Beispiel #1
0
            public override void DefaultVisit(SyntaxNode node)
            {
                SyntaxKind nodeKind = node.CSharpKind();
                bool       diagnose = node.SyntaxTree.ReportDocumentationCommentDiagnostics();

                if (nodeKind == SyntaxKind.XmlCrefAttribute)
                {
                    XmlCrefAttributeSyntax crefAttr = (XmlCrefAttributeSyntax)node;
                    CrefSyntax             cref     = crefAttr.Cref;

                    BinderFactory factory = compilation.GetBinderFactory(cref.SyntaxTree);
                    Binder        binder  = factory.GetBinder(cref);

                    // Do this for the diagnostics, even if it won't be written.
                    DiagnosticBag crefDiagnostics = DiagnosticBag.GetInstance();
                    string        docCommentId    = GetDocumentationCommentId(cref, binder, crefDiagnostics);
                    if (diagnose)
                    {
                        diagnostics.AddRange(crefDiagnostics);
                    }
                    crefDiagnostics.Free();

                    if (writer != null)
                    {
                        Visit(crefAttr.Name);
                        VisitToken(crefAttr.EqualsToken);

                        // Not going to visit normally, because we want to skip trivia within
                        // the attribute value.
                        crefAttr.StartQuoteToken.WriteTo(writer, leading: true, trailing: false);

                        // We're not going to visit the cref because we want to bind it
                        // and write a doc comment ID in its place.
                        writer.Write(docCommentId);

                        // Not going to visit normally, because we want to skip trivia within
                        // the attribute value.
                        crefAttr.EndQuoteToken.WriteTo(writer, leading: false, trailing: true);
                    }

                    // Don't descend - we've already written out everything necessary.
                    return;
                }
                else if (diagnose && nodeKind == SyntaxKind.XmlNameAttribute)
                {
                    XmlNameAttributeSyntax nameAttr = (XmlNameAttributeSyntax)node;

                    BinderFactory factory = compilation.GetBinderFactory(nameAttr.SyntaxTree);
                    Binder        binder  = factory.GetBinder(nameAttr, nameAttr.Identifier.SpanStart);

                    // Do this for diagnostics, even if we aren't writing.
                    BindName(nameAttr, binder, memberSymbol, ref documentedParameters, ref documentedTypeParameters, diagnostics);

                    // Do descend - we still need to write out the tokens of the attribute.
                }

                // NOTE: if we're recording any include element nodes (i.e. if includeElementsNodes is non-null),
                // then we want to record all of them, because we won't be able to distinguish in the XML DOM.
                if (includeElementNodes != null)
                {
                    XmlNameSyntax nameSyntax = null;
                    if (nodeKind == SyntaxKind.XmlEmptyElement)
                    {
                        nameSyntax = ((XmlEmptyElementSyntax)node).Name;
                    }
                    else if (nodeKind == SyntaxKind.XmlElementStartTag)
                    {
                        nameSyntax = ((XmlElementStartTagSyntax)node).Name;
                    }

                    if (nameSyntax != null && nameSyntax.Prefix == null &&
                        DocumentationCommentXmlNames.ElementEquals(nameSyntax.LocalName.ValueText, DocumentationCommentXmlNames.IncludeElementName))
                    {
                        includeElementNodes.Add((CSharpSyntaxNode)node);
                    }
                }

                base.DefaultVisit(node);
            }
Beispiel #2
0
        /// <summary>
        /// The flow analysis pass.  This pass reports required diagnostics for unreachable
        /// statements and uninitialized variables (through the call to FlowAnalysisWalker.Analyze),
        /// and inserts a final return statement if the end of a void-returning method is reachable.
        /// </summary>
        /// <param name="method">the method to be analyzed</param>
        /// <param name="block">the method's body</param>
        /// <param name="diagnostics">the receiver of the reported diagnostics</param>
        /// <param name="hasTrailingExpression">indicates whether this Script had a trailing expression</param>
        /// <param name="originalBodyNested">the original method body is the last statement in the block</param>
        /// <returns>the rewritten block for the method (with a return statement possibly inserted)</returns>
        public static BoundBlock Rewrite(
            MethodSymbol method,
            BoundBlock block,
            DiagnosticBag diagnostics,
            bool hasTrailingExpression,
            bool originalBodyNested)
        {
#if DEBUG
            // We should only see a trailingExpression if we're in a Script initializer.
            Debug.Assert(!hasTrailingExpression || method.IsScriptInitializer);
            var initialDiagnosticCount = diagnostics.ToReadOnly().Length;
#endif
            var compilation = method.DeclaringCompilation;

