GetScanDescription(argScanNo);
                cidPeakProcessor.ProfileType = GlypID.enmProfileType.CENTROIDED;
                if (Header.Substring(Header.IndexOf("+") + 1).Trim().StartsWith("p"))
                {
                    cidPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;
                }

                // cidPeakProcessor.DiscoverPeaks(ref _cidMzs, ref _cidIntensities, ref _cidPeaks,
                //         Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), false);

                for (int chNum = 0; chNum < _cidMzs.Length; chNum++)
                {
                    scan.MSPeaks.Add(new MSPeak(
                        Convert.ToSingle(_cidMzs[chNum]),
                        Convert.ToSingle(_cidIntensities[chNum])));
                }

                //for (int chNum = 0; chNum < _cidMzs.Length; chNum++)
                //{
                //    scan.MSPeaks.Add(new MSPeak(
                //        Convert.ToSingle(_cidMzs[chNum]),
                //        Convert.ToSingle(_cidIntensities[chNum])));
                //}

                // Get parent information
                scan.ParentScanNo = Raw.GetParentScan(scan.ScanNo);

                Raw.GetSpectrum(scan.ParentScanNo, ref _parentRawMzs, ref _parentRawIntensitys);
                parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;
                parentPeakProcessor.DiscoverPeaks(ref _parentRawMzs, ref _parentRawIntensitys, ref _parentPeaks, Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), true);
                float _parentBackgroundIntensity = (float)parentPeakProcessor.GetBackgroundIntensity(ref _parentRawIntensitys);
                _transformResult = new GlypID.HornTransform.clsHornTransformResults[1];
                bool found = false;
                if (Raw.IsFTScan(scan.ParentScanNo))
                {
                    // High resolution data
                    found = mobjTransform.FindPrecursorTransform(Convert.ToSingle(_parentBackgroundIntensity), Convert.ToSingle(min_peptide_intensity), ref _parentRawMzs, ref _parentRawIntensitys, ref _parentPeaks, Convert.ToSingle(scan.ParentMZ), ref _transformResult);
                }
                if (!found)//de-isotope fail
                {
                    // Low resolution data or bad high res spectra
                    short cs = Raw.GetMonoChargeFromHeader(scan.ScanNo);
                    double monoMZ = Raw.GetMonoMzFromHeader(scan.ScanNo);
                    List<float> ParentMzs = new List<float>(_parentRawMzs);
                    int CloseIdx = MassUtility.GetClosestMassIdx(ParentMzs, Convert.ToSingle(monoMZ));

                    if (cs > 0)
                    {
                        short[] charges = new short[1];
                        charges[0] = cs;
                        mobjTransform.AllocateValuesToTransform(Convert.ToSingle(scan.ParentMZ), Convert.ToInt32(_parentRawIntensitys[CloseIdx]), ref charges, ref _transformResult);
                    }
                    else
                    {
                        // instrument has no charge just store 2 and 3.
                        short[] charges = new short[2];
                        charges[0] = 2;
                        charges[1] = 3;
                        mobjTransform.AllocateValuesToTransform(Convert.ToSingle(scan.ParentMZ), Convert.ToInt32(_parentRawIntensitys[CloseIdx]), ref charges, ref _transformResult);
                    }
                }

                if (_transformResult[0].mint_peak_index == -1) //De-isotope parent scan
                {
                    //Get parent info
                    MSScan _parentScan = GetScanFromFile(scan.ParentScanNo, argSingleToNoise, argPeakBackground, argPeptideBackground, argMaxCharge,Raw);
                    float[] _MSMzs = null;
                    float[] _MSIntensities = null;

                    Raw.GetSpectrum(scan.ParentScanNo, ref _MSMzs, ref  _MSIntensities);
                    // Now find peaks
                    parentPeakParameters.SignalToNoiseThreshold = 0;
                    parentPeakParameters.PeakBackgroundRatio = 0.01;
                    parentPeakProcessor.SetOptions(parentPeakParameters);
                    parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;

                    parentPeakProcessor.DiscoverPeaks(ref _MSMzs, ref _MSIntensities, ref _cidPeaks,
                                            Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), true);

                    //Look for charge and mono.

