Beispiel #1
0
        /// <summary>
        ///     Compute finite difference coefficients according to the method provided here:
        ///     http://en.wikipedia.org/wiki/Finite_difference_coefficients
        /// </summary>
        /// <returns>An array of the coefficients for FD.</returns>
        public double[] CreateCoefficients()
        {
            var result = new double[_pointCount];

            var delts = new Matrix(_pointCount, _pointCount);

            double[][] t = delts.Data;

            for (int j = 0; j < _pointCount; j++)
            {
                double delt = (j - _center);
                double x    = 1.0;

                for (int k = 0; k < _pointCount; k++)
                {
                    t[j][k] = x / EncogMath.Factorial(k);
                    x      *= delt;
                }
            }

            Matrix invMatrix = delts.Inverse();
            double f         = EncogMath.Factorial(_pointCount);


            for (int k = 0; k < _pointCount; k++)
            {
                result[k] = (Math
                             .Round(invMatrix.Data[1][k] * f)) / f;
            }


            return(result);
        }
Beispiel #2
0
        /// <summary>
        /// Calculate G.
        /// </summary>
        /// <param name="network">The network to calculate for.</param>
        /// <param name="e">The event to calculate for.</param>
        /// <param name="parents">The parents.</param>
        /// <returns>The value for G.</returns>
        public double CalculateG(BayesianNetwork network,
                                 BayesianEvent e, IList <BayesianEvent> parents)
        {
            double result = 1.0;
            int    r      = e.Choices.Count;

            var args = new int[parents.Count];

            do
            {
                double n = EncogMath.Factorial(r - 1);
                double d = EncogMath.Factorial(CalculateN(network, e,
                                                          parents, args) + r - 1);
                double p1 = n / d;

                double p2 = 1;
                for (int k = 0; k < e.Choices.Count; k++)
                {
                    p2 *= EncogMath.Factorial(CalculateN(network, e, parents, args, k));
                }

                result *= p1 * p2;
            } while (EnumerationQuery.Roll(parents, args));

            return(result);
        }
        /// <summary>
        /// QR Decomposition, computed by Householder reflections.
        /// </summary>
        /// <param name="A">Structure to access R and the Householder vectors and compute Q.</param>
        public QRDecomposition(Matrix A)
        {
            // Initialize.
            QR    = A.GetArrayCopy();
            m     = A.Rows;
            n     = A.Cols;
            Rdiag = new double[n];

            // Main loop.
            for (int k = 0; k < n; k++)
            {
                // Compute 2-norm of k-th column without under/overflow.
                double nrm = 0;
                for (int i = k; i < m; i++)
                {
                    nrm = EncogMath.Hypot(nrm, QR[i][k]);
                }

                if (nrm != 0.0)
                {
                    // Form k-th Householder vector.
                    if (QR[k][k] < 0)
                    {
                        nrm = -nrm;
                    }
                    for (int i = k; i < m; i++)
                    {
                        QR[i][k] /= nrm;
                    }
                    QR[k][k] += 1.0;

                    // Apply transformation to remaining columns.
                    for (int j = k + 1; j < n; j++)
                    {
                        double s = 0.0;
                        for (int i = k; i < m; i++)
                        {
                            s += QR[i][k] * QR[i][j];
                        }
                        s = -s / QR[k][k];
                        for (int i = k; i < m; i++)
                        {
                            QR[i][j] += s * QR[i][k];
                        }
                    }
                }
                Rdiag[k] = -nrm;
            }
        }
        /// <summary>
        /// Construct the singular value decomposition
        /// </summary>
        /// <param name="Arg">Rectangular matrix</param>
        public SingularValueDecomposition(Matrix Arg)
        {
            // Derived from LINPACK code.
            // Initialize.
            double[][] A = Arg.GetArrayCopy();
            m = Arg.Rows;
            n = Arg.Cols;

            /*
             * Apparently the failing cases are only a proper subset of (m<n), so
             * let's not throw error. Correct fix to come later? if (m<n) { throw
             * new IllegalArgumentException("Jama SVD only works for m >= n"); }
             */
            int nu = Math.Min(m, n);

            s       = new double[Math.Min(m + 1, n)];
            umatrix = EngineArray.AllocateDouble2D(m, nu);
            vmatrix = EngineArray.AllocateDouble2D(n, n);
            var  e     = new double[n];
            var  work  = new double[m];
            bool wantu = true;
            bool wantv = true;