            if (method.ReturnsVoid || method.IsIterator ||
                (method.IsAsync && compilation.GetWellKnownType(WellKnownType.System_Threading_Tasks_Task) == method.ReturnType))
            {
                // we don't analyze synthesized void methods.
                if ((method.IsImplicitlyDeclared && !method.IsScriptInitializer) || Analyze(compilation, method, block, diagnostics))
                {
                    block = AppendImplicitReturn(block, method, (CSharpSyntaxNode)(method as SourceMethodSymbol)?.BodySyntax, originalBodyNested);
                }
            }
            else if (Analyze(compilation, method, block, diagnostics))
            {
                // If the method is a lambda expression being converted to a non-void delegate type
                // and the end point is reachable then suppress the error here; a special error
                // will be reported by the lambda binder.
                Debug.Assert(method.MethodKind != MethodKind.AnonymousFunction);

                // Add implicit "return default(T)" if this is a submission that does not have a trailing expression.
                var submissionResultType = (method as SynthesizedInteractiveInitializerMethod)?.ResultType;
                if (!hasTrailingExpression && ((object)submissionResultType != null))
                {
                    Debug.Assert(submissionResultType.SpecialType != SpecialType.System_Void);

                    var trailingExpression = new BoundDefaultOperator(method.GetNonNullSyntaxNode(), submissionResultType);
                    var newStatements      = block.Statements.Add(new BoundReturnStatement(trailingExpression.Syntax, RefKind.None, trailingExpression));
                    block = new BoundBlock(block.Syntax, ImmutableArray <LocalSymbol> .Empty, ImmutableArray <LocalFunctionSymbol> .Empty, newStatements)
                    {
                        WasCompilerGenerated = true
                    };
#if DEBUG
                    // It should not be necessary to repeat analysis after adding this node, because adding a trailing
                    // return in cases where one was missing should never produce different Diagnostics.
                    var flowAnalysisDiagnostics = DiagnosticBag.GetInstance();
                    Debug.Assert(!Analyze(compilation, method, block, flowAnalysisDiagnostics));
                    Debug.Assert(flowAnalysisDiagnostics.ToReadOnly().SequenceEqual(diagnostics.ToReadOnly().Skip(initialDiagnosticCount)));
                    flowAnalysisDiagnostics.Free();
#endif
                }
                // If there's more than one location, then the method is partial and we
                // have already reported a non-void partial method error.
                else if (method.Locations.Length == 1)
                {
                    diagnostics.Add(ErrorCode.ERR_ReturnExpected, method.Locations[0], method);
                }
            }

            return(block);
        }
        internal sealed override TypeSymbolWithAnnotations GetFieldType(ConsList <FieldSymbol> fieldsBeingBound)
        {
            Debug.Assert(fieldsBeingBound != null);

            if (!_lazyType.IsNull)
            {
                return(_lazyType.ToType());
            }

            var declarator  = VariableDeclaratorNode;
            var fieldSyntax = GetFieldDeclaration(declarator);
            var typeSyntax  = fieldSyntax.Declaration.Type;

            var compilation = this.DeclaringCompilation;

            var diagnostics = DiagnosticBag.GetInstance();
            TypeSymbolWithAnnotations type;

            // When we have multiple declarators, we report the type diagnostics on only the first.
            DiagnosticBag diagnosticsForFirstDeclarator = DiagnosticBag.GetInstance();

