Beispiel #1
0
        FastTreeTweedie(
            this SweepableRegressionTrainers trainers,
            string labelColumnName   = "Label",
            string featureColumnName = "Features",
            SweepableOption <FastTreeTweedieTrainer.Options> optionSweeper = null,
            FastTreeTweedieTrainer.Options defaultOption = null)
        {
            var context = trainers.Context;

            if (optionSweeper == null)
            {
                optionSweeper = FastTreeTweedieTrainerSweepableOptions.Default;
            }

            optionSweeper.SetDefaultOption(defaultOption);

            return(context.AutoML().CreateSweepableEstimator(
                       (context, option) =>
            {
                option.LabelColumnName = labelColumnName;
                option.FeatureColumnName = featureColumnName;

                return context.Regression.Trainers.FastTreeTweedie(option);
            },
                       optionSweeper,
                       new string[] { labelColumnName, featureColumnName },
                       new string[] { Score },
                       nameof(FastTreeTweedieTrainer)));
        }
Beispiel #2
0
        /// <summary>
        /// Predict a target using a decision tree regression model trained with the <see cref="FastTreeTweedieTrainer"/>.
        /// </summary>
        /// <param name="ctx">The <see cref="RegressionContext"/>.</param>
        /// <param name="options">Algorithm advanced settings.</param>
        public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionContext.RegressionTrainers ctx,
                                                             FastTreeTweedieTrainer.Options options)
        {
            Contracts.CheckValue(ctx, nameof(ctx));
            var env = CatalogUtils.GetEnvironment(ctx);

            return(new FastTreeTweedieTrainer(env, options));
        }
Beispiel #3
0
        public override IEstimator <ITransformer> BuildFromOption(MLContext context, FastTreeOption param)
        {
            var option = new FastTreeTweedieTrainer.Options()
            {
                NumberOfLeaves             = param.NumberOfLeaves,
                NumberOfTrees              = param.NumberOfTrees,
                MinimumExampleCountPerLeaf = param.MinimumExampleCountPerLeaf,
                LearningRate              = param.LearningRate,
                LabelColumnName           = param.LabelColumnName,
                FeatureColumnName         = param.FeatureColumnName,
                ExampleWeightColumnName   = param.ExampleWeightColumnName,
                NumberOfThreads           = AutoMlUtils.GetNumberOfThreadFromEnvrionment(),
                MaximumBinCountPerFeature = param.MaximumBinCountPerFeature,
                FeatureFraction           = param.FeatureFraction,
            };

            return(context.Regression.Trainers.FastTreeTweedie(option));
        }
Beispiel #4
0
        public void TestFastTreeTweedieFeaturizationInPipeline()
        {
            int dataPointCount = 200;
            var data           = SamplesUtils.DatasetUtils.GenerateFloatLabelFloatFeatureVectorSamples(dataPointCount).ToList();
            var dataView       = ML.Data.LoadFromEnumerable(data);

            dataView = ML.Data.Cache(dataView);

            var trainerOptions = new FastTreeTweedieTrainer.Options
            {
                NumberOfThreads            = 1,
                NumberOfTrees              = 10,
                NumberOfLeaves             = 4,
                MinimumExampleCountPerLeaf = 10,
                FeatureColumnName          = "Features",
                LabelColumnName            = "Label"
            };

            var options = new FastTreeTweedieFeaturizationEstimator.Options()
            {
                InputColumnName  = "Features",
                TreesColumnName  = "Trees",
                LeavesColumnName = "Leaves",
                PathsColumnName  = "Paths",
                TrainerOptions   = trainerOptions
            };

            var pipeline = ML.Transforms.FeaturizeByFastTreeTweedie(options)
                           .Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "Trees", "Leaves", "Paths"))
                           .Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures"));
            var model      = pipeline.Fit(dataView);
            var prediction = model.Transform(dataView);
            var metrics    = ML.Regression.Evaluate(prediction);

            Assert.True(metrics.MeanAbsoluteError < 0.25);
            Assert.True(metrics.MeanSquaredError < 0.1);
        }
        // This example requires installation of additional NuGet package
        // <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for exception tracking and logging,
            // as a catalog of available operations and as the source of randomness.
            // Setting the seed to a fixed number in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training examples.
            var examples = GenerateRandomDataPoints(1000);

            // Convert the examples list to an IDataView object, which is consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(examples);

            // Define trainer options.
            var options = new FastTreeTweedieTrainer.Options
            {
                // Use L2Norm for early stopping.
                EarlyStoppingMetric = EarlyStoppingMetric.L2Norm,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 50.
                NumberOfTrees = 50
            };

            // Define the trainer.
            var pipeline = mlContext.Regression.Trainers.FastTreeTweedie(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing examples. Use different random seed to make it different from training data.
            var testData = mlContext.Data.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable <Prediction>(transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions
            foreach (var p in predictions.Take(5))
            {
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");
            }

            // Expected output:
            //   Label: 0.985, Prediction: 0.954
            //   Label: 0.155, Prediction: 0.103
            //   Label: 0.515, Prediction: 0.450
            //   Label: 0.566, Prediction: 0.515
            //   Label: 0.096, Prediction: 0.078

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);