            // Reduce A to bidiagonal form, storing the diagonal elements
            // in s and the super-diagonal elements in e.

            int nct = Math.Min(m - 1, n);
            int nrt = Math.Max(0, Math.Min(n - 2, m));

            for (int k = 0; k < Math.Max(nct, nrt); k++)
            {
                if (k < nct)
                {
                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    s[k] = 0;
                    for (int i = k; i < m; i++)
                    {
                        s[k] = EncogMath.Hypot(s[k], A[i][k]);
                    }
                    if (s[k] != 0.0)
                    {
                        if (A[k][k] < 0.0)
                        {
                            s[k] = -s[k];
                        }
                        for (int i = k; i < m; i++)
                        {
                            A[i][k] /= s[k];
                        }
                        A[k][k] += 1.0;
                    }
                    s[k] = -s[k];
                }
                for (int j = k + 1; j < n; j++)
                {
                    if ((k < nct) & (s[k] != 0.0))
                    {
                        // Apply the transformation.

                        double t = 0;
                        for (int i = k; i < m; i++)
                        {
                            t += A[i][k] * A[i][j];
                        }
                        t = -t / A[k][k];
                        for (int i = k; i < m; i++)
                        {
                            A[i][j] += t * A[i][k];
                        }
                    }

                    // Place the k-th row of A into e for the
                    // subsequent calculation of the row transformation.

                    e[j] = A[k][j];
                }
                if (wantu & (k < nct))
                {
                    // Place the transformation in U for subsequent back
                    // multiplication.

                    for (int i = k; i < m; i++)
                    {
                        umatrix[i][k] = A[i][k];
                    }
                }
                if (k < nrt)
                {
                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;
                    for (int i = k + 1; i < n; i++)
                    {
                        e[k] = EncogMath.Hypot(e[k], e[i]);
                    }
                    if (e[k] != 0.0)
                    {
                        if (e[k + 1] < 0.0)
                        {
                            e[k] = -e[k];
                        }
                        for (int i = k + 1; i < n; i++)
                        {
                            e[i] /= e[k];
                        }
                        e[k + 1] += 1.0;
                    }
                    e[k] = -e[k];
                    if ((k + 1 < m) & (e[k] != 0.0))
                    {
                        // Apply the transformation.

                        for (int i = k + 1; i < m; i++)
                        {
                            work[i] = 0.0;
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            for (int i = k + 1; i < m; i++)
                            {
                                work[i] += e[j] * A[i][j];
                            }
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            double t = -e[j] / e[k + 1];
                            for (int i = k + 1; i < m; i++)
                            {
                                A[i][j] += t * work[i];
                            }
                        }
                    }
                    if (wantv)
                    {
                        // Place the transformation in V for subsequent
                        // back multiplication.

                        for (int i = k + 1; i < n; i++)
                        {
                            vmatrix[i][k] = e[i];
                        }
                    }
                }
            }

            // Set up the final bidiagonal matrix or order p.

            int p = Math.Min(n, m + 1);

            if (nct < n)
            {
                s[nct] = A[nct][nct];
            }
            if (m < p)
            {
                s[p - 1] = 0.0;
            }
            if (nrt + 1 < p)
            {
                e[nrt] = A[nrt][p - 1];
            }
            e[p - 1] = 0.0;

            // If required, generate U.

            if (wantu)
            {
                for (int j = nct; j < nu; j++)
                {
                    for (int i = 0; i < m; i++)
                    {
                        umatrix[i][j] = 0.0;
                    }
                    umatrix[j][j] = 1.0;
                }
                for (int k = nct - 1; k >= 0; k--)
                {
                    if (s[k] != 0.0)
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k; i < m; i++)
                            {
                                t += umatrix[i][k] * umatrix[i][j];
                            }
                            t = -t / umatrix[k][k];
                            for (int i = k; i < m; i++)
                            {
                                umatrix[i][j] += t * umatrix[i][k];
                            }
                        }
                        for (int i = k; i < m; i++)
                        {
                            umatrix[i][k] = -umatrix[i][k];
                        }
                        umatrix[k][k] = 1.0 + umatrix[k][k];
                        for (int i = 0; i < k - 1; i++)
                        {
                            umatrix[i][k] = 0.0;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < m; i++)
                        {
                            umatrix[i][k] = 0.0;
                        }
                        umatrix[k][k] = 1.0;
                    }
                }
            }