                    float[] monoandcharge = FindChargeAndMono(_cidPeaks, Convert.ToSingle(Raw.GetParentMz(scan.ScanNo)), scan.ScanNo,Raw);
                    //scan.ParentMonoMW = _parentScan.MSPeaks[ClosedIdx].MonoMass;
                    //scan.ParentAVGMonoMW = _parentScan.MSPeaks[ClosedIdx].;
                    scan.ParentMZ = monoandcharge[0];
                    if (monoandcharge[1] == 0.0f)
                    {
                        scan.ParentCharge = Convert.ToInt32(Raw.GetMonoChargeFromHeader(scan.ParentScanNo));
                    }
                    else
                    {
                        scan.ParentCharge = Convert.ToInt32(monoandcharge[1]);
                    }

                    scan.ParentMonoMW = (monoandcharge[0] - Atoms.ProtonMass) * monoandcharge[1];

                }
                else
                {
                    scan.ParentMonoMW = (float)_transformResult[0].mdbl_mono_mw;
                    scan.ParentAVGMonoMW = (float)_transformResult[0].mdbl_average_mw;
                    scan.ParentMZ = (float)_transformResult[0].mdbl_mz;
                    scan.ParentCharge = (int)_transformResult[0].mshort_cs;
                }
                scan.IsCIDScan = Raw.IsCIDScan(argScanNo);
                scan.IsFTScan = Raw.IsFTScan(argScanNo);

                Array.Clear(_transformResult, 0, _transformResult.Length);
                Array.Clear(_cidPeaks, 0, _cidPeaks.Length);
                Array.Clear(_cidMzs, 0, _cidMzs.Length);
                Array.Clear(_cidIntensities, 0, _cidIntensities.Length);
                Array.Clear(_parentRawMzs, 0, _parentRawMzs.Length);
                Array.Clear(_parentRawIntensitys, 0, _parentRawIntensitys.Length);
            }
            else //MS Scan
            {
                scan.ParentMZ = 0.0f;
                double mdbl_current_background_intensity = 0;

                // Now find peaks
                parentPeakParameters.SignalToNoiseThreshold = argSingleToNoise;
                parentPeakParameters.PeakBackgroundRatio = argPeakBackground;
                parentPeakProcessor.SetOptions(parentPeakParameters);
                parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;

                parentPeakProcessor.DiscoverPeaks(ref _cidMzs, ref _cidIntensities, ref _cidPeaks,
                                        Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), true);
                mdbl_current_background_intensity = parentPeakProcessor.GetBackgroundIntensity(ref _cidIntensities);

                // Settings
                min_peptide_intensity = mdbl_current_background_intensity * mobjTransformParameters.PeptideMinBackgroundRatio;
                if (mobjTransformParameters.UseAbsolutePeptideIntensity)
                {
                    if (min_peptide_intensity < mobjTransformParameters.AbsolutePeptideIntensity)
                        min_peptide_intensity = mobjTransformParameters.AbsolutePeptideIntensity;
                }
                mobjTransformParameters.PeptideMinBackgroundRatio = argPeptideBackground;
                mobjTransformParameters.MaxCharge = argMaxCharge;
                mobjTransform.TransformParameters = mobjTransformParameters;

                //  Now perform deisotoping
                _transformResult = new GlypID.HornTransform.clsHornTransformResults[1];
                mobjTransform.PerformTransform(Convert.ToSingle(mdbl_current_background_intensity), Convert.ToSingle(min_peptide_intensity), ref _cidMzs, ref _cidIntensities, ref _cidPeaks, ref _transformResult);
                // for getting results