            Symbol associatedPropertyOrEvent = this.AssociatedSymbol;

            if ((object)associatedPropertyOrEvent != null && associatedPropertyOrEvent.Kind == SymbolKind.Event)
            {
                EventSymbol @event = (EventSymbol)associatedPropertyOrEvent;
                if (@event.IsWindowsRuntimeEvent)
                {
                    NamedTypeSymbol tokenTableType = this.DeclaringCompilation.GetWellKnownType(WellKnownType.System_Runtime_InteropServices_WindowsRuntime_EventRegistrationTokenTable_T);
                    Binder.ReportUseSiteDiagnostics(tokenTableType, diagnosticsForFirstDeclarator, this.ErrorLocation);

                    // CONSIDER: Do we want to guard against the possibility that someone has created their own EventRegistrationTokenTable<T>
                    // type that has additional generic constraints?
                    type = TypeSymbolWithAnnotations.Create(tokenTableType.Construct(ImmutableArray.Create(@event.Type)));
                }
                else
                {
                    type = @event.Type;
                }
            }
            else
            {
                var binderFactory = compilation.GetBinderFactory(SyntaxTree);
                var binder        = binderFactory.GetBinder(typeSyntax);

                binder = binder.WithAdditionalFlagsAndContainingMemberOrLambda(BinderFlags.SuppressConstraintChecks, this);
                if (!ContainingType.IsScriptClass)
                {
                    type = binder.BindType(typeSyntax, diagnosticsForFirstDeclarator);
                }
                else
                {
                    bool isVar;
                    type = binder.BindTypeOrVarKeyword(typeSyntax, diagnostics, out isVar);

                    Debug.Assert(!type.IsNull || isVar);

                    if (isVar)
                    {
                        if (this.IsConst)
                        {
                            diagnosticsForFirstDeclarator.Add(ErrorCode.ERR_ImplicitlyTypedVariableCannotBeConst, typeSyntax.Location);
                        }

                        if (fieldsBeingBound.ContainsReference(this))
                        {
                            diagnostics.Add(ErrorCode.ERR_RecursivelyTypedVariable, this.ErrorLocation, this);
                            type = default;
                        }
                        else if (fieldSyntax.Declaration.Variables.Count > 1)
                        {
                            diagnosticsForFirstDeclarator.Add(ErrorCode.ERR_ImplicitlyTypedVariableMultipleDeclarator, typeSyntax.Location);
                        }
                        else if (this.IsConst && this.ContainingType.IsScriptClass)
                        {
                            // For const var in script, we won't try to bind the initializer (case below), as it can lead to an unbound recursion
                            type = default;
                        }
                        else
                        {
                            fieldsBeingBound = new ConsList <FieldSymbol>(this, fieldsBeingBound);

                            var initializerBinder = new ImplicitlyTypedFieldBinder(binder, fieldsBeingBound);
                            var initializerOpt    = initializerBinder.BindInferredVariableInitializer(diagnostics, RefKind.None, (EqualsValueClauseSyntax)declarator.Initializer, declarator);

                            if (initializerOpt != null)
                            {
                                if ((object)initializerOpt.Type != null && !initializerOpt.Type.IsErrorType())
                                {
                                    type = TypeSymbolWithAnnotations.Create(initializerOpt.Type);
                                }

                                _lazyFieldTypeInferred = 1;
                            }
                        }

                        if (type.IsNull)
                        {
                            type = TypeSymbolWithAnnotations.Create(binder.CreateErrorType("var"));
                        }
                    }
                }

                if (IsFixedSizeBuffer)
                {
                    type = TypeSymbolWithAnnotations.Create(new PointerTypeSymbol(type));

                    if (ContainingType.TypeKind != TypeKind.Struct)
                    {
                        diagnostics.Add(ErrorCode.ERR_FixedNotInStruct, ErrorLocation);
                    }

                    var elementType = ((PointerTypeSymbol)type.TypeSymbol).PointedAtType.TypeSymbol;
                    int elementSize = elementType.FixedBufferElementSizeInBytes();
                    if (elementSize == 0)
                    {
                        var loc = typeSyntax.Location;
                        diagnostics.Add(ErrorCode.ERR_IllegalFixedType, loc);
                    }

                    if (!binder.InUnsafeRegion)
                    {
                        diagnosticsForFirstDeclarator.Add(ErrorCode.ERR_UnsafeNeeded, declarator.Location);
                    }
                }
            }