            // If required, generate V.

            if (wantv)
            {
                for (int k = n - 1; k >= 0; k--)
                {
                    if ((k < nrt) & (e[k] != 0.0))
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k + 1; i < n; i++)
                            {
                                t += vmatrix[i][k] * vmatrix[i][j];
                            }
                            t = -t / vmatrix[k + 1][k];
                            for (int i = k + 1; i < n; i++)
                            {
                                vmatrix[i][j] += t * vmatrix[i][k];
                            }
                        }
                    }
                    for (int i = 0; i < n; i++)
                    {
                        vmatrix[i][k] = 0.0;
                    }
                    vmatrix[k][k] = 1.0;
                }
            }

            // Main iteration loop for the singular values.

            int    pp   = p - 1;
            int    iter = 0;
            double eps  = Math.Pow(2.0, -52.0);
            double tiny = Math.Pow(2.0, -966.0);

            while (p > 0)
            {
                int k, kase;

                // Here is where a test for too many iterations would go.

                // This section of the program inspects for
                // negligible elements in the s and e arrays. On
                // completion the variables kase and k are set as follows.

                // kase = 1 if s(p) and e[k-1] are negligible and k<p
                // kase = 2 if s(k) is negligible and k<p
                // kase = 3 if e[k-1] is negligible, k<p, and
                // s(k), ..., s(p) are not negligible (qr step).
                // kase = 4 if e(p-1) is negligible (convergence).

                for (k = p - 2; k >= -1; k--)
                {
                    if (k == -1)
                    {
                        break;
                    }
                    if (Math.Abs(e[k]) <= tiny + eps
                        * (Math.Abs(s[k]) + Math.Abs(s[k + 1])))
                    {
                        e[k] = 0.0;
                        break;
                    }
                }
                if (k == p - 2)
                {
                    kase = 4;
                }
                else
                {
                    int ks;
                    for (ks = p - 1; ks >= k; ks--)
                    {
                        if (ks == k)
                        {
                            break;
                        }
                        double t = (ks != p ? Math.Abs(e[ks]) : 0.0)
                                   + (ks != k + 1 ? Math.Abs(e[ks - 1]) : 0.0);
                        if (Math.Abs(s[ks]) <= tiny + eps * t)
                        {
                            s[ks] = 0.0;
                            break;
                        }
                    }
                    if (ks == k)
                    {
                        kase = 3;
                    }
                    else if (ks == p - 1)
                    {
                        kase = 1;
                    }
                    else
                    {
                        kase = 2;
                        k    = ks;
                    }
                }
                k++;

                // Perform the task indicated by kase.

                switch (kase)
                {
                // Deflate negligible s(p).

                case 1:
                {
                    double f = e[p - 2];
                    e[p - 2] = 0.0;
                    for (int j = p - 2; j >= k; j--)
                    {
                        double t  = EncogMath.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        if (j != k)
                        {
                            f        = -sn * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }
                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = cs * vmatrix[i][j] + sn * vmatrix[i][p - 1];
                                vmatrix[i][p - 1] = -sn * vmatrix[i][j] + cs * vmatrix[i][p - 1];
                                vmatrix[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Split at negligible s(k).

                case 2:
                {
                    double f = e[k - 1];
                    e[k - 1] = 0.0;
                    for (int j = k; j < p; j++)
                    {
                        double t  = EncogMath.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        f    = -sn * e[j];
                        e[j] = cs * e[j];
                        if (wantu)
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = cs * umatrix[i][j] + sn * umatrix[i][k - 1];
                                umatrix[i][k - 1] = -sn * umatrix[i][j] + cs * umatrix[i][k - 1];
                                umatrix[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Perform one qr step.

                case 3:
                {
                    // Calculate the shift.