                for (int chNum = 0; chNum < _transformResult.Length; chNum++)
                {
                    double sumintensity = 0.0;
                    double mostIntenseIntensity = 0.0;
                    for (int i = 0; i < _transformResult[chNum].marr_isotope_peak_indices.Length; i++)
                    {
                        sumintensity = sumintensity + _cidPeaks[_transformResult[chNum].marr_isotope_peak_indices[i]].mdbl_intensity;
                        if (Math.Abs(_transformResult[chNum].mdbl_most_intense_mw -
                            (_cidPeaks[_transformResult[chNum].marr_isotope_peak_indices[i]].mdbl_mz * _transformResult[chNum].mshort_cs - Atoms.ProtonMass * _transformResult[chNum].mshort_cs))
                            < 1.0 / _transformResult[chNum].mshort_cs)
                        {
                            mostIntenseIntensity = _cidPeaks[_transformResult[chNum].mint_peak_index].mdbl_intensity;
                        }
                    }
                    scan.MSPeaks.Add(new MSPeak(
                    Convert.ToSingle(_transformResult[chNum].mdbl_mono_mw),
                    _transformResult[chNum].mint_mono_intensity,
                    _transformResult[chNum].mshort_cs,
                    Convert.ToSingle(_transformResult[chNum].mdbl_mz),
                    Convert.ToSingle(_transformResult[chNum].mdbl_fit),
                    Convert.ToSingle(_transformResult[chNum].mdbl_most_intense_mw),
                    mostIntenseIntensity,
                    sumintensity
                    ));
                }
                Array.Clear(_transformResult, 0, _transformResult.Length);
                Array.Clear(_cidPeaks, 0, _cidPeaks.Length);
                Array.Clear(_cidMzs, 0, _cidMzs.Length);
                Array.Clear(_cidIntensities, 0, _cidIntensities.Length);
            }
            return scan;
        }
Beispiel #6
0
        private static float[] FindChargeAndMono(GlypID.Peaks.clsPeak[] argPeaks, float argTargetMZ, int argParentScanNo, GlypID.Readers.clsRawData Raw)
        {
            float[] MonoAndMz = new float[2];

            double interval = 9999.9;
            int ClosedIdx = 0;
            for (int i = 0; i < argPeaks.Length; i++)
            {
                if (Math.Abs(argPeaks[i].mdbl_mz - argTargetMZ) < interval)
                {
                    interval = Math.Abs(argPeaks[i].mdbl_mz - argTargetMZ);
                    ClosedIdx = i;
                }
            }

            //Charge
            float testMz = 0.0f;
            int MaxMatchedPeak = 2;

            for (int i = 1; i <= 6; i++)
            {
                double FirstMonoMz = 0.0;
                int ForwardPeak = 0;
                int BackardPeak = 0;
                //Forward Check
                testMz = argTargetMZ - 1.0f / (float)i;
                int CheckIdx = ClosedIdx - 1;
                for (int j = 1; j <= 10; j++)
                {
                    if (CheckIdx < 0)
                    {
                        break;
                    }
                    if (Math.Abs(argPeaks[CheckIdx].mdbl_mz - testMz) <= 0.03)
                    {
                        ForwardPeak++;
                        testMz = Convert.ToSingle(argPeaks[CheckIdx].mdbl_mz) - 1.0f / (float)i;
                        FirstMonoMz = argPeaks[CheckIdx].mdbl_mz;
                    }
                    CheckIdx = CheckIdx - 1;
                }

                //Backward
                testMz = argTargetMZ + 1.0f / (float)i;
                CheckIdx = ClosedIdx + 1;

                for (int j = 1; j <= 10; j++)
                {
                    if (CheckIdx >= argPeaks.Length)
                    {
                        break;
                    }
                    if (Math.Abs(argPeaks[CheckIdx].mdbl_mz - testMz) <= 0.03)
                    {
                        BackardPeak++;
                        testMz = Convert.ToSingle(argPeaks[CheckIdx].mdbl_mz) + 1.0f / (float)i;
                    }
                    CheckIdx = CheckIdx + 1;
                }

                if (ForwardPeak == 0)
                {
                    FirstMonoMz = argTargetMZ;
                }

                if (ForwardPeak + BackardPeak >= MaxMatchedPeak)
                {
                    MaxMatchedPeak = ForwardPeak + BackardPeak;
                    MonoAndMz[0] = Convert.ToSingle(FirstMonoMz);
                    MonoAndMz[1] = i;
                }
            }

            if (MonoAndMz[1] == 0)
            {
                if (interval < 0.01)
                {
                    MonoAndMz[0] = argTargetMZ;
                }
                MonoAndMz[1] = Raw.GetMonoChargeFromHeader(argParentScanNo);
            }

            return MonoAndMz;
        }
Beispiel #7
0
        /// <summary>
        /// No HCD info the return will be null
        /// </summary>
        /// <param name="argReader"></param>
        /// <param name="argScanNo"></param>
        /// <returns></returns>
        private static HCDInfo GetHCDInfo(GlypID.Readers.clsRawData argReader, int argScanNo)
        {
            if(!argReader.IsHCDScan(argScanNo))
            {
                return null;
            }
            HCDInfo HCDinfo = null;
            double _hcd_score;
            GlypID.enmGlycanType _gType;
            int ParentScan = argReader.GetParentScan(argScanNo);
            // Scorers and transforms
            GlypID.HCDScoring.clsHCDScoring HCDScoring = new GlypID.HCDScoring.clsHCDScoring();
            GlypID.HornTransform.clsHornTransform Transform = new GlypID.HornTransform.clsHornTransform();

