Beispiel #1
0
        /// <summary>
        /// perform an EM clustering over the entire screening data
        /// </summary>
        /// <param name="ClassNumber"></param>
        private string ClusteringEMGlobalScreen(int ClassNumber, FormForEMInfo WindowEMinfo)
        {
            weka.core.Instances Ninsts = cGlobalInfo.CurrentScreening.CreateInstancesWithoutClass();// CreateInstanceWithoutClass(CurrentTable);

            weka.clusterers.EM EMCluster = new EM();
            EMCluster.setNumClusters(ClassNumber);
            EMCluster.setMaxIterations((int)WindowEMinfo.numericUpDownMaxIterations.Value);
            EMCluster.setMinStdDev((double)WindowEMinfo.numericUpDownMinStdev.Value);
            EMCluster.setSeed((int)WindowEMinfo.numericUpDownSeedNumber.Value);

            EMCluster.buildClusterer(Ninsts);
            EMCluster.getClusterModelsNumericAtts();
            if (EMCluster.numberOfClusters() > cGlobalInfo.ListWellClasses.Count)
            {
                richTextBoxInfoClustering.AppendText("\nCluster Number: more than " + cGlobalInfo.ListWellClasses.Count + ", clustering not operated.\n");
                return null;
            }

            richTextBoxInfoClustering.AppendText("\n" + EMCluster.numberOfClusters() + " cluster(s) identified");

            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(EMCluster);
            eval.evaluateClusterer(Ninsts);

            cGlobalInfo.CurrentScreening.AssignClass(eval.getClusterAssignments());

            return eval.clusterResultsToString();
        }
Beispiel #2
0
        /// <summary>
        /// Perform an EM clustering on each plate independantely
        /// </summary>
        /// <param name="CurrentPlateToProcess">the plate to process</param>
        /// <param name="ClassNumber">Number of class</param>
        private void ClusteringEMSinglePlate(cPlate CurrentPlateToProcess, int ClassNumber, FormForEMInfo WindowEMinfo)
        {
            weka.core.Instances Ninsts = CurrentPlateToProcess.CreateInstancesWithoutClass();// CreateInstanceWithoutClass(CurrentTable);

            weka.clusterers.EM EMCluster = new EM();
            EMCluster.setNumClusters(ClassNumber);

            EMCluster.setMaxIterations((int)WindowEMinfo.numericUpDownMaxIterations.Value);
            EMCluster.setMinStdDev((double)WindowEMinfo.numericUpDownMinStdev.Value);
            EMCluster.setSeed((int)WindowEMinfo.numericUpDownSeedNumber.Value);

            EMCluster.buildClusterer(Ninsts);
            EMCluster.getClusterModelsNumericAtts();
            if (EMCluster.numberOfClusters() > cGlobalInfo.ListWellClasses.Count)
            {
                richTextBoxInfoClustering.AppendText("\n Plate " + CurrentPlateToProcess.GetName() + ", cluster Number: more than " + cGlobalInfo.ListWellClasses.Count + ", clustering not operated.\n");
                return;
            }
            else
                richTextBoxInfoClustering.AppendText("\n" + CurrentPlateToProcess.GetName() + ": " + EMCluster.numberOfClusters() + " cluster(s)");

            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(EMCluster);
            eval.evaluateClusterer(Ninsts);

            CurrentPlateToProcess.AssignClass(eval.getClusterAssignments());
        }
Beispiel #3
0
        /// <summary>
        /// Perform an EM clustering on each plate independantely
        /// </summary>
        /// <param name="CurrentPlateToProcess">the plate to process</param>
        /// <param name="ClassNumber">Number of class</param>
        private void ClusteringEMSinglePlate(cPlate CurrentPlateToProcess, int ClassNumber, FormForEMInfo WindowEMinfo)
        {
            weka.core.Instances Ninsts = CurrentPlateToProcess.CreateInstancesWithoutClass();// CreateInstanceWithoutClass(CurrentTable);
            if (Ninsts.numInstances() == 0)
            {
                MessageBox.Show("No active wells !", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return;
            }
            weka.clusterers.EM EMCluster = new EM();
            EMCluster.setNumClusters(ClassNumber);

