Beispiel #1
0
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            var output = new EncogWriteHelper(os);
            var pop    = (NEATPopulation)obj;

            output.AddSection("NEAT-POPULATION");
            output.AddSubSection("CONFIG");
            output.WriteProperty(PersistConst.ActivationCycles, pop.ActivationCycles);

            if (pop.IsHyperNEAT)
            {
                output.WriteProperty(NEATPopulation.PropertyNEATActivation, TypeCppn);
            }
            else
            {
                IActivationFunction af = pop.ActivationFunctions.Contents[0].obj;
                output.WriteProperty(NEATPopulation.PropertyNEATActivation, af);
            }

            output.WriteProperty(PersistConst.InputCount, pop.InputCount);
            output.WriteProperty(PersistConst.OutputCount, pop.OutputCount);
            output.WriteProperty(NEATPopulation.PropertyCycles, pop.ActivationCycles);
            output.WriteProperty(NEATPopulation.PropertyPopulationSize, pop.PopulationSize);
            output.WriteProperty(NEATPopulation.PropertySurvivalRate, pop.SurvivalRate);
            output.AddSubSection("INNOVATIONS");
            if (pop.Innovations != null)
            {
                foreach (string key in pop.Innovations.Innovations.Keys)
                {
                    NEATInnovation innovation = pop.Innovations.Innovations[key];
                    output.AddColumn(key);
                    output.AddColumn(innovation.InnovationId);
                    output.AddColumn(innovation.NeuronId);
                    output.WriteLine();
                }
            }

            output.AddSubSection("SPECIES");

            // make sure the best species goes first
            ISpecies bestSpecies = pop.DetermineBestSpecies();

            if (bestSpecies != null)
            {
                SaveSpecies(output, bestSpecies);
            }

            // now write the other species, other than the best one
            foreach (ISpecies species in pop.Species)
            {
                if (species != bestSpecies)
                {
                    SaveSpecies(output, species);
                }
            }
            output.Flush();
        }
Beispiel #2
0
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var svm2 = (SupportVectorMachine)obj;

            xout.AddSection("SVM");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(svm2.Properties);
            xout.AddSubSection("SVM-PARAM");
            xout.WriteProperty(PersistConst.InputCount, svm2.InputCount);
            xout.WriteProperty(ParamC, svm2.Params.C);
            xout.WriteProperty(ParamCacheSize,
                               svm2.Params.cache_size);
            xout.WriteProperty(ParamCoef0, svm2.Params.coef0);
            xout.WriteProperty(ParamDegree, svm2.Params.degree);
            xout.WriteProperty(ParamEps, svm2.Params.eps);
            xout.WriteProperty(ParamGamma, svm2.Params.gamma);
            xout.WriteProperty(ParamKernelType,
                               svm2.Params.kernel_type);
            xout.WriteProperty(ParamNumWeight,
                               svm2.Params.nr_weight);
            xout.WriteProperty(ParamNu, svm2.Params.nu);
            xout.WriteProperty(ParamP, svm2.Params.p);
            xout.WriteProperty(ParamProbability,
                               svm2.Params.probability);
            xout.WriteProperty(ParamShrinking,
                               svm2.Params.shrinking);

            /* xout.WriteProperty(PersistSVM.PARAM_START_ITERATIONS,
             *                          svm2.Params.statIterations); */
            xout.WriteProperty(ParamSVMType, svm2.Params.svm_type);
            xout.WriteProperty(ParamWeight, svm2.Params.weight);
            xout.WriteProperty(ParamWeightLabel,
                               svm2.Params.weight_label);
            if (svm2.Model != null)
            {
                xout.AddSubSection("SVM-MODEL");
                try
                {
                    var ba = new MemoryStream();
                    var w  = new StreamWriter(ba);
                    svm.svm_save_model(w, svm2.Model);
                    var enc = new ASCIIEncoding();
                    xout.Write(enc.GetString(ba.ToArray()));
                    w.Close();
                    ba.Close();
                }
                catch (IOException ex)
                {
                    throw new PersistError(ex);
                }
            }

            xout.Flush();
        }
Beispiel #3
0
        /**
         * {@inheritDoc}
         */

        public void Save(Stream os, Object obj)
        {
            var writer = new EncogWriteHelper(os);
            var som    = (SOMNetwork)obj;

