public void F64Matrix_GetColumns()
        {
            // matrix is created row wise
            var matrix = new F64Matrix(new double[] { 1, 2, 3,
                                                      4, 5, 6,
                                                      7, 8, 9 }, 3, 3);

            // returns selected columns a a new matrix
            var cols = matrix.Columns(new int[] { 0, 2 }); // [1, 3,
                                                           //  4, 6
                                                           //  7, 9]
        }
        double SelectNextModelToRemove(F64Matrix crossValidatedModelPredictions,
                                       double[] targets,
                                       double currentBestError)
        {
            var candidateModelMatrix = new F64Matrix(crossValidatedModelPredictions.RowCount,
                                                     m_remainingModelIndices.Count - 1);

            var candidatePredictions  = new double[crossValidatedModelPredictions.RowCount];
            var candidateModelIndices = new int[m_remainingModelIndices.Count - 1];

            var bestError = double.MaxValue;
            var bestIndex = -1;

            foreach (var index in m_remainingModelIndices)
            {
                var candidateIndex = 0;
                for (int i = 0; i < m_remainingModelIndices.Count; i++)
                {
                    var curIndex = m_remainingModelIndices[i];
                    if (curIndex != index)
                    {
                        candidateModelIndices[candidateIndex++] = m_remainingModelIndices[i];
                    }
                }

                crossValidatedModelPredictions.Columns(candidateModelIndices, candidateModelMatrix);

                m_ensembleStrategy.Combine(candidateModelMatrix, candidatePredictions);
                var error = m_metric.Error(targets, candidatePredictions);

                if (error < bestError)
                {
                    bestError = error;
                    bestIndex = index;
                }
            }

            m_remainingModelIndices.Remove(bestIndex);

            return(bestError);
        }
        double SelectNextModelToAdd(F64Matrix crossValidatedModelPredictions, double[] targets, double currentBestError)
        {
            var candidateModelMatrix  = new F64Matrix(crossValidatedModelPredictions.RowCount, m_selectedModelIndices.Count + 1);
            var candidatePredictions  = new double[crossValidatedModelPredictions.RowCount];
            var candidateModelIndices = new int[m_selectedModelIndices.Count + 1];

            var bestError = currentBestError;
            var bestIndex = -1;

            foreach (var index in m_remainingModelIndices)
            {
                m_selectedModelIndices.CopyTo(candidateModelIndices);
                candidateModelIndices[candidateModelIndices.Length - 1] = index;

                crossValidatedModelPredictions.Columns(candidateModelIndices, candidateModelMatrix);

                m_ensembleStrategy.Combine(candidateModelMatrix, candidatePredictions);
                var error = m_metric.Error(targets, candidatePredictions);

                if (error < bestError)
                {
                    bestError = error;
                    bestIndex = index;
                }
            }

            if (bestIndex != -1)
            {
                m_selectedModelIndices.Add(bestIndex);

                if (!m_selectWithReplacement)
                {
                    m_remainingModelIndices.Remove(bestIndex);
                }
            }

            return(bestError);
        }
Beispiel #4
0
        /// <summary>
        /// Iterative random selection of ensemble models.
        /// </summary>
        /// <param name="crossValidatedModelPredictions">cross validated predictions from multiple models.
        /// Each column in the matrix corresponds to predictions from a separate model</param>
        /// <param name="targets">Corresponding targets</param>
        /// <returns>The indices of the selected model</returns>
        public int[] Select(F64Matrix crossValidatedModelPredictions, double[] targets)
        {
            if (crossValidatedModelPredictions.ColumnCount < m_numberOfModelsToSelect)
            {
                throw new ArgumentException("Available models: " + crossValidatedModelPredictions.ColumnCount +
                                            " is smaller than number of models to select: " + m_numberOfModelsToSelect);
            }

            m_allIndices = Enumerable.Range(0, crossValidatedModelPredictions.ColumnCount).ToArray();
            var bestModelIndices      = new int[m_numberOfModelsToSelect];
            var candidateModelIndices = new int[m_numberOfModelsToSelect];

            var candidateModelMatrix = new F64Matrix(crossValidatedModelPredictions.RowCount, m_numberOfModelsToSelect);
            var candidatePredictions = new double[crossValidatedModelPredictions.RowCount];

            var bestError = double.MaxValue;

            for (int i = 0; i < m_iterations; i++)
            {
                SelectNextRandomIndices(candidateModelIndices);

                crossValidatedModelPredictions.Columns(candidateModelIndices, candidateModelMatrix);

                m_ensembleStrategy.Combine(candidateModelMatrix, candidatePredictions);
                var error = m_metric.Error(targets, candidatePredictions);

                if (error < bestError)
                {
                    bestError = error;
                    candidateModelIndices.CopyTo(bestModelIndices, 0);
                    Trace.WriteLine("Models selected: " + bestModelIndices.Length + ": " + error);
                }
            }

            Trace.WriteLine("Selected model indices: " + string.Join(", ", bestModelIndices.ToArray()));

            return(bestModelIndices);
        }