            EMCluster.setMaxIterations((int)WindowEMinfo.numericUpDownMaxIterations.Value);
            EMCluster.setMinStdDev((double)WindowEMinfo.numericUpDownMinStdev.Value);
            EMCluster.setSeed((int)WindowEMinfo.numericUpDownSeedNumber.Value);

            EMCluster.buildClusterer(Ninsts);
            EMCluster.getClusterModelsNumericAtts();
            if (EMCluster.numberOfClusters() > GlobalInfo.GetNumberofDefinedClass())
            {
                richTextBoxInfoClustering.AppendText("\n Plate " + CurrentPlateToProcess.Name + ", cluster Number: more than " + GlobalInfo.GetNumberofDefinedClass() + ", clustering not operated.\n");
                return;
            }
            else
                richTextBoxInfoClustering.AppendText("\n" + CurrentPlateToProcess.Name + ": " + EMCluster.numberOfClusters() + " cluster(s)");

            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(EMCluster);
            eval.evaluateClusterer(Ninsts);

            CurrentPlateToProcess.AssignClass(eval.getClusterAssignments());
        }
Beispiel #4
0
        /// <summary>
        /// Perform an EM clustering on each plate independantely
        /// </summary>
        /// <param name="CurrentPlateToProcess">the plate to process</param>
        /// <param name="ClassNumber">Number of class</param>
        private void ClusteringEMSinglePlate(cPlate CurrentPlateToProcess, int ClassNumber)
        {
            weka.core.Instances Ninsts = CurrentPlateToProcess.CreateInstancesWithoutClass();// CreateInstanceWithoutClass(CurrentTable);

            weka.clusterers.EM EMCluster = new EM();
            EMCluster.setNumClusters(ClassNumber);

            EMCluster.buildClusterer(Ninsts);
            EMCluster.getClusterModelsNumericAtts();
            if (EMCluster.numberOfClusters() > GlobalInfo.GetNumberofDefinedClass())
            {
                richTextBoxInfoClustering.AppendText("\n Plate " + CurrentPlateToProcess.Name + ", cluster Number: more than " + GlobalInfo.GetNumberofDefinedClass() + ", clustering not operated.\n");
                return;
            }
            else
                richTextBoxInfoClustering.AppendText("\n" + CurrentPlateToProcess.Name + ": " + EMCluster.numberOfClusters() + " cluster(s)");

            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(EMCluster);
            eval.evaluateClusterer(Ninsts);

            CurrentPlateToProcess.AssignClass(eval.getClusterAssignments());
        }
Beispiel #5
0
        /// <summary>
        /// perform an EM clustering over the entire screening data
        /// </summary>
        /// <param name="ClassNumber"></param>
        private void ClusteringEMGlobalScreen(int ClassNumber)
        {
            weka.core.Instances Ninsts = CompleteScreening.CreateInstancesWithoutClass();// CreateInstanceWithoutClass(CurrentTable);

            weka.clusterers.EM EMCluster = new EM();
            EMCluster.setNumClusters(ClassNumber);
            EMCluster.buildClusterer(Ninsts);
            EMCluster.getClusterModelsNumericAtts();
            if (EMCluster.numberOfClusters() > GlobalInfo.GetNumberofDefinedClass())
            {
                richTextBoxInfoClustering.AppendText("\nCluster Number: more than " + GlobalInfo.GetNumberofDefinedClass() + ", clustering not operated.\n");
                return;
            }
            else
                richTextBoxInfoClustering.AppendText("\n" + EMCluster.numberOfClusters() + " cluster(s) identified");

            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(EMCluster);
            eval.evaluateClusterer(Ninsts);

            CompleteScreening.AssignClass(eval.getClusterAssignments());
        }
        private void buttonStartCluster_Click(object sender, EventArgs e)
        {
            FormSingleCellClusteringInfo WindowClusteringInfo = new FormSingleCellClusteringInfo(GlobalInfo);
            if (WindowClusteringInfo.ShowDialog() != System.Windows.Forms.DialogResult.OK) return;