            writer.AddSection("SOM");
            writer.AddSubSection("PARAMS");
            writer.AddProperties(som.Properties);
            writer.AddSubSection("NETWORK");
            writer.WriteProperty(PersistConst.Weights, som.Weights);
            writer.WriteProperty(PersistConst.InputCount, som.InputCount);
            writer.WriteProperty(PersistConst.OutputCount, som.OutputCount);
            writer.Flush();
        }
        /// <summary>
        ///
        /// </summary>
        ///
        public void Save(Stream os, Object obj)
        {
            var xout     = new EncogWriteHelper(os);
            var hopfield = (HopfieldNetwork)obj;

            xout.AddSection("HOPFIELD");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(hopfield.Properties);
            xout.AddSubSection("NETWORK");
            xout.WriteProperty(PersistConst.Weights, hopfield.Weights);
            xout.WriteProperty(PersistConst.Output, hopfield.CurrentState.Data);
            xout.WriteProperty(PersistConst.NeuronCount, hopfield.NeuronCount);
            xout.Flush();
        }
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            var         xout = new EncogWriteHelper(os);
            var         net  = (BasicNetwork)obj;
            FlatNetwork flat = net.Structure.Flat;

            xout.AddSection("BASIC");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(net.Properties);
            xout.AddSubSection("NETWORK");

            xout.WriteProperty(BasicNetwork.TagBeginTraining,
                               flat.BeginTraining);
            xout.WriteProperty(BasicNetwork.TagConnectionLimit,
                               flat.ConnectionLimit);
            xout.WriteProperty(BasicNetwork.TagContextTargetOffset,
                               flat.ContextTargetOffset);
            xout.WriteProperty(BasicNetwork.TagContextTargetSize,
                               flat.ContextTargetSize);
            xout.WriteProperty(BasicNetwork.TagEndTraining, flat.EndTraining);
            xout.WriteProperty(BasicNetwork.TagHasContext, flat.HasContext);
            xout.WriteProperty(PersistConst.InputCount, flat.InputCount);
            xout.WriteProperty(BasicNetwork.TagLayerCounts, flat.LayerCounts);
            xout.WriteProperty(BasicNetwork.TagLayerFeedCounts,
                               flat.LayerFeedCounts);
            xout.WriteProperty(BasicNetwork.TagLayerContextCount,
                               flat.LayerContextCount);
            xout.WriteProperty(BasicNetwork.TagLayerIndex, flat.LayerIndex);
            xout.WriteProperty(PersistConst.Output, flat.LayerOutput);
            xout.WriteProperty(PersistConst.OutputCount, flat.OutputCount);
            xout.WriteProperty(BasicNetwork.TagWeightIndex, flat.WeightIndex);
            xout.WriteProperty(PersistConst.Weights, flat.Weights);
            xout.WriteProperty(BasicNetwork.TagBiasActivation,
                               flat.BiasActivation);
            xout.AddSubSection("ACTIVATION");

            foreach (IActivationFunction af  in  flat.ActivationFunctions)
            {
                xout.AddColumn(af.GetType().Name);
                for (int i = 0; i < af.Params.Length; i++)
                {
                    xout.AddColumn(af.Params[i]);
                }
                xout.WriteLine();
            }

            xout.Flush();
        }
Beispiel #6
0
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var cont = (TrainingContinuation)obj;

            xout.AddSection("CONT");
            xout.AddSubSection("PARAMS");
            xout.WriteProperty("type", cont.TrainingType);

            foreach (String key  in  cont.Contents.Keys)
            {
                var list = (double[])cont.Get(key);
                xout.WriteProperty(key, list);
            }
            xout.Flush();
        }
        /// <summary>
        /// Save the tasks.
        /// </summary>
        ///
        /// <param name="xout">The output file.</param>
        private void SaveTasks(EncogWriteHelper xout)
        {
            xout.AddSection("TASKS");
            var list = _script.Tasks.Keys.ToList();

            list.Sort();

            foreach (String key  in  list)
            {
                AnalystTask task = _script.GetTask(key);
                xout.AddSubSection(task.Name);

                foreach (String line  in  task.Lines)
                {
                    xout.AddLine(line);
                }
            }
        }
Beispiel #8
0
        /// <summary>
        ///
        /// </summary>
        ///
        public void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var bam  = (BAMNetwork)obj;

            xout.AddSection("BAM");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(bam.Properties);
            xout.AddSubSection("NETWORK");