            // update the lazyType only if it contains value last seen by the current thread:
            if (_lazyType.InterlockedInitialize(type.WithModifiers(this.RequiredCustomModifiers)))
            {
                TypeChecks(type.TypeSymbol, diagnostics);

                // CONSIDER: SourceEventFieldSymbol would like to suppress these diagnostics.
                compilation.DeclarationDiagnostics.AddRange(diagnostics);

                bool isFirstDeclarator = fieldSyntax.Declaration.Variables[0] == declarator;
                if (isFirstDeclarator)
                {
                    compilation.DeclarationDiagnostics.AddRange(diagnosticsForFirstDeclarator);
                }

                state.NotePartComplete(CompletionPart.Type);
            }

            diagnostics.Free();
            diagnosticsForFirstDeclarator.Free();
            return(_lazyType.ToType());
        }
        private ConcurrentSet <AssemblySymbol>?GetCompleteSetOfUsedAssemblies(CancellationToken cancellationToken)
        {
            if (!_usedAssemblyReferencesFrozen && !Volatile.Read(ref _usedAssemblyReferencesFrozen))
            {
                var diagnostics = new BindingDiagnosticBag(DiagnosticBag.GetInstance(), new ConcurrentSet <AssemblySymbol>());
                RoslynDebug.Assert(diagnostics.DiagnosticBag is object);

                GetDiagnosticsWithoutFiltering(CompilationStage.Declare, includeEarlierStages: true, diagnostics, cancellationToken);

                bool seenErrors = diagnostics.HasAnyErrors();
                if (!seenErrors)
                {
                    diagnostics.DiagnosticBag.Clear();
                    GetDiagnosticsForAllMethodBodies(diagnostics, doLowering: true, cancellationToken);
                    seenErrors = diagnostics.HasAnyErrors();

                    if (!seenErrors)
                    {
                        AddUsedAssemblies(diagnostics.DependenciesBag);
                    }
                }

                completeTheSetOfUsedAssemblies(seenErrors, cancellationToken);

                diagnostics.DiagnosticBag.Free();
            }

            return(_lazyUsedAssemblyReferences);

            void addUsedAssembly(AssemblySymbol dependency, ArrayBuilder <AssemblySymbol> stack)
            {
                if (AddUsedAssembly(dependency))
                {
                    stack.Push(dependency);
                }
            }

            void addReferencedAssemblies(AssemblySymbol assembly, bool includeMainModule, ArrayBuilder <AssemblySymbol> stack)
            {
                for (int i = (includeMainModule ? 0 : 1); i < assembly.Modules.Length; i++)
                {
                    foreach (var dependency in assembly.Modules[i].ReferencedAssemblySymbols)
                    {
                        addUsedAssembly(dependency, stack);
                    }
                }
            }

            void completeTheSetOfUsedAssemblies(bool seenErrors, CancellationToken cancellationToken)
            {
                if (_usedAssemblyReferencesFrozen || Volatile.Read(ref _usedAssemblyReferencesFrozen))
                {
                    return;
                }

                if (seenErrors)
                {
                    // Add all referenced assemblies
                    foreach (var assembly in SourceModule.ReferencedAssemblySymbols)
                    {
                        AddUsedAssembly(assembly);
                    }
                }
                else
                {
                    // Assume that all assemblies used by the added modules are also used
                    for (int i = 1; i < SourceAssembly.Modules.Length; i++)
                    {
                        foreach (var dependency in SourceAssembly.Modules[i].ReferencedAssemblySymbols)
                        {
                            AddUsedAssembly(dependency);
                        }
                    }

                    if (_usedAssemblyReferencesFrozen || Volatile.Read(ref _usedAssemblyReferencesFrozen))
                    {
                        return;
                    }

                    // Assume that all assemblies used by the used assemblies are also used
                    // This, for example, takes care of including facade assemblies that forward types around.
                    if (_lazyUsedAssemblyReferences is object)
                    {
                        lock (_lazyUsedAssemblyReferences)
                        {
                            if (_usedAssemblyReferencesFrozen || Volatile.Read(ref _usedAssemblyReferencesFrozen))
                            {
                                return;
                            }

                            var stack = ArrayBuilder <AssemblySymbol> .GetInstance(_lazyUsedAssemblyReferences.Count);