            Instances ListInstances = GlobalInfo.CurrentScreen.CellBasedClassification.CreateInstancesWithoutClass(dt);
            if ((WindowClusteringInfo.radioButtonAutomated.Checked) && (WindowClusteringInfo.radioButtonEM.Checked))
            {
                ClusterEvaluation eval;
                Classes = new cExtendedList();
                weka.clusterers.EM EMCluster = new EM();
                if(WindowClusteringInfo.checkBoxEMAutomated.Checked)
                    EMCluster.setNumClusters(-1);
                else
                    EMCluster.setNumClusters((int)WindowClusteringInfo.numericUpDownClassNumber.Value);
                EMCluster.buildClusterer(ListInstances);
                EMCluster.getClusterModelsNumericAtts();

                eval = new ClusterEvaluation();
                eval.setClusterer(EMCluster);

                eval.evaluateClusterer(ListInstances);

                Classes.AddRange(eval.getClusterAssignments());
                NumClusters= eval.getNumClusters();
                ReDraw();
                FormForCellByCellClusteringResults WindowFormForCellByCellClusteringResults = new FormForCellByCellClusteringResults();
                WindowFormForCellByCellClusteringResults.richTextBoxResults.Clear();
                WindowFormForCellByCellClusteringResults.richTextBoxResults.AppendText(eval.clusterResultsToString());
                if (WindowFormForCellByCellClusteringResults.ShowDialog() != System.Windows.Forms.DialogResult.OK) return;

            }
            else if (WindowClusteringInfo.radioButtonDescriptorBased.Checked)
            {
                Classes = new cExtendedList();
                DataTable FinalDataTable = new DataTable();
                int IdxDescForClassSelect = WindowClusteringInfo.comboBoxDescriptorForClass.SelectedIndex;
                for (int IdxWell = 0; IdxWell < GlobalInfo.ListSelectedWell.Count; IdxWell++)
                {
                    cWell TmpWell = GlobalInfo.ListSelectedWell[IdxWell];

                 //   if (IdxWell == 0)
                    if (TmpWell.ListDescriptors[IdxDescForClassSelect].GetAssociatedType().DataType == eDataType.HISTOGRAM)
                    {
                        Classes.AddRange(TmpWell.ListDescriptors[IdxDescForClassSelect].GetOriginalValues());
                    }
                    else
                    {
                        double ClasseValue = TmpWell.ListDescriptors[IdxDescForClassSelect].GetValue();

                        for (int IdxCell = 0; IdxCell < TmpWell.CellNumber; IdxCell++)
                            Classes.Add(ClasseValue);
                        //TmpWell.AddDescriptors
                    }
                }

                List<double> ListClassValues = new List<double>();
                foreach (var item in Classes.Distinct())
                {
                    ListClassValues.Add(item);
                }

                    //(List<double>)Classes.Distinct();
                NumClusters = ListClassValues.Count();
                //Classes = new cExtendedList();
                for (int IdxClust = 0; IdxClust < Classes.Count; IdxClust++)
                {
                    for (int IdxCl = 0; IdxCl < ListClassValues.Count; IdxCl++)
                    {
                        if (ListClassValues[IdxCl] == Classes[IdxClust])
                        {
                            Classes[IdxClust] = IdxCl;
                            break;
                        }
                    }
                    //Classes[IdxClust] = ListClassValues.Find(Classes[IdxClust]);
                }
                //int NumClusters =
                ReDraw();

            }

            //    ReDraw();

            //if (MessageBox.Show("Do you want perform a j48 training process ?", "Question", MessageBoxButtons.YesNo, MessageBoxIcon.Question) != System.Windows.Forms.DialogResult.Yes) return;

            weka.core.FastVector attVals = new FastVector();
            for (int i = 0; i < NumClusters; i++)
                attVals.addElement("Class__" + (i).ToString());

            ListInstances.insertAttributeAt(new weka.core.Attribute("Class__", attVals), ListInstances.numAttributes());

            for (int i = 0; i < Classes.Count; i++)
            {
                ListInstances.get(i).setValue(ListInstances.numAttributes() - 1, Classes[i]);
            }
            ListInstances.setClassIndex(ListInstances.numAttributes() - 1);