            xout.WriteProperty(PersistConst.PropertyF1Count, bam.F1Count);
            xout.WriteProperty(PersistConst.PropertyF2Count, bam.F2Count);
            xout.WriteProperty(PersistConst.PropertyWeightsF1F2,
                               bam.WeightsF1ToF2);
            xout.WriteProperty(PersistConst.PropertyWeightsF2F1,
                               bam.WeightsF2ToF1);

            xout.Flush();
        }
        /// <summary>
        /// Save the object.
        /// </summary>
        /// <param name="os">The output stream.</param>
        /// <param name="obj">The object to save.</param>
        public virtual void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var neat = (NEATNetwork)obj;

            xout.AddSection("NEAT");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(neat.Properties);
            xout.AddSubSection("NETWORK");

            xout.WriteProperty(PersistConst.InputCount, neat.InputCount);
            xout.WriteProperty(PersistConst.OutputCount, neat.OutputCount);
            xout.WriteProperty(PersistConst.ActivationFunction,
                               neat.ActivationFunction);
            xout.WriteProperty(NEATPopulation.PropertyOutputActivation,
                               neat.OutputActivationFunction);
            xout.WriteProperty(PersistConst.Depth, neat.NetworkDepth);
            xout.WriteProperty(PersistConst.Snapshot, neat.Snapshot);

            xout.AddSubSection("NEURONS");

            foreach (NEATNeuron neatNeuron  in  neat.Neurons)
            {
                xout.AddColumn((int)neatNeuron.NeuronID);
                xout.AddColumn(PersistNEATPopulation.NeuronTypeToString(neatNeuron.NeuronType));
                xout.AddColumn(neatNeuron.ActivationResponse);
                xout.AddColumn(neatNeuron.SplitX);
                xout.AddColumn(neatNeuron.SplitY);
                xout.WriteLine();
            }

            xout.AddSubSection("LINKS");

            foreach (NEATNeuron neatNeuron  in  neat.Neurons)
            {
                foreach (NEATLink link  in  neatNeuron.OutputboundLinks)
                {
                    WriteLink(xout, link);
                }
            }

            xout.Flush();
        }
Beispiel #10
0
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            var xout  = new EncogWriteHelper(os);
            var boltz = (BoltzmannMachine)obj;

            xout.AddSection("BOLTZMANN");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(boltz.Properties);
            xout.AddSubSection("NETWORK");
            xout.WriteProperty(PersistConst.Weights, boltz.Weights);
            xout.WriteProperty(PersistConst.Output, boltz.CurrentState.Data);
            xout.WriteProperty(PersistConst.NeuronCount, boltz.NeuronCount);

            xout.WriteProperty(PersistConst.Thresholds, boltz.Threshold);
            xout.WriteProperty(BoltzmannMachine.ParamAnnealCycles,
                               boltz.AnnealCycles);
            xout.WriteProperty(BoltzmannMachine.ParamRunCycles, boltz.RunCycles);
            xout.WriteProperty(PersistConst.Temperature, boltz.Temperature);

            xout.Flush();
        }
Beispiel #11
0
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var cpn  = (CPNNetwork)obj;

            xout.AddSection("CPN");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(cpn.Properties);
            xout.AddSubSection("NETWORK");

            xout.WriteProperty(PersistConst.InputCount, cpn.InputCount);
            xout.WriteProperty(PersistConst.Instar, cpn.InstarCount);
            xout.WriteProperty(PersistConst.OutputCount, cpn.OutputCount);
            xout.WriteProperty(PropertyInputToInstar,
                               cpn.WeightsInputToInstar);
            xout.WriteProperty(PropertyInstarToInput,
                               cpn.WeightsInstarToOutstar);
            xout.WriteProperty(PropertyWinnerCount, cpn.WinnerCount);

            xout.Flush();
        }
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            EncogWriteHelper  writer = new EncogWriteHelper(os);
            HiddenMarkovModel net    = (HiddenMarkovModel)obj;

            writer.AddSection("HMM");
            writer.AddSubSection("PARAMS");
            writer.AddProperties(net.Properties);
            writer.AddSubSection("CONFIG");

            writer.WriteProperty(HiddenMarkovModel.TAG_STATES, net.StateCount);
            if (net.Items != null)
            {
                writer.WriteProperty(HiddenMarkovModel.TAG_ITEMS, net.Items);
            }
            writer.WriteProperty(HiddenMarkovModel.TAG_PI, net.Pi);
            writer.WriteProperty(HiddenMarkovModel.TAG_TRANSITION, new Matrix(net.TransitionProbability));