                            stack.AddRange(_lazyUsedAssemblyReferences);

                            while (stack.Count != 0)
                            {
                                AssemblySymbol current = stack.Pop();
                                ConcurrentSet <AssemblySymbol>?usedAssemblies;

                                switch (current)
                                {
                                case SourceAssemblySymbol sourceAssembly:
                                    // The set of assemblies used by the referenced compilation feels like
                                    // a reasonable approximation to the set of assembly references that would
                                    // be emitted into the resulting binary for that compilation. An alternative
                                    // would be to attempt to emit and get the exact set of emitted references
                                    // in case of success. This might be too slow though.
                                    usedAssemblies = sourceAssembly.DeclaringCompilation.GetCompleteSetOfUsedAssemblies(cancellationToken);
                                    if (usedAssemblies is object)
                                    {
                                        foreach (AssemblySymbol dependency in usedAssemblies)
                                        {
                                            Debug.Assert(!dependency.IsLinked);
                                            addUsedAssembly(dependency, stack);
                                        }
                                    }
                                    break;

                                case RetargetingAssemblySymbol retargetingAssembly:
                                    usedAssemblies = retargetingAssembly.UnderlyingAssembly.DeclaringCompilation.GetCompleteSetOfUsedAssemblies(cancellationToken);
                                    if (usedAssemblies is object)
                                    {
                                        foreach (AssemblySymbol underlyingDependency in retargetingAssembly.UnderlyingAssembly.SourceModule.ReferencedAssemblySymbols)
                                        {
                                            if (!underlyingDependency.IsLinked && usedAssemblies.Contains(underlyingDependency))
                                            {
                                                AssemblySymbol dependency;

                                                if (!((RetargetingModuleSymbol)retargetingAssembly.Modules[0]).RetargetingDefinitions(underlyingDependency, out dependency))
                                                {
                                                    Debug.Assert(retargetingAssembly.Modules[0].ReferencedAssemblySymbols.Contains(underlyingDependency));
                                                    dependency = underlyingDependency;
                                                }

                                                addUsedAssembly(dependency, stack);
                                            }
                                        }
                                    }

                                    addReferencedAssemblies(retargetingAssembly, includeMainModule: false, stack);
                                    break;

                                default:
                                    addReferencedAssemblies(current, includeMainModule: true, stack);
                                    break;
                                }
                            }

                            stack.Free();
                        }
                    }

                    if (SourceAssembly.CorLibrary is object)
                    {
                        // Add core library
                        AddUsedAssembly(SourceAssembly.CorLibrary);
                    }
                }

                _usedAssemblyReferencesFrozen = true;
            }
        }
            /// <remarks>
            /// This method boils down to Rewrite(XDocument.Load(fileAttrValue).XPathSelectElements(pathAttrValue)).
            /// Everything else is error handling.
            /// </remarks>
            private XNode[] RewriteIncludeElement(XElement includeElement, string currentXmlFilePath, CSharpSyntaxNode originatingSyntax, out string commentMessage)
            {
                Location location = GetIncludeElementLocation(includeElement, ref currentXmlFilePath, ref originatingSyntax);

                Debug.Assert(originatingSyntax != null);

                bool diagnose = originatingSyntax.SyntaxTree.ReportDocumentationCommentDiagnostics();

                if (!EnterIncludeElement(location))
                {
                    // NOTE: these must exist since we're already processed this node elsewhere in the call stack.
                    XAttribute fileAttr      = includeElement.Attribute(XName.Get(DocumentationCommentXmlNames.FileAttributeName));
                    XAttribute pathAttr      = includeElement.Attribute(XName.Get(DocumentationCommentXmlNames.PathAttributeName));
                    string     filePathValue = fileAttr.Value;
                    string     xpathValue    = pathAttr.Value;

                    if (diagnose)
                    {
                        _diagnostics.Add(ErrorCode.WRN_FailedInclude, location, filePathValue, xpathValue, new LocalizableErrorArgument(MessageID.IDS_OperationCausedStackOverflow));
                    }

                    commentMessage = ErrorFacts.GetMessage(MessageID.IDS_XMLNOINCLUDE, CultureInfo.CurrentUICulture);