               GlobalInfo.CurrentScreen.CellBasedClassification.ClassificationModel_CellBased = new weka.classifiers.trees.J48();
               GlobalInfo.CurrentScreen.CellBasedClassification.SetJ48Tree((weka.classifiers.trees.J48)GlobalInfo.CurrentScreen.CellBasedClassification.ClassificationModel_CellBased,Classes.Count);
               GlobalInfo.CurrentScreen.CellBasedClassification.J48Model.setMinNumObj((int)GlobalInfo.OptionsWindow.numericUpDownJ48MinNumObjects.Value);

            weka.core.Instances train = new weka.core.Instances(ListInstances, 0, ListInstances.numInstances());

            GlobalInfo.CurrentScreen.CellBasedClassification.ClassificationModel_CellBased.buildClassifier(train);
            GlobalInfo.ConsoleWriteLine(GlobalInfo.CurrentScreen.CellBasedClassification.ClassificationModel_CellBased.ToString());

               GlobalInfo.CurrentScreen.CellBasedClassification.evaluation = new weka.classifiers.Evaluation(ListInstances);
               GlobalInfo.CurrentScreen.CellBasedClassification.evaluation.crossValidateModel(GlobalInfo.CurrentScreen.CellBasedClassification.ClassificationModel_CellBased, ListInstances, 2, new java.util.Random(1));

            GlobalInfo.CurrentScreen.CellBasedClassification.DisplayTree(GlobalInfo).Show();

            FormForCellbyCellClassif WindowFormForCellbyCellClassif = new FormForCellbyCellClassif();
            if (WindowFormForCellbyCellClassif.ShowDialog() != System.Windows.Forms.DialogResult.OK) return;

            int DescrCount = GlobalInfo.CurrentScreen.ListDescriptors.Count;

            // first we update the descriptor
            for (int i = 0; i < ListInstances.numClasses(); i++)
                GlobalInfo.CurrentScreen.ListDescriptors.AddNew(new cDescriptorsType("Ratio_Class " + i, true, 1, GlobalInfo));

            FormForProgress ProgressWindow = new FormForProgress();
            ProgressWindow.Show();

            int IdxProgress = 0;
            int MaxProgress = 0;

            foreach (cPlate CurrentPlateToProcess in GlobalInfo.CurrentScreen.ListPlatesAvailable)
                MaxProgress += CurrentPlateToProcess.ParentScreening.Columns * CurrentPlateToProcess.ParentScreening.Rows;
            ProgressWindow.progressBar.Maximum = MaxProgress;

            attVals = new FastVector();
            for (int i = 0; i < NumClusters; i++)
                attVals.addElement(i.ToString());

            //ParallelOptions options = new ParallelOptions();
            //options.MaxDegreeOfParallelism = -1; // -1 is for unlimited. 1 is for sequential.
            //Stopwatch stopwatch = new Stopwatch();
            //stopwatch.Start();
            //////for (int PlateIdx = 0; PlateIdx < NumberOfPlates; PlateIdx++)
            //int NumberOfPlates = CompleteScreening.ListPlatesAvailable.Count;
            //Parallel.For(0, NumberOfPlates, options, (PlateIdx) =>
            //{
            //    cPlate CurrentPlateToProcess = CompleteScreening.ListPlatesActive.GetPlate((string)Parent.GlobalInfo.PlateListWindow.listBoxPlateNameToProcess.Items[PlateIdx]);

