Beispiel #1
0
            public float FindMinSeparation(out int indexA, out int indexB, float t)
            {
                WorldTransform xfA, xfB;

                _sweepA.GetTransform(out xfA, t);
                _sweepB.GetTransform(out xfB, t);

                switch (_type)
                {
                case Type.Points:
                {
                    var axisA = -xfA.Rotation * _axis;
                    var axisB = -xfB.Rotation * -_axis;

                    indexA = _proxyA.GetSupport(axisA);
                    indexB = _proxyB.GetSupport(axisB);

                    var localPointA = _proxyA.Vertices[indexA];
                    var localPointB = _proxyB.Vertices[indexB];

                    var pointA = xfA.ToGlobal(localPointA);
                    var pointB = xfB.ToGlobal(localPointB);

// ReSharper disable RedundantCast Necessary for FarPhysics.
                    return(Vector2Util.Dot((Vector2)(pointB - pointA), _axis));
// ReSharper restore RedundantCast
                }

                case Type.FaceA:
                {
                    var normal = xfA.Rotation * _axis;
                    var pointA = xfA.ToGlobal(_localPoint);

                    var axisB = -xfB.Rotation * -normal;

                    indexA = -1;
                    indexB = _proxyB.GetSupport(axisB);

                    var localPointB = _proxyB.Vertices[indexB];
                    var pointB      = xfB.ToGlobal(localPointB);

// ReSharper disable RedundantCast Necessary for FarPhysics.
                    return(Vector2Util.Dot((Vector2)(pointB - pointA), normal));
// ReSharper restore RedundantCast
                }

                case Type.FaceB:
                {
                    var normal = xfB.Rotation * _axis;
                    var pointB = xfB.ToGlobal(_localPoint);

                    var axisA = -xfA.Rotation * -normal;

                    indexB = -1;
                    indexA = _proxyA.GetSupport(axisA);

                    var localPointA = _proxyA.Vertices[indexA];
                    var pointA      = xfA.ToGlobal(localPointA);

// ReSharper disable RedundantCast Necessary for FarPhysics.
                    return(Vector2Util.Dot((Vector2)(pointA - pointB), normal));
// ReSharper restore RedundantCast
                }

                default:
                    throw new ArgumentOutOfRangeException();
                }
            }
        public static float FindMinSeparation(out int indexA, out int indexB, float t, DistanceProxy proxyA, ref Sweep sweepA, DistanceProxy proxyB, ref Sweep sweepB, ref Vector2 axis, ref Vector2 localPoint, SeparationFunctionType type)
        {
            sweepA.GetTransform(out Transform xfA, t);
            sweepB.GetTransform(out Transform xfB, t);

            switch (type)
            {
            case SeparationFunctionType.Points:
            {
                Vector2 axisA = MathUtils.MulT(ref xfA.q, axis);
                Vector2 axisB = MathUtils.MulT(ref xfB.q, -axis);

                indexA = proxyA.GetSupport(axisA);
                indexB = proxyB.GetSupport(axisB);

                Vector2 localPointA = proxyA._vertices[indexA];
                Vector2 localPointB = proxyB._vertices[indexB];

                Vector2 pointA = MathUtils.Mul(ref xfA, localPointA);
                Vector2 pointB = MathUtils.Mul(ref xfB, localPointB);

                float separation = Vector2.Dot(pointB - pointA, axis);
                return(separation);
            }

            case SeparationFunctionType.FaceA:
            {
                Vector2 normal = MathUtils.Mul(ref xfA.q, axis);
                Vector2 pointA = MathUtils.Mul(ref xfA, localPoint);

                Vector2 axisB = MathUtils.MulT(ref xfB.q, -normal);

                indexA = -1;
                indexB = proxyB.GetSupport(axisB);

                Vector2 localPointB = proxyB._vertices[indexB];
                Vector2 pointB      = MathUtils.Mul(ref xfB, localPointB);

                float separation = Vector2.Dot(pointB - pointA, normal);
                return(separation);
            }

            case SeparationFunctionType.FaceB:
            {
                Vector2 normal = MathUtils.Mul(ref xfB.q, axis);
                Vector2 pointB = MathUtils.Mul(ref xfB, localPoint);

