Beispiel #1
0
    public List <NeuralNetwork> DoGeneration(List <float> fitnesses, bool complexify)
    {
        ResetAndKill();

        for (int i = 0; i < genomes.Count; i++)
        {
            genomes[i].SetFitness(fitnesses[i]);
        }
        SortAndRecord();

        SpeciateAndCaluclateSpawnLevels();

        newPopulation.Clear();
        //newPopulation.Add(Genome.RecycledGenome(genomes[0]));

        Genome offSpring = null;

        float bestFitness      = -10000;
        int   bestSpeciesIndex = -1;

        int storeNumber = Mathf.FloorToInt(genomes.Count * GA_Parameters.savePercentage / 100);

        if (storeNumber == 0)
        {
            storeNumber = 1;
        }

        oldGenomes.Add(new List <Genome>());
        for (int i = 0; i < storeNumber; i++)
        {
            oldGenomes[oldGenomes.Count - 1].Add(new Genome(genomes[i]));
        }

        if (complexify)
        {
            Complexify(bestSpeciesIndex);
        }
        else
        {
            Simplify(bestSpeciesIndex);
        }

        Genome.AddToRecycledGenomes(genomes);
        genomes = newPopulation;
        newNetworks.Clear();

        for (int i = 0; i < genomes.Count; i++)
        {
            bool leader    = false;
            bool bestOfAll = false;

            for (int j = 0; j < species.Count; j++)
            {
                if (i == 0)
                {
                    bestOfAll = true;
                    break;
                }
                else if (genomes[i].GetID() == species[j].leader.GetID())
                {
                    leader = true;
                    break;
                }
            }

            NeuralNetwork network = genomes[i].CreateNetwork(bestOfAll, leader);
            newNetworks.Add(network);
        }

        currentGeneration++;

        return(newNetworks);
    }