                    double scale = Math.Max(Math.Max(Math
                                                     .Max(Math.Max(Math.Abs(s[p - 1]), Math.Abs(s[p - 2])),
                                                          Math.Abs(e[p - 2])), Math.Abs(s[k])), Math
                                            .Abs(
                                                e[k]));
                    double sp    = s[p - 1] / scale;
                    double spm1  = s[p - 2] / scale;
                    double epm1  = e[p - 2] / scale;
                    double sk    = s[k] / scale;
                    double ek    = e[k] / scale;
                    double b     = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
                    double c     = (sp * epm1) * (sp * epm1);
                    double shift = 0.0;
                    if ((b != 0.0) | (c != 0.0))
                    {
                        shift = Math.Sqrt(b * b + c);
                        if (b < 0.0)
                        {
                            shift = -shift;
                        }
                        shift = c / (b + shift);
                    }
                    double f = (sk + sp) * (sk - sp) + shift;
                    double g = sk * ek;

                    // Chase zeros.

                    for (int j = k; j < p - 1; j++)
                    {
                        double t  = EncogMath.Hypot(f, g);
                        double cs = f / t;
                        double sn = g / t;
                        if (j != k)
                        {
                            e[j - 1] = t;
                        }
                        f        = cs * s[j] + sn * e[j];
                        e[j]     = cs * e[j] - sn * s[j];
                        g        = sn * s[j + 1];
                        s[j + 1] = cs * s[j + 1];
                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = cs * vmatrix[i][j] + sn * vmatrix[i][j + 1];
                                vmatrix[i][j + 1] = -sn * vmatrix[i][j] + cs * vmatrix[i][j + 1];
                                vmatrix[i][j]     = t;
                            }
                        }
                        t        = EncogMath.Hypot(f, g);
                        cs       = f / t;
                        sn       = g / t;
                        s[j]     = t;
                        f        = cs * e[j] + sn * s[j + 1];
                        s[j + 1] = -sn * e[j] + cs * s[j + 1];
                        g        = sn * e[j + 1];
                        e[j + 1] = cs * e[j + 1];
                        if (wantu && (j < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = cs * umatrix[i][j] + sn * umatrix[i][j + 1];
                                umatrix[i][j + 1] = -sn * umatrix[i][j] + cs * umatrix[i][j + 1];
                                umatrix[i][j]     = t;
                            }
                        }
                    }
                    e[p - 2] = f;
                    iter     = iter + 1;
                }
                break;

                // Convergence.

                case 4:
                {
                    // Make the singular values positive.

                    if (s[k] <= 0.0)
                    {
                        s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
                        if (wantv)
                        {
                            for (int i = 0; i <= pp; i++)
                            {
                                vmatrix[i][k] = -vmatrix[i][k];
                            }
                        }
                    }

                    // Order the singular values.

                    while (k < pp)
                    {
                        if (s[k] >= s[k + 1])
                        {
                            break;
                        }
                        double t = s[k];
                        s[k]     = s[k + 1];
                        s[k + 1] = t;
                        if (wantv && (k < n - 1))
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = vmatrix[i][k + 1];
                                vmatrix[i][k + 1] = vmatrix[i][k];
                                vmatrix[i][k]     = t;
                            }
                        }
                        if (wantu && (k < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = umatrix[i][k + 1];
                                umatrix[i][k + 1] = umatrix[i][k];
                                umatrix[i][k]     = t;
                            }
                        }
                        k++;
                    }
                    iter = 0;
                    p--;
                }
                break;
                }
            }
        }
        /// <inheritdoc />
        protected override void LearnConnection(IFreeformConnection connection)
        {
            // multiply the current and previous gradient, and take the
            // sign. We want to see if the gradient has changed its sign.
            int change = EncogMath
                         .Sign(connection
                               .GetTempTraining(TempGradient)
                               * connection
                               .GetTempTraining(TempLastGradient));
            double weightChange = 0;

            // if the gradient has retained its sign, then we increase the
            // delta so that it will converge faster
            if (change > 0)
            {
                double delta = connection
                               .GetTempTraining(TempUpdate)
                               * RPROPConst.PositiveEta;
                delta        = Math.Min(delta, _maxStep);
                weightChange = EncogMath
                               .Sign(connection
                                     .GetTempTraining(TempGradient))
                               * delta;
                connection.SetTempTraining(
                    TempUpdate, delta);
                connection
                .SetTempTraining(
                    TempLastGradient,
                    connection
                    .GetTempTraining(TempGradient));
            }
            else if (change < 0)
            {
                // if change<0, then the sign has changed, and the last
                // delta was too big
                double delta = connection
                               .GetTempTraining(TempUpdate)
                               * RPROPConst.NegativeEta;
                delta = Math.Max(delta, RPROPConst.DeltaMin);
                connection.SetTempTraining(
                    TempUpdate, delta);
                weightChange = -connection
                               .GetTempTraining(TempLastWeightDelta);
                // set the previous gradient to zero so that there will be no
                // adjustment the next iteration
                connection.SetTempTraining(
                    TempLastGradient, 0);
            }
            else if (change == 0)
            {
                // if change==0 then there is no change to the delta
                double delta = connection
                               .GetTempTraining(TempUpdate);
                weightChange = EncogMath
                               .Sign(connection
                                     .GetTempTraining(TempGradient))
                               * delta;
                connection
                .SetTempTraining(
                    TempLastGradient,
                    connection
                    .GetTempTraining(TempGradient));
            }