                Vector2 axisA = MathUtils.MulT(ref xfA.q, -normal);

                indexB = -1;
                indexA = proxyA.GetSupport(axisA);

                Vector2 localPointA = proxyA._vertices[indexA];
                Vector2 pointA      = MathUtils.Mul(ref xfA, localPointA);

                float separation = Vector2.Dot(pointA - pointB, normal);
                return(separation);
            }

            default:
                Debug.Assert(false);
                indexA = -1;
                indexB = -1;
                return(0.0f);
            }
        }
Beispiel #3
0
        /// <summary>
        ///     Computes the distance between two shapes represented by the specified proxies, positioned as defined by the
        ///     specified transforms. The cache is read-write and will be updated for future calls.
        /// </summary>
        private static float Distance(
            ref SimplexCache cache,
            DistanceProxy proxyA,
            WorldTransform xfA,
            DistanceProxy proxyB,
            WorldTransform xfB,
            bool useRadii = false)
        {
            // Initialize the simplex.
            Simplex simplex;

            Simplex.ReadCache(out simplex, cache, xfA, proxyA, xfB, proxyB);

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            var saveA = new FixedArray3 <int>();
            var saveB = new FixedArray3 <int>();

            // Main iteration loop.
            for (var i = 0; i < 20; ++i)
            {
                // Copy simplex so we can identify duplicates.
                var saveCount = simplex.Count;
                for (var j = 0; j < saveCount; ++j)
                {
                    saveA[j] = simplex.Vertices[j].IndexA;
                    saveB[j] = simplex.Vertices[j].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    throw new ArgumentOutOfRangeException();
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Get search direction.
                var d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex v;
                v.IndexA  = proxyA.GetSupport(-xfA.Rotation * -d);
                v.IndexB  = proxyB.GetSupport(-xfB.Rotation * d);
                v.VertexA = xfA.ToGlobal(proxyA.Vertices[v.IndexA]);
                v.VertexB = xfB.ToGlobal(proxyB.Vertices[v.IndexB]);
// ReSharper disable RedundantCast Necessary for FarPhysics.
                v.VertexDelta = (LocalPoint)(v.VertexB - v.VertexA);
// ReSharper restore RedundantCast
                v.Alpha = 0;
                simplex.Vertices[simplex.Count] = v;

                // Check for duplicate support points. This is the main termination criteria.
                var duplicate = false;
                for (var j = 0; j < saveCount; ++j)
                {
                    if (v.IndexA == saveA[j] && v.IndexB == saveB[j])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            // Cache the simplex.
            simplex.WriteCache(ref cache);

            // Prepare output.
            var distance = simplex.GetWitnessPointDistance();

            // Apply radii if requested.
            if (useRadii)
            {
                var rA = proxyA.Radius;
                var rB = proxyB.Radius;

                if (distance > rA + rB && distance > Settings.Epsilon)
                {
                    // Shapes are still not overlapped.
                    return(distance - (rA + rB));
                }
                // Shapes are overlapped when radii are considered.
                return(0.0f);
            }

            return(distance);
        }
Beispiel #4
0
        static unsafe bool CastCollider(
            Ray ray, ref float2x2 rotation,
            ref DistanceProxy proxySource, ref DistanceProxy proxyTarget,
            out ColliderCastHit hit)
        {
            hit = default;

            var transformSource = new PhysicsTransform
            {
                Translation = ray.Origin,
                Rotation    = rotation
            };

            // Check we're not initially overlapped.
            if ((proxySource.VertexCount < 3 || proxyTarget.VertexCount < 3) &&
                OverlapQueries.OverlapConvexConvex(ref transformSource, ref proxySource, ref proxyTarget))
            {
                return(false);
            }

            // B = Source
            // A = Target

            var radiusSource = proxySource.ConvexRadius;
            var radiusTarget = proxyTarget.ConvexRadius;
            var totalRadius  = radiusSource + radiusTarget;

            var invRotation = math.inverse(rotation);

            var sweepDirection = ray.Displacement;
            var normal         = float2.zero;
            var lambda         = 0.0f;