            SamplesUtils.ConsoleUtils.PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.05
            //   Mean Squared Error: 0.00
            //   Root Mean Squared Error: 0.07
            //   RSquared: 0.95
        }
        // This example requires installation of additional NuGet package
        // <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(100).ToList();

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);

            // ML.NET doesn't cache data set by default. Therefore, if one reads a
            // data set from a file and accesses it many times, it can be slow due
            // to expensive featurization and disk operations. When the considered
            // data can fit into memory, a solution is to cache the data in memory.
            // Caching is especially helpful when working with iterative algorithms
            // which needs many data passes.
            dataView = mlContext.Data.Cache(dataView);

            // Define input and output columns of tree-based featurizer.
            string labelColumnName   = nameof(DataPoint.Label);
            string featureColumnName = nameof(DataPoint.Features);
            string treesColumnName   = nameof(TransformedDataPoint.Trees);
            string leavesColumnName  = nameof(TransformedDataPoint.Leaves);
            string pathsColumnName   = nameof(TransformedDataPoint.Paths);

            // Define the configuration of the trainer used to train a tree-based
            // model.
            var trainerOptions = new FastTreeTweedieTrainer.Options
            {
                // Only use 80% of features to reduce over-fitting.
                FeatureFraction = 0.8,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 3.
                NumberOfTrees = 3,
                // Number of leaves per tree.
                NumberOfLeaves    = 6,
                LabelColumnName   = labelColumnName,
                FeatureColumnName = featureColumnName
            };

            // Define the tree-based featurizer's configuration.
            var options = new FastTreeTweedieFeaturizationEstimator.Options
            {
                InputColumnName  = featureColumnName,
                TreesColumnName  = treesColumnName,
                LeavesColumnName = leavesColumnName,
                PathsColumnName  = pathsColumnName,
                TrainerOptions   = trainerOptions
            };

            // Define the featurizer.
            var pipeline = mlContext.Transforms.FeaturizeByFastTreeTweedie(
                options);

            // Train the model.
            var model = pipeline.Fit(dataView);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var transformed = model.Transform(dataView);

            // Convert IDataView object to a list. Each element in the resulted list
            // corresponds to a row in the IDataView.
            var transformedDataPoints = mlContext.Data.CreateEnumerable <
                TransformedDataPoint>(transformed, false).ToList();

            // Print out the transformation of the first 3 data points.
            for (int i = 0; i < 3; ++i)
            {
                var dataPoint            = dataPoints[i];
                var transformedDataPoint = transformedDataPoints[i];
                Console.WriteLine("The original feature vector [" + String.Join(",",
                                                                                dataPoint.Features) + "] is transformed to three different " +
                                  "tree-based feature vectors:");

                Console.WriteLine("  Trees' output values: [" + String.Join(",",
                                                                            transformedDataPoint.Trees) + "].");

                Console.WriteLine("  Leave IDs' 0-1 representation: [" + String
                                  .Join(",", transformedDataPoint.Leaves) + "].");

                Console.WriteLine("  Paths IDs' 0-1 representation: [" + String
                                  .Join(",", transformedDataPoint.Paths) + "].");
            }

            // Expected output:
            //   The original feature vector [1.543569,1.494266,1.284405] is
            //   transformed to three different tree-based feature vectors:
            //     Trees' output values: [-0.05652997,-0.02312196,-0.01179363].
            //     Leave IDs' 0-1 representation: [0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0].
            //     Paths IDs' 0-1 representation: [1,0,0,0,0,1,1,0,1,0,1,1,0,0,0].
            //   The original feature vector [0.764918,1.11206,0.648211] is
            //   transformed to three different tree-based feature vectors:
            //     Trees' output values: [-0.1933938,-0.1042738,-0.2312837].
            //     Leave IDs' 0-1 representation: [0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0].
            //     Paths IDs' 0-1 representation: [1,1,1,0,0,1,1,0,0,0,1,0,0,0,0].
            //   The original feature vector [1.251254,1.269456,1.444864] is
            //   transformed to three different tree-based feature vectors:
            //     Trees' output values: [-0.05652997,-0.06082304,-0.04528879].
            //     Leave IDs' 0-1 representation: [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0].
            //     Paths IDs' 0-1 representation: [1,0,0,0,0,1,1,0,1,0,1,1,1,0,1].
        }
        // This example requires installation of additional NuGet
        // package for Microsoft.ML.FastTree found at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new FastTreeTweedieTrainer.Options
            {
                LabelColumnName   = nameof(DataPoint.Label),
                FeatureColumnName = nameof(DataPoint.Features),
                // Use L2Norm for early stopping.
                EarlyStoppingMetric =
                    Microsoft.ML.Trainers.FastTree.EarlyStoppingMetric.L2Norm,

                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 50.
                NumberOfTrees = 50
            };

            // Define the trainer.
            var pipeline =
                mlContext.Regression.Trainers.FastTreeTweedie(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable <Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
            {
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");
            }

            // Expected output:
            //   Label: 0.985, Prediction: 0.954
            //   Label: 0.155, Prediction: 0.103
            //   Label: 0.515, Prediction: 0.450
            //   Label: 0.566, Prediction: 0.515
            //   Label: 0.096, Prediction: 0.078

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.04
            //   Mean Squared Error: 0.00
            //   Root Mean Squared Error: 0.05
            //   RSquared: 0.98 (closer to 1 is better. The worst case is 0)
        }