            // mzs , intensities
            float[] hcd_mzs = null;
            float[] hcd_intensities = null;
            float[] parent_mzs = null;
            float[] parent_intensities = null;

            // Peaks
            GlypID.Peaks.clsPeak[] parent_peaks;
            GlypID.Peaks.clsPeak[] hcd_peaks;

            // Peak Processors
            GlypID.Peaks.clsPeakProcessor hcdPeakProcessor = new GlypID.Peaks.clsPeakProcessor();
            GlypID.Peaks.clsPeakProcessor parentPeakProcessor = new GlypID.Peaks.clsPeakProcessor();

            // Results
            GlypID.HCDScoring.clsHCDScoringScanResults[] hcd_scoring_results;
            GlypID.HornTransform.clsHornTransformResults[] transform_results;

            // Params
            GlypID.Scoring.clsScoringParameters scoring_parameters = new GlypID.Scoring.clsScoringParameters();
            GlypID.HornTransform.clsHornTransformParameters transform_parameters = new GlypID.HornTransform.clsHornTransformParameters();
            scoring_parameters.MinNumPeaksToConsider = 2;
            scoring_parameters.PPMTolerance = 10;
            scoring_parameters.UsePPM = true;

            // Init
            Transform.TransformParameters = transform_parameters;

            // Loading parent
            int parent_scan = argReader.GetParentScan(argScanNo);
            double parent_mz = argReader.GetParentMz(argScanNo);
            int scan_level = argReader.GetMSLevel(argScanNo);
            int parent_level = argReader.GetMSLevel(parent_scan);
            argReader.GetSpectrum(parent_scan, ref parent_mzs, ref parent_intensities);

            // Parent processing
            parent_peaks = new GlypID.Peaks.clsPeak[1];
            parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;
            parentPeakProcessor.DiscoverPeaks(ref parent_mzs, ref parent_intensities, ref parent_peaks,
                        Convert.ToSingle(transform_parameters.MinMZ), Convert.ToSingle(transform_parameters.MaxMZ), true);
            double bkg_intensity = parentPeakProcessor.GetBackgroundIntensity(ref parent_intensities);
            double min_peptide_intensity = bkg_intensity * transform_parameters.PeptideMinBackgroundRatio;

            transform_results = new GlypID.HornTransform.clsHornTransformResults[1];
            bool found = Transform.FindPrecursorTransform(Convert.ToSingle(bkg_intensity), Convert.ToSingle(min_peptide_intensity), ref parent_mzs, ref parent_intensities, ref parent_peaks, Convert.ToSingle(parent_mz), ref transform_results);
            if (!found && (argReader.GetMonoChargeFromHeader(ParentScan) > 0))
            {
                found = true;
                double mono_mz = argReader.GetMonoMzFromHeader(ParentScan);
                if (mono_mz == 0)
                    mono_mz = parent_mz;

                short[] charges = new short[1];
                charges[0] = argReader.GetMonoChargeFromHeader(ParentScan);
                Transform.AllocateValuesToTransform(Convert.ToSingle(mono_mz), 0, ref charges, ref transform_results); // Change abundance value from 0 to parent_intensity if you wish
            }
            if (found && transform_results.Length == 1)
            {
                // Score HCD scan first
                argReader.GetSpectrum(argScanNo, ref hcd_mzs, ref hcd_intensities);
                double hcd_background_intensity = GlypID.Utils.GetAverage(ref hcd_intensities, ref  hcd_mzs, Convert.ToSingle(scoring_parameters.MinHCDMz), Convert.ToSingle(scoring_parameters.MaxHCDMz));
                hcdPeakProcessor.SetPeakIntensityThreshold(hcd_background_intensity);
                hcd_peaks = new GlypID.Peaks.clsPeak[1];