            // apply the weight change, if any
            connection.Weight += weightChange;
            connection.SetTempTraining(
                TempLastWeightDelta,
                weightChange);
        }
Beispiel #6
0
        /// <summary>
        /// Symmetric tridiagonal QL algorithm.
        /// </summary>
        private void Tql2()
        {
            // This is derived from the Algol procedures tql2, by
            // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
            // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
            // Fortran subroutine in EISPACK.

            for (int i = 1; i < n; i++)
            {
                e[i - 1] = e[i];
            }
            e[n - 1] = 0.0;

            double f    = 0.0;
            double tst1 = 0.0;
            double eps  = Math.Pow(2.0, -52.0);

            for (int l = 0; l < n; l++)
            {
                // Find small subdiagonal element

                tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
                int m = l;
                while (m < n)
                {
                    if (Math.Abs(e[m]) <= eps * tst1)
                    {
                        break;
                    }
                    m++;
                }

                // If m == l, d[l] is an eigenvalue,
                // otherwise, iterate.

                if (m > l)
                {
                    int iter = 0;
                    do
                    {
                        iter = iter + 1; // (Could check iteration count here.)

                        // Compute implicit shift

                        double g = d[l];
                        double p = (d[l + 1] - g) / (2.0 * e[l]);
                        double r = EncogMath.Hypot(p, 1.0);
                        if (p < 0)
                        {
                            r = -r;
                        }
                        d[l]     = e[l] / (p + r);
                        d[l + 1] = e[l] * (p + r);
                        double dl1 = d[l + 1];
                        double h   = g - d[l];
                        for (int i = l + 2; i < n; i++)
                        {
                            d[i] -= h;
                        }
                        f = f + h;

                        // Implicit QL transformation.

                        p = d[m];
                        double c   = 1.0;
                        double c2  = c;
                        double c3  = c;
                        double el1 = e[l + 1];
                        double s   = 0.0;
                        double s2  = 0.0;
                        for (int i = m - 1; i >= l; i--)
                        {
                            c3       = c2;
                            c2       = c;
                            s2       = s;
                            g        = c * e[i];
                            h        = c * p;
                            r        = EncogMath.Hypot(p, e[i]);
                            e[i + 1] = s * r;
                            s        = e[i] / r;
                            c        = p / r;
                            p        = c * d[i] - s * g;
                            d[i + 1] = h + s * (c * g + s * d[i]);

                            // Accumulate transformation.

                            for (int k = 0; k < n; k++)
                            {
                                h           = v[k][i + 1];
                                v[k][i + 1] = s * v[k][i] + c * h;
                                v[k][i]     = c * v[k][i] - s * h;
                            }
                        }
                        p    = -s * s2 * c3 * el1 * e[l] / dl1;
                        e[l] = s * p;
                        d[l] = c * p;

                        // Check for convergence.
                    } while (Math.Abs(e[l]) > eps * tst1);
                }
                d[l] = d[l] + f;
                e[l] = 0.0;
            }

            // Sort eigenvalues and corresponding vectors.

            for (int i = 0; i < n - 1; i++)
            {
                int    k = i;
                double p = d[i];
                for (int j = i + 1; j < n; j++)
                {
                    if (d[j] < p)
                    {
                        k = j;
                        p = d[j];
                    }
                }
                if (k != i)
                {
                    d[k] = d[i];
                    d[i] = p;
                    for (int j = 0; j < n; j++)
                    {
                        p       = v[j][i];
                        v[j][i] = v[j][k];
                        v[j][k] = p;
                    }
                }
            }
        }