            // Initialize the simplex.
            var simplex = new Simplex();

            simplex.Count = 0;
            var vertices = &simplex.Vertex1;

            // Get a support point in the inverse direction.
            var indexTarget   = proxyTarget.GetSupport(-sweepDirection);
            var supportTarget = proxyTarget.Vertices[indexTarget];
            var indexSource   = proxySource.GetSupport(PhysicsMath.mul(invRotation, sweepDirection));
            var supportSource = PhysicsMath.mul(transformSource, proxySource.Vertices[indexSource]);
            var v             = supportTarget - supportSource;

            // Sigma is the target distance between polygons
            var         sigma     = math.max(PhysicsSettings.Constants.MinimumConvexRadius, totalRadius - PhysicsSettings.Constants.MinimumConvexRadius);
            const float tolerance = PhysicsSettings.Constants.LinearSlop * 0.5f;

            var iteration = 0;

            while (
                iteration++ < PhysicsSettings.Constants.MaxGJKInterations &&
                math.abs(math.length(v) - sigma) > tolerance
                )
            {
                if (simplex.Count >= 3)
                {
                    SafetyChecks.ThrowInvalidOperationException("ColliderCast Simplex must have less than 3 vertex.");
                }

                // Support in direction -supportV (Target - Source)
                indexTarget   = proxyTarget.GetSupport(-v);
                supportTarget = proxyTarget.Vertices[indexTarget];
                indexSource   = proxySource.GetSupport(PhysicsMath.mul(invRotation, v));
                supportSource = PhysicsMath.mul(transformSource, proxySource.Vertices[indexSource]);
                var p = supportTarget - supportSource;

                v = math.normalizesafe(v);

                // Intersect ray with plane.
                var vp = math.dot(v, p);
                var vr = math.dot(v, sweepDirection);
                if (vp - sigma > lambda * vr)
                {
                    if (vr <= 0.0f)
                    {
                        return(false);
                    }

                    lambda = (vp - sigma) / vr;
                    if (lambda > 1.0f)
                    {
                        return(false);
                    }

                    normal        = -v;
                    simplex.Count = 0;
                }

                // Reverse simplex since it works with B - A.
                // Shift by lambda * r because we want the closest point to the current clip point.
                // Note that the support point p is not shifted because we want the plane equation
                // to be formed in un-shifted space.
                var vertex = vertices + simplex.Count;
                vertex->IndexA   = indexSource;
                vertex->SupportA = supportSource + lambda * sweepDirection;
                vertex->IndexB   = indexTarget;
                vertex->SupportB = supportTarget;
                vertex->W        = vertex->SupportB - vertex->SupportA;
                vertex->A        = 1.0f;
                simplex.Count   += 1;

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    SafetyChecks.ThrowInvalidOperationException("Simplex has invalid count.");
                    return(default);
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    // Overlap.
                    return(false);
                }

                // Get search direction.
                v = simplex.GetClosestPoint();
            }

            // Ensure we don't process an empty simplex.
            if (simplex.Count == 0)
            {
                return(false);
            }

            // Prepare result.
            var pointSource = float2.zero;
            var pointTarget = float2.zero;

            simplex.GetWitnessPoints(ref pointSource, ref pointTarget);

            normal = math.normalizesafe(-v);

            hit = new ColliderCastHit
            {
                Position      = pointTarget + (normal * radiusTarget),
                SurfaceNormal = normal,
                Fraction      = lambda
            };

            return(true);
        }
Beispiel #5
0
        internal static unsafe DistanceHit ColliderDistance(PhysicsTransform transformA, ref DistanceProxy proxyA, ref DistanceProxy proxyB)
        {
            var simplex = new Simplex();

            simplex.Reset(transformA, proxyA, proxyB);

            var inverseRotationA = math.transpose(transformA.Rotation);

            var vertices = &simplex.Vertex1;