                //Check Header
                string Header = argReader.GetScanDescription(argScanNo);
                hcdPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;
                if (Header.Substring(Header.IndexOf("+") + 1).Trim().StartsWith("c"))
                {
                    hcdPeakProcessor.ProfileType = GlypID.enmProfileType.CENTROIDED;
                }

                hcdPeakProcessor.DiscoverPeaks(ref hcd_mzs, ref hcd_intensities, ref hcd_peaks, Convert.ToSingle
                    (scoring_parameters.MinHCDMz), Convert.ToSingle(scoring_parameters.MaxHCDMz), false);
                hcdPeakProcessor.InitializeUnprocessedData();

                hcd_scoring_results = new GlypID.HCDScoring.clsHCDScoringScanResults[1];

                HCDScoring.ScoringParameters = scoring_parameters;
                _hcd_score = HCDScoring.ScoreHCDSpectra(ref hcd_peaks, ref hcd_mzs, ref hcd_intensities, ref transform_results, ref hcd_scoring_results);
                _gType = (GlypID.enmGlycanType)hcd_scoring_results[0].menm_glycan_type;

                enumGlycanType GType; //Convert from GlypID.enumGlycanType to MassLib.enumGlycanType;
                if (_gType == GlypID.enmGlycanType.CA)
                {
                    GType = enumGlycanType.CA;
                }
                else if (_gType == GlypID.enmGlycanType.CS)
                {
                    GType = enumGlycanType.CS;
                }
                else if (_gType == GlypID.enmGlycanType.HM)
                {
                    GType = enumGlycanType.HM;
                }
                else if (_gType == GlypID.enmGlycanType.HY)
                {
                    GType = enumGlycanType.HY;
                }
                else
                {
                    GType = enumGlycanType.NA;
                }

                HCDinfo = new HCDInfo(argScanNo, GType, _hcd_score);

            }

            return HCDinfo;
        }
        /// <summary>
        /// Function to normalize peaks into bins of set width within mz range
        /// </summary>
        /// <param name="?"></param>
        /// Return values in binnedIntensities
        public void BinNormalize(ref GlypID.Peaks.clsPeak[] peaks, ref List<double> binnedIntensities, float min_mz, float max_mz, double bin_size)
        {
            int num_bins = (int)((max_mz - min_mz) / bin_size)+1;
            binnedIntensities = new List<double>();
            for (int i =0; i < num_bins;i++)
            {
                binnedIntensities.Add(0) ;
            }

            for (int i = 0; i < peaks.Length; i++)
            {
                int bin = (int) Math.Round ((peaks[i].mdbl_mz - min_mz) / bin_size);
                binnedIntensities[bin]+= peaks[i].mdbl_intensity;
            }
        }
        /// <summary>
        /// Given a cluster index, return the representative of that cluster. Currently, the spectrum with maximum SNR in a given range is returned
        /// </summary>
        /// <param name="clusterIndex"></param>
        /// <param name="repPeaks"></param>
        /// <param name="minmz"></param>
        /// <param name="maxmz"></param>
        /// <param name="return_original_id">true or false. If true, return the original index(among all spectra), else returns the index within the cluster</param>
        /// <returns></returns>
        public int GetRepresentativePeaksFromCluster(int clusterIndex, ref GlypID.Peaks.clsPeak[] repPeaks, double minmz, double maxmz, bool return_original_id)
        {
            double max_snr = 0;
            int spectra_with_max_snr = -1;
            int orig_index = -1;
            string clustername = _ClusterNames[clusterIndex];
            string[] spectra = new string[1];

            if (clustername.Contains('-'))
                spectra = clustername.Split('-');
            else
                spectra[0] = clustername;