                    // Don't inspect the children - we're already in a cycle.
                    return(new XNode[] { new XComment(commentMessage), includeElement.Copy(copyAttributeAnnotations: false) });
                }

                DiagnosticBag includeDiagnostics = DiagnosticBag.GetInstance();

                try
                {
                    XAttribute fileAttr = includeElement.Attribute(XName.Get(DocumentationCommentXmlNames.FileAttributeName));
                    XAttribute pathAttr = includeElement.Attribute(XName.Get(DocumentationCommentXmlNames.PathAttributeName));

                    bool hasFileAttribute = fileAttr != null;
                    bool hasPathAttribute = pathAttr != null;
                    if (!hasFileAttribute || !hasPathAttribute)
                    {
                        var subMessage = hasFileAttribute ? MessageID.IDS_XMLMISSINGINCLUDEPATH.Localize() : MessageID.IDS_XMLMISSINGINCLUDEFILE.Localize();
                        includeDiagnostics.Add(ErrorCode.WRN_InvalidInclude, location, subMessage);
                        commentMessage = MakeCommentMessage(location, MessageID.IDS_XMLBADINCLUDE);
                        return(null);
                    }

                    string xpathValue    = pathAttr.Value;
                    string filePathValue = fileAttr.Value;

                    var resolver = _compilation.Options.XmlReferenceResolver;
                    if (resolver == null)
                    {
                        includeDiagnostics.Add(ErrorCode.WRN_FailedInclude, location, filePathValue, xpathValue, new CodeAnalysisResourcesLocalizableErrorArgument(nameof(CodeAnalysisResources.XmlReferencesNotSupported)));
                        commentMessage = MakeCommentMessage(location, MessageID.IDS_XMLFAILEDINCLUDE);
                        return(null);
                    }

                    string resolvedFilePath = resolver.ResolveReference(filePathValue, currentXmlFilePath);

                    if (resolvedFilePath == null)
                    {
                        // NOTE: same behavior as IOException.
                        includeDiagnostics.Add(ErrorCode.WRN_FailedInclude, location, filePathValue, xpathValue, new CodeAnalysisResourcesLocalizableErrorArgument(nameof(CodeAnalysisResources.FileNotFound)));
                        commentMessage = MakeCommentMessage(location, MessageID.IDS_XMLFAILEDINCLUDE);
                        return(null);
                    }

                    if (_includedFileCache == null)
                    {
                        _includedFileCache = new DocumentationCommentIncludeCache(resolver);
                    }

                    try
                    {
                        XDocument doc;

                        try
                        {
                            doc = _includedFileCache.GetOrMakeDocument(resolvedFilePath);
                        }
                        catch (IOException e)
                        {
                            // NOTE: same behavior as resolvedFilePath == null.
                            includeDiagnostics.Add(ErrorCode.WRN_FailedInclude, location, filePathValue, xpathValue, e.Message);
                            commentMessage = MakeCommentMessage(location, MessageID.IDS_XMLFAILEDINCLUDE);
                            return(null);
                        }

                        Debug.Assert(doc != null);

                        string     errorMessage;
                        bool       invalidXPath;
                        XElement[] loadedElements = XmlUtilities.TrySelectElements(doc, xpathValue, out errorMessage, out invalidXPath);
                        if (loadedElements == null)
                        {
                            includeDiagnostics.Add(ErrorCode.WRN_FailedInclude, location, filePathValue, xpathValue, errorMessage);

                            commentMessage = MakeCommentMessage(location, MessageID.IDS_XMLFAILEDINCLUDE);
                            if (invalidXPath)
                            {
                                // leave the include node as is
                                return(null);
                            }

                            if (location.IsInSource)
                            {
                                // As in Dev11, return only the comment - drop the include element.
                                return(new XNode[] { new XComment(commentMessage) });
                            }
                            else
                            {
                                commentMessage = null;
                                return(Array.Empty <XNode>());
                            }
                        }

                        if (loadedElements != null && loadedElements.Length > 0)
                        {
                            // change the current XML file path for nodes contained in the document:
                            XNode[] result = RewriteMany(loadedElements, resolvedFilePath, originatingSyntax);