            for (int i = 0; i < net.StateCount; i++)
            {
                writer.AddSubSection("DISTRIBUTION-" + i);
                IStateDistribution sd = net.StateDistributions[i];
                writer.WriteProperty(HiddenMarkovModel.TAG_DIST_TYPE, sd.GetType().Name);

                if (sd is ContinousDistribution)
                {
                    ContinousDistribution cDist = (ContinousDistribution)sd;
                    writer.WriteProperty(HiddenMarkovModel.TAG_MEAN, cDist.Mean);
                    writer.WriteProperty(HiddenMarkovModel.TAG_COVARIANCE, cDist.Covariance);
                }
                else if (sd is DiscreteDistribution)
                {
                    DiscreteDistribution dDist = (DiscreteDistribution)sd;
                    writer.WriteProperty(HiddenMarkovModel.TAG_PROBABILITIES, new Matrix(dDist.Probabilities));
                }
            }

            writer.Flush();
        }
        /// <summary>
        /// Save a subsection.
        /// </summary>
        ///
        /// <param name="xout">The output file.</param>
        /// <param name="section">The section.</param>
        /// <param name="subSection">The subsection.</param>
        private void SaveSubSection(EncogWriteHelper xout,
                                    String section, String subSection)
        {
            if (!section.Equals(xout.CurrentSection))
            {
                xout.AddSection(section);
            }
            xout.AddSubSection(subSection);
            List <PropertyEntry> list = PropertyConstraints.Instance
                                        .GetEntries(section, subSection);

            list.Sort();

            foreach (PropertyEntry entry  in  list)
            {
                String key = section + ":" + subSection + "_"
                             + entry.Name;
                String v = _script.Properties.GetPropertyString(
                    key);
                xout.WriteProperty(entry.Name, v ?? "");
            }
        }
Beispiel #14
0
        /// <summary>
        ///
        /// </summary>
        ///
        public void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var pnn  = (BasicPNN)obj;

            xout.AddSection("PNN");
            xout.AddSubSection("PARAMS");
            xout.AddProperties(pnn.Properties);
            xout.AddSubSection("NETWORK");

            xout.WriteProperty(PersistConst.Error, pnn.Error);
            xout.WriteProperty(PersistConst.InputCount, pnn.InputCount);
            xout.WriteProperty(PersistConst.Kernel,
                               KernelToString(pnn.Kernel));
            xout.WriteProperty(PersistConst.OutputCount, pnn.OutputCount);
            xout.WriteProperty(PropertyOutputMode,
                               OutputModeToString(pnn.OutputMode));
            xout.WriteProperty(PersistConst.Sigma, pnn.Sigma);

            xout.AddSubSection("SAMPLES");

            if (pnn.Samples != null)
            {
                foreach (IMLDataPair pair in pnn.Samples)
                {
                    for (int i = 0; i < pair.Input.Count; i++)
                    {
                        xout.AddColumn(pair.Input[i]);
                    }

                    for (int i = 0; i < pair.Ideal.Count; i++)
                    {
                        xout.AddColumn(pair.Ideal[i]);
                    }
                    xout.WriteLine();
                }
            }
            xout.Flush();
        }
Beispiel #15
0
        /// <inheritdoc />
        public void Save(Stream ostream, Object obj)
        {
            var writer = new EncogWriteHelper(ostream);
            var pop    = (PrgPopulation)obj;

            writer.AddSection("BASIC");
            writer.AddSubSection("PARAMS");
            writer.AddProperties(pop.Properties);
            writer.AddSubSection("EPL-OPCODES");
            foreach (IProgramExtensionTemplate temp in pop.Context
                     .Functions.OpCodes)
            {
                writer.AddColumn(temp.Name);
                writer.AddColumn(temp.ChildNodeCount);
                writer.WriteLine();
            }
            writer.AddSubSection("EPL-SYMBOLIC");
            writer.AddColumn("name");
            writer.AddColumn("type");
            writer.AddColumn("enum");
            writer.AddColumn("enum_type");
            writer.AddColumn("enum_count");
            writer.WriteLine();

            // write the first line, the result
            writer.AddColumn("");
            writer.AddColumn(GetType(pop.Context.Result));
            writer.AddColumn(pop.Context.Result.EnumType);
            writer.AddColumn(pop.Context.Result.EnumValueCount);
            writer.WriteLine();