            if (spectra.Length > 0)
            {
                foreach (string s in spectra)
                {
                    List<GlypID.Peaks.clsPeak> this_peaks = new List<GlypID.Peaks.clsPeak>();
                    string[] parts = s.Split('_');
                    int spectra_index = Convert.ToInt32(parts[2]);
                    this_peaks = _AllOriginalSpectra[spectra_index];
                    double noise_level = CalculateAverage(ref this_peaks, 0, minmz, maxmz);
                    double signal_level = CalculateAverage(ref this_peaks, noise_level, minmz, maxmz);
                    double snr = signal_level / noise_level;
                    if (snr > max_snr)
                    {
                        max_snr = snr;
                        spectra_with_max_snr = spectra_index;
                        orig_index = Convert.ToInt32(parts[1]);
                    }
                }
                if (spectra_with_max_snr >= 0)
                {
                    repPeaks = new GlypID.Peaks.clsPeak[_AllOriginalSpectra[spectra_with_max_snr].Count];
                    for (int i = 0; i < _AllOriginalSpectra[spectra_with_max_snr].Count; i++)
                    {
                        repPeaks[i] = _AllOriginalSpectra[spectra_with_max_snr][i];
                    }
                }
            }

            if (return_original_id)
                return orig_index;
            else
                return spectra_with_max_snr;
        }
        public string EncodePeaks(ref GlypID.Peaks.clsPeak[] peaks)
        {
            string spectrum = "";

            if (peaks != null)
            {
                float[] mzs = new float[peaks.Length];
                float[] intensities = new float[peaks.Length];

                for (int i = 0; i < peaks.Length; i++)
                {
                    mzs[i] = (float)peaks[i].mdbl_mz;
                    intensities[i] = (float)peaks[i].mdbl_intensity;
                }

                spectrum = GlypID.Utils.EncodeData(ref mzs, ref intensities);
            }
            else
            {
                spectrum = "";
            }

            return spectrum;
        }
Beispiel #11
0
 public MapParserOld(MapRecord mrecord, GlypID.Scoring.clsScoringParameters score_params, GlypID.HornTransform.clsHornTransformParameters transform_params)
 {
     _GlycoMap = new MapRecord();
     _GlycoMap = mrecord;
 }
Beispiel #12
0
 public void SetTransformParameter(GlypID.HornTransform.clsHornTransformParameters argTransformParameter)
 {
     _peptideMinBackgroundRatio = argTransformParameter.PeptideMinBackgroundRatio;
     _maxCharge = argTransformParameter.MaxCharge;
 }
Beispiel #13
0
 public void SetPeakProcessorParameter(GlypID.Peaks.clsPeakProcessorParameters argPeakProcessorParameter)
 {
     _singleToNoiseRatio = argPeakProcessorParameter.SignalToNoiseThreshold;
     _peakBackgroundRatio = argPeakProcessorParameter.PeakBackgroundRatio;
 }
Beispiel #14
0
        /// <summary>
        ///  Function to store glycopeptides
        /// </summary>
        /// <param name="sequences"> Peptide sequences</param>
        /// <param name="glycans"> Glycans</param>
        /// <param name="min_mass">Min Mass of the map</param>
        /// <param name="max_mass">Max mass of the map</param>
        public void SetGlycoPeptides(ref GlypID.Sequence.clsSequence[] sequences, ref GlypID.Glycan.clsGlycan[] glycans)
        {
            int num_gps = sequences.Length * glycans.Length;
            _glycopeptides = new List<GlycopeptideRecord>();

            for (int i = 0; i < sequences.Length; i++)
            {
                for (int j=0 ; j < glycans.Length; j++)
                {
                    GlycopeptideRecord gp = new GlycopeptideRecord();

                    gp.Sequence = sequences[i];
                    gp.SequenceAverageMass = sequences[i].CalculateSequenceMass(false) ;
                    gp.SequenceMonoMass = sequences[i].CalculateSequenceMass(true) ;

                    gp.Glycan = glycans[j];
                    gp.GlycanAverageMass = glycans[j].CalculateGlycanMass(false) ;
                    gp.GlycanMonoMass = glycans[j].CalculateGlycanMass(true) ;

                    gp.GP_Average_Mass = _utils.CalculateGPMass(gp.SequenceAverageMass, gp.GlycanAverageMass) ;
                    gp.GP_Mono_Mass = _utils.CalculateGPMass(gp.SequenceMonoMass, gp.GlycanMonoMass) ;

                    gp.IsDecoy = gp.Glycan.is_decoy | gp.Sequence.is_decoy;

                   _glycopeptides.Add(gp);
                }
            }
            //-- Sort by mono mass and create a hash table -- //
            _glycopeptides.Sort(delegate(GlycopeptideRecord g1, GlycopeptideRecord g2) { return g1.GP_Mono_Mass.CompareTo(g2.GP_Mono_Mass); });
        }