            //    for (int row = 0; row < Parent.Rows; row++)
            //        for (int col = 0; col < Parent.Columns; col++)
            //        {
            //            TempWell = CurrentPlateToProcess.GetWell(col, row, false);
            //            if (TempWell == null) continue;
            //            else
            //            {
            //                if (TempWell.GetClass() == this.ClassForClassif)
            //                    Pos.Add(TempWell.ListDescriptors[Parent.ListDescriptors.CurrentSelectedDescriptor].GetValue());
            //            }
            //        }
            //}
            //);

            foreach (cPlate CurrentPlateToProcess in GlobalInfo.CurrentScreen.ListPlatesAvailable)
            //Parallel.ForEach(GlobalInfo.CurrentScreen.ListPlatesActive, options, CurrentPlateToProcess =>
            {
                //Parallel.ForEach(CurrentPlateToProcess.ListActiveWells, options, TmpWell =>
                for(int j=0;j<CurrentPlateToProcess.ParentScreening.Rows;j++)
                    for (int k = 0; k < CurrentPlateToProcess.ParentScreening.Columns; k++)
                {
                    cWell TmpWell = CurrentPlateToProcess.GetWell(k, j, false);
                    if (TmpWell == null) continue;
                    ProgressWindow.progressBar.Value = IdxProgress++;

                    //DataTable FinalDataTable = new DataTable();
                    //TmpWell.AssociatedPlate.DBConnection = new cDBConnection(TmpWell.AssociatedPlate, TmpWell.SQLTableName);
                    //TmpWell.AssociatedPlate.DBConnection.AddWellToDataTable(TmpWell, FinalDataTable, false);
                    DataTable FinalDataTable = TmpWell.GetDescDataTable(true);
                    Instances ListInstancesTOClassify = GlobalInfo.CurrentScreen.CellBasedClassification.CreateInstancesWithoutClass(FinalDataTable);

                    ListInstancesTOClassify.insertAttributeAt(new weka.core.Attribute("Class", attVals), ListInstancesTOClassify.numAttributes());
                    ListInstancesTOClassify.setClassIndex(ListInstancesTOClassify.numAttributes() - 1);

                    cExtendedList ListClasses = new cExtendedList();

                    for (int i = 0; i < ListInstancesTOClassify.numInstances(); i++)
                    {
                        double classId = GlobalInfo.CurrentScreen.CellBasedClassification.ClassificationModel_CellBased.classifyInstance(ListInstancesTOClassify.instance(i));
                        ListClasses.Add(classId);
                    }
                    List<double[]> Histo = ListClasses.CreateHistogram(0, ListInstances.numClasses() - 1, ListInstances.numClasses() - 1);
                    List<cDescriptor> LDesc = new List<cDescriptor>();

                    for (int IdxHisto = 0; IdxHisto < Histo[1].Length; IdxHisto++)
                    {
                        double Value = (100.0 * Histo[1][IdxHisto]) / (double)ListInstancesTOClassify.numInstances();

                        cDescriptor NewDesc = new cDescriptor(Value, GlobalInfo.CurrentScreen.ListDescriptors[IdxHisto + DescrCount], GlobalInfo.CurrentScreen);
                        LDesc.Add(NewDesc);
                    }

                    TmpWell.AddDescriptors(LDesc);
                    //TmpWell.AssociatedPlate.DBConnection.DB_CloseConnection();

                }//);
            }
            ProgressWindow.Close();

            if (WindowFormForCellbyCellClassif.checkBoxKeepOriginalDesc.Checked == false)
            {

               // int DescNumToRemove = GlobalInfo.CurrentScreen.ListDescriptors.Count -
                for (int IdxDesc = 0; IdxDesc < DescrCount; IdxDesc++)
                GlobalInfo.CurrentScreen.ListDescriptors.RemoveDesc(GlobalInfo.CurrentScreen.ListDescriptors[0], GlobalInfo.CurrentScreen);

            }

            GlobalInfo.CurrentScreen.ListDescriptors.UpDateDisplay();
            GlobalInfo.CurrentScreen.UpDatePlateListWithFullAvailablePlate();

            for (int idxP = 0; idxP < GlobalInfo.CurrentScreen.ListPlatesActive.Count; idxP++)
                GlobalInfo.CurrentScreen.ListPlatesActive[idxP].UpDataMinMax();

            if (WindowFormForCellbyCellClassif.checkBoxKeepOriginalDesc.Checked == false)
                GlobalInfo.CurrentScreen.GetCurrentDisplayPlate().DisplayDistribution(0, false);

            //WindowFormForCellbyCellClassif.Close();
            //WindowClusteringInfo.Close();
        }