            Simplex.VertexIndexTriple saveA;
            Simplex.VertexIndexTriple saveB;

            var iteration = 0;

            while (iteration < PhysicsSettings.Constants.MaxGJKInterations)
            {
                // Copy simplex so we can identify duplicates.
                var saveCount = simplex.Count;
                for (var i = 0; i < saveCount; ++i)
                {
                    saveA.Index[i] = vertices[i].IndexA;
                    saveB.Index[i] = vertices[i].IndexB;
                }

                switch (saveCount)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    SafetyChecks.ThrowInvalidOperationException("Simplex has invalid count.");
                    return(default);
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Get search direction.
                var direction = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (math.lengthsq(direction) < float.Epsilon * float.Epsilon)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                // Compute a tentative new simplex vertex using support points.
                var vertex = vertices + simplex.Count;
                vertex->IndexA   = proxyA.GetSupport(PhysicsMath.mul(inverseRotationA, -direction));
                vertex->SupportA = PhysicsMath.mul(transformA, proxyA.Vertices[vertex->IndexA]);
                vertex->IndexB   = proxyB.GetSupport(direction);
                vertex->SupportB = proxyB.Vertices[vertex->IndexB];
                vertex->W        = vertex->SupportB - vertex->SupportA;

                // Iteration count is equated to the number of support point calls.
                ++iteration;

                // Check for duplicate support points. This is the main termination criteria.
                var duplicate = false;
                for (var i = 0; i < saveCount; ++i)
                {
                    if (vertex->IndexA == saveA.Index[i] && vertex->IndexB == saveB.Index[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is okay and needed.
                simplex.Count++;
            }

            // Prepare result.
            var pointA = float2.zero;
            var pointB = float2.zero;

            simplex.GetWitnessPoints(ref pointA, ref pointB);

            var distance = math.distance(pointA, pointB);
            var radiusA  = proxyA.ConvexRadius;
            var radiusB  = proxyB.ConvexRadius;

            if (distance > (radiusA + radiusB) && distance > float.Epsilon)
            {
                // Shapes not overlapped.
                // Move the witness points to the outer surface.
                distance -= radiusA + radiusB;
                var normal = math.normalize(pointB - pointA);
                pointA += radiusA * normal;
                pointB -= radiusB * normal;
            }
            else
            {
                // Shapes are overlapped.
                // Move the witness points to the middle.
                pointA   = pointB = 0.5f * (pointA + pointB);
                distance = 0f;
            }

            return(new DistanceHit
            {
                PointA = pointA,
                PointB = pointB,
                Fraction = distance
            });
        }
Beispiel #6
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of: CircleShape and
        /// PolygonShape. The simplex cache is input/output. On the first call set SimplexCache.count to
        /// zero.
        /// </summary>
        /// <param name="output"></param>
        /// <param name="cache"></param>
        /// <param name="input"></param>
        public void GetDistance(DistanceOutput output, SimplexCache cache, DistanceInput input)
        {
            GJK_CALLS++;

            DistanceProxy proxyA = input.ProxyA;
            DistanceProxy proxyB = input.ProxyB;

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices = simplex.Vertices;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            // (pooled above)

            simplex.GetClosestPoint(closestPoint);
            float distanceSqr1 = closestPoint.LengthSquared();

            // Main iteration loop
            int iter = 0;

            while (iter < GJK_MAX_ITERS)
            {
                // Copy simplex so we can identify duplicates.
                int saveCount = simplex.Count;
                for (int i = 0; i < saveCount; i++)
                {
                    saveA[i] = vertices[i].IndexA;
                    saveB[i] = vertices[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Debug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                simplex.GetClosestPoint(closestPoint);
                float distanceSqr2 = closestPoint.LengthSquared();

                // ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    // break;
                }
                distanceSqr1 = distanceSqr2;

                // get search direction;
                simplex.GetSearchDirection(d);

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.EPSILON * Settings.EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                /*
                 * SimplexVertex* vertex = vertices + simplex.m_count; vertex.indexA =
                 * proxyA.GetSupport(MulT(transformA.R, -d)); vertex.wA = Mul(transformA,
                 * proxyA.GetVertex(vertex.indexA)); Vec2 wBLocal; vertex.indexB =
                 * proxyB.GetSupport(MulT(transformB.R, d)); vertex.wB = Mul(transformB,
                 * proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA;
                 */

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.Count];