            // write the next lines, the variables
            foreach (VariableMapping mapping in pop.Context.DefinedVariables)
            {
                writer.AddColumn(mapping.Name);
                writer.AddColumn(GetType(mapping));
                writer.AddColumn(mapping.EnumType);
                writer.AddColumn(mapping.EnumValueCount);
                writer.WriteLine();
            }
            writer.AddSubSection("EPL-POPULATION");
            foreach (ISpecies species in pop.Species)
            {
                if (species.Members.Count > 0)
                {
                    writer.AddColumn("s");
                    writer.AddColumn(species.Age);
                    writer.AddColumn(species.BestScore);
                    writer.AddColumn(species.GensNoImprovement);
                    writer.WriteLine();
                    foreach (IGenome genome in species.Members)
                    {
                        var prg = (EncogProgram)genome;
                        writer.AddColumn("p");
                        if (Double.IsInfinity(prg.Score) ||
                            Double.IsNaN(prg.Score))
                        {
                            writer.AddColumn("NaN");
                            writer.AddColumn("NaN");
                        }
                        else
                        {
                            writer.AddColumn(prg.Score);
                            writer.AddColumn(prg.AdjustedScore);
                        }

                        writer.AddColumn(prg.GenerateEPL());
                        writer.WriteLine();
                    }
                }
            }

            writer.Flush();
        }
Beispiel #16
0
        /// <summary>
        /// Save the object.
        /// </summary>
        /// <param name="os">The stream to write to.</param>
        /// <param name="obj">The object to save.</param>
        public virtual void Save(Stream os, Object obj)
        {
            var xout = new EncogWriteHelper(os);
            var pop  = (NEATPopulation)obj;

            xout.AddSection("NEAT-POPULATION");
            xout.AddSubSection("CONFIG");
            xout.WriteProperty(PersistConst.Snapshot, pop.Snapshot);
            xout.WriteProperty(NEATPopulation.PropertyOutputActivation,
                               pop.OutputActivationFunction);
            xout.WriteProperty(NEATPopulation.PropertyNEATActivation,
                               pop.NeatActivationFunction);
            xout.WriteProperty(PersistConst.InputCount, pop.InputCount);
            xout.WriteProperty(PersistConst.OutputCount, pop.OutputCount);
            xout.WriteProperty(PopulationConst.PropertyOldAgePenalty,
                               pop.OldAgePenalty);
            xout.WriteProperty(PopulationConst.PropertyOldAgeThreshold,
                               pop.OldAgeThreshold);
            xout.WriteProperty(PopulationConst.PropertyPopulationSize,
                               pop.PopulationSize);
            xout.WriteProperty(PopulationConst.PropertySurvivalRate,
                               pop.SurvivalRate);
            xout.WriteProperty(PopulationConst.PropertyYoungAgeThreshold,
                               pop.YoungBonusAgeThreshold);
            xout.WriteProperty(PopulationConst.PropertyYoungAgeBonus,
                               pop.YoungScoreBonus);
            xout.WriteProperty(PopulationConst.PropertyNextGenomeID, pop.GenomeIDGenerate.CurrentID);
            xout.WriteProperty(PopulationConst.PropertyNextInnovationID, pop.InnovationIDGenerate.CurrentID);
            xout.WriteProperty(PopulationConst.PropertyNextGeneID, pop.GeneIDGenerate.CurrentID);
            xout.WriteProperty(PopulationConst.PropertyNextSpeciesID, pop.SpeciesIDGenerate.CurrentID);
            xout.AddSubSection("INNOVATIONS");
            if (pop.Innovations != null)
            {
                foreach (IInnovation innovation  in  pop.Innovations.Innovations)
                {
                    var neatInnovation = (NEATInnovation)innovation;
                    xout.AddColumn(neatInnovation.InnovationID);
                    xout.AddColumn(InnovationTypeToString(neatInnovation.InnovationType));
                    xout.AddColumn(NeuronTypeToString(neatInnovation.NeuronType));
                    xout.AddColumn(neatInnovation.SplitX);
                    xout.AddColumn(neatInnovation.SplitY);
                    xout.AddColumn(neatInnovation.NeuronID);
                    xout.AddColumn(neatInnovation.FromNeuronID);
                    xout.AddColumn(neatInnovation.ToNeuronID);
                    xout.WriteLine();
                }
            }
            xout.AddSubSection("GENOMES");

