Beispiel #1
0
        public Convolution2D(Variable <T> data, int kernelH, int kernelW, int numFilter)
        {
            Util.EnsureTrue(data.Shape.Rank == 4);
            Util.EnsureTrue(data.Shape[1] > 0);
            Util.EnsureTrue(data.Shape[2] > 0);
            Util.EnsureTrue(data.Shape[3] > 0);

            var numInputFilter  = data.Shape[1];
            var numOutputFilter = numFilter;
            var height          = data.Shape[2];
            var width           = data.Shape[3];

            // fixed padding and stride now
            ConvolutionDesc = new ConvolutionDescriptor();
            ConvolutionDesc.Set2D(0, 0, 1, 1, 1, 1, ConvolutionMode.CROSS_CORRELATION);

            using (var dataDesc = new TensorDescriptor())
                using (var weightDesc = new FilterDescriptor())
                {
                    var dataType = Dnn.DataTypeOf <T>();
                    var tempN    = 100; // for temp mini batch size
                    dataDesc.Set4D(dataType, TensorFormat.CUDNN_TENSOR_NCHW, tempN, (int)numInputFilter, (int)height, (int)width);
                    weightDesc.Set4D(dataType, TensorFormat.CUDNN_TENSOR_NCHW, numOutputFilter, (int)numInputFilter, kernelH, kernelW);

                    // get output dimension
                    int n, c, h, w;
                    ConvolutionDesc.Get2DForwardOutputDim(dataDesc, weightDesc, out n, out c, out h, out w);

                    //Console.WriteLine($"{c},{h},{w}");

                    // Create variables
                    var scale = Sqrt(3.0.AsScalar <T>() / ((double)(numInputFilter * kernelH * kernelW)).AsScalar <T>());

                    Data       = data;
                    Weight     = Parameter(scale * (2.0.AsScalar <T>() * RandomUniform <T>(Shape.Create(numOutputFilter, numInputFilter, kernelH, kernelW), 0UL, 0UL) - 1.0.AsScalar <T>()));
                    Bias       = Parameter(Fill(Shape.Create(c), ScalarOps.Conv <T>(0.1)));
                    Output     = Variable <T>(PartialShape.Create(-1, c, h, w));
                    Workspace1 = AuxVariable <byte>();
                    Workspace2 = AuxVariable <byte>();

                    AddInput(Data);
                    AddInput(Weight);
                    AddInput(Bias);
                    AddOutput(Output);
                    AddAuxVar(Workspace1);
                    AddAuxVar(Workspace2);
                }
        }
 // cuDNN fields setup
 private void SetupCuDnnInfo()
 {
     ConvolutionDescription.Set2D(OperationInfo.VerticalPadding, OperationInfo.HorizontalPadding, OperationInfo.VerticalStride, OperationInfo.HorizontalStride, 1, 1, (Alea.cuDNN.ConvolutionMode)OperationInfo.Mode);
     FilterDescription.Set4D(DataType.FLOAT, TensorFormat.CUDNN_TENSOR_NCHW, OutputInfo.Channels, KernelInfo.Channels, KernelInfo.Height, KernelInfo.Width);
     BiasDescription.Set4D(DataType.FLOAT, TensorFormat.CUDNN_TENSOR_NCHW, 1, OutputInfo.Channels, 1, 1);
 }