                Rot.MulTransUnsafe(transformA.Q, d.NegateLocal(), temp);
                vertex.IndexA = proxyA.GetSupport(temp);
                Transform.MulToOutUnsafe(transformA, proxyA.GetVertex(vertex.IndexA), vertex.WA);
                // Vec2 wBLocal;
                Rot.MulTransUnsafe(transformB.Q, d.NegateLocal(), temp);
                vertex.IndexB = proxyB.GetSupport(temp);
                Transform.MulToOutUnsafe(transformB, proxyB.GetVertex(vertex.IndexB), vertex.WB);
                vertex.W.Set(vertex.WB).SubLocal(vertex.WA);

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GJK_ITERS;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GJK_MAX_ITERS = MathUtils.Max(GJK_MAX_ITERS, iter);

            // Prepare output.
            simplex.GetWitnessPoints(output.PointA, output.PointB);
            output.Distance   = MathUtils.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = proxyA.Radius;
                float rB = proxyB.Radius;

                if (output.Distance > rA + rB && output.Distance > Settings.EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= (rA + rB);
                    normal.Set(output.PointB).SubLocal(output.PointA);
                    normal.Normalize();
                    temp.Set(normal).MulLocal(rA);
                    output.PointA.AddLocal(temp);
                    temp.Set(normal).MulLocal(rB);
                    output.PointB.SubLocal(temp);
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    // Vec2 p = 0.5f * (output.pointA + output.pointB);
                    output.PointA.AddLocal(output.PointB).MulLocal(.5f);
                    output.PointB.Set(output.PointA);
                    output.Distance = 0.0f;
                }
            }
        }
Beispiel #7
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of:
        /// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
        /// On the first call set b2SimplexCache.count to zero.
        /// </summary>
        public static void Distance(out DistanceOutput output,
                                    SimplexCache cache,
                                    DistanceInput input)
        {
            ++GjkCalls;

            DistanceProxy proxyA = input.proxyA;
            DistanceProxy proxyB = input.proxyB;

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            Simplex simplex = new Simplex();

            simplex.ReadCache(cache, proxyA, ref transformA, proxyB, ref transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices   = simplex.Vertices;
            const int       k_maxIters = 20;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            int[] saveA     = new int[3], saveB = new int[3];
            int   saveCount = 0;

            Vec2  closestPoint = simplex.GetClosestPoint();
            float distanceSqr1 = closestPoint.LengthSquared();
            float distanceSqr2 = distanceSqr1;

            // Main iteration loop.
            int iter = 0;

            while (iter < k_maxIters)
            {
                // Copy simplex so we can identify duplicates.
                saveCount = simplex.Count;
                for (int i = 0; i < saveCount; ++i)
                {
                    saveA[i] = vertices[i].IndexA;
                    saveB[i] = vertices[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Box2DXDebug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                Vec2  p           = simplex.GetClosestPoint();
                float distanceSqr = p.LengthSquared();

                // Ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    //break;
                }
                distanceSqr1 = distanceSqr2;

                // Get search direction.
                Vec2 d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.FLT_EPSILON * Settings.FLT_EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }
                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.Count];
                vertex.IndexA = proxyA.GetSupport(Math.MulT(transformA.R, -d));
                vertex.WA     = Math.Mul(transformA, proxyA.GetVertex(vertex.IndexA));

                vertex.IndexB = proxyB.GetSupport(Math.MulT(transformB.R, d));
                vertex.WB     = Math.Mul(transformB, proxyB.GetVertex(vertex.IndexB));
                vertex.W      = vertex.WB - vertex.WA;

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GjkIters;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GjkMaxIters = Math.Max(GjkMaxIters, iter);

            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance   = Vec2.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = proxyA._radius;
                float rB = proxyB._radius;

                if (output.Distance > rA + rB && output.Distance > Settings.FLT_EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vec2 normal = output.PointB - output.PointA;
                    normal.Normalize();
                    output.PointA += rA * normal;
                    output.PointB -= rB * normal;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vec2 p = 0.5f * (output.PointA + output.PointB);
                    output.PointA   = p;
                    output.PointB   = p;
                    output.Distance = 0.0f;
                }
            }
        }