            foreach (IGenome genome  in  pop.Genomes)
            {
                var neatGenome = (NEATGenome)genome;
                xout.AddColumn("g");
                xout.AddColumn(neatGenome.GenomeID);
                xout.AddColumn(neatGenome.SpeciesID);
                xout.AddColumn(neatGenome.AdjustedScore);
                xout.AddColumn(neatGenome.AmountToSpawn);
                xout.AddColumn(neatGenome.NetworkDepth);
                xout.AddColumn(neatGenome.Score);
                xout.WriteLine();


                foreach (IGene neuronGene  in  neatGenome.Neurons.Genes)
                {
                    var neatNeuronGene = (NEATNeuronGene)neuronGene;
                    xout.AddColumn("n");
                    xout.AddColumn(neatNeuronGene.Id);
                    xout.AddColumn(NeuronTypeToString(neatNeuronGene.NeuronType));
                    xout.AddColumn(neatNeuronGene.Enabled);
                    xout.AddColumn(neatNeuronGene.InnovationId);
                    xout.AddColumn(neatNeuronGene.ActivationResponse);
                    xout.AddColumn(neatNeuronGene.SplitX);
                    xout.AddColumn(neatNeuronGene.SplitY);
                    xout.WriteLine();
                }

                foreach (IGene linkGene  in  neatGenome.Links.Genes)
                {
                    var neatLinkGene = (NEATLinkGene)linkGene;
                    xout.AddColumn("l");
                    xout.AddColumn(neatLinkGene.Id);
                    xout.AddColumn(neatLinkGene.Enabled);
                    xout.AddColumn(neatLinkGene.Recurrent);
                    xout.AddColumn(neatLinkGene.FromNeuronID);
                    xout.AddColumn(neatLinkGene.ToNeuronID);
                    xout.AddColumn(neatLinkGene.Weight);
                    xout.AddColumn(neatLinkGene.InnovationId);
                    xout.WriteLine();
                }
            }
            xout.AddSubSection("SPECIES");

            foreach (ISpecies species  in  pop.Species)
            {
                xout.AddColumn(species.SpeciesID);
                xout.AddColumn(species.Age);
                xout.AddColumn(species.BestScore);
                xout.AddColumn(species.GensNoImprovement);
                xout.AddColumn(species.NumToSpawn);
                xout.AddColumn(species.SpawnsRequired);
                xout.AddColumn(species.Leader.GenomeID);
                xout.WriteLine();
            }
            xout.Flush();
        }
Beispiel #17
0
        /// <inheritdoc/>
        public void Save(Stream os, Object obj)
        {
            EncogWriteHelper o = new EncogWriteHelper(os);
            BayesianNetwork  b = (BayesianNetwork)obj;

            o.AddSection("BAYES-NETWORK");
            o.AddSubSection("BAYES-PARAM");
            String queryType = "";
            String queryStr  = b.ClassificationStructure;

            if (b.Query != null)
            {
                queryType = b.Query.GetType().Name;
            }

            o.WriteProperty("queryType", queryType);
            o.WriteProperty("query", queryStr);
            o.WriteProperty("contents", b.Contents);
            o.AddSubSection("BAYES-PROPERTIES");
            o.AddProperties(b.Properties);

            o.AddSubSection("BAYES-TABLE");
            foreach (BayesianEvent e in b.Events)
            {
                foreach (TableLine line in e.Table.Lines)
                {
                    if (line == null)
                    {
                        continue;
                    }
                    StringBuilder str = new StringBuilder();
                    str.Append("P(");

                    str.Append(BayesianEvent.FormatEventName(e, line.Result));

                    if (e.Parents.Count > 0)
                    {
                        str.Append("|");
                    }

                    int  index = 0;
                    bool first = true;
                    foreach (BayesianEvent parentEvent in e.Parents)
                    {
                        if (!first)
                        {
                            str.Append(",");
                        }
                        first = false;
                        int arg = line.Arguments[index++];
                        if (parentEvent.IsBoolean)
                        {
                            if (arg == 0)
                            {
                                str.Append("+");
                            }
                            else
                            {
                                str.Append("-");
                            }
                        }
                        str.Append(parentEvent.Label);
                        if (!parentEvent.IsBoolean)
                        {
                            str.Append("=");
                            if (arg >= parentEvent.Choices.Count)
                            {
                                throw new BayesianError("Argument value " + arg + " is out of range for event " + parentEvent.ToString());
                            }
                            str.Append(parentEvent.GetChoice(arg));
                        }
                    }
                    str.Append(")=");
                    str.Append(line.Probability);
                    str.Append("\n");
                    o.Write(str.ToString());
                }
            }

            o.Flush();
        }