                            // The elements could be rewritten away if they are includes that refer to invalid
                            // (but existing and accessible) XML files.  If this occurs, behave as if we
                            // had failed to find any XPath results (as in Dev11).
                            if (result.Length > 0)
                            {
                                // NOTE: in this case, we do NOT visit the children of the include element -
                                // they are dropped.
                                commentMessage = null;
                                return(result);
                            }
                        }

                        commentMessage = MakeCommentMessage(location, MessageID.IDS_XMLNOINCLUDE);
                        return(null);
                    }
                    catch (XmlException e)
                    {
                        // NOTE: invalid XML is handled differently from other errors - we don't include the include element
                        // in the results and the location is in the included (vs includING) file.

                        Location errorLocation = XmlLocation.Create(e, resolvedFilePath);
                        includeDiagnostics.Add(ErrorCode.WRN_XMLParseIncludeError, errorLocation, GetDescription(e)); //NOTE: location is in included file.

                        if (location.IsInSource)
                        {
                            commentMessage = string.Format(ErrorFacts.GetMessage(MessageID.IDS_XMLIGNORED2, CultureInfo.CurrentUICulture), resolvedFilePath);

                            // As in Dev11, return only the comment - drop the include element.
                            return(new XNode[] { new XComment(commentMessage) });
                        }
                        else
                        {
                            commentMessage = null;
                            return(Array.Empty <XNode>());
                        }
                    }
                }
                finally
                {
                    if (diagnose)
                    {
                        _diagnostics.AddRange(includeDiagnostics);
                    }

                    includeDiagnostics.Free();

                    LeaveIncludeElement(location);
                }
            }
Beispiel #6
0
        internal override CompileResult CompileAssignment(
            InspectionContext inspectionContext,
            string target,
            string expr,
            DiagnosticFormatter formatter,
            out ResultProperties resultProperties,
            out string error,
            out ImmutableArray <AssemblyIdentity> missingAssemblyIdentities,
            System.Globalization.CultureInfo preferredUICulture,
            Microsoft.CodeAnalysis.CodeGen.CompilationTestData testData)
        {
            var diagnostics = DiagnosticBag.GetInstance();

            try
            {
                var assignment = target.ParseAssignment(expr, diagnostics);
                if (assignment == null)
                {
                    error            = GetErrorMessageAndMissingAssemblyIdentities(diagnostics, formatter, preferredUICulture, out missingAssemblyIdentities);
                    resultProperties = default(ResultProperties);
                    return(default(CompileResult));
                }

                var context = this.CreateCompilationContext(assignment);
                ResultProperties properties;
                var moduleBuilder = context.CompileAssignment(inspectionContext, TypeName, MethodName, testData, diagnostics, out properties);
                if (moduleBuilder == null)
                {
                    error            = GetErrorMessageAndMissingAssemblyIdentities(diagnostics, formatter, preferredUICulture, out missingAssemblyIdentities);
                    resultProperties = default(ResultProperties);
                    return(default(CompileResult));
                }

                using (var stream = new MemoryStream())
                {
                    Cci.PeWriter.WritePeToStream(
                        new EmitContext((Cci.IModule)moduleBuilder, null, diagnostics),
                        context.MessageProvider,
                        () => stream,
                        nativePdbWriterOpt: null,
                        allowMissingMethodBodies: false,
                        deterministic: false,
                        cancellationToken: default(CancellationToken));

                    if (diagnostics.HasAnyErrors())
                    {
                        error            = GetErrorMessageAndMissingAssemblyIdentities(diagnostics, formatter, preferredUICulture, out missingAssemblyIdentities);
                        resultProperties = default(ResultProperties);
                        return(default(CompileResult));
                    }

                    resultProperties          = properties;
                    error                     = null;
                    missingAssemblyIdentities = ImmutableArray <AssemblyIdentity> .Empty;
                    return(new CompileResult(
                               stream.ToArray(),
                               typeName: TypeName,
                               methodName: MethodName,
                               formatSpecifiers: null));
                }
            }
            finally
            {
                diagnostics.Free();
            }
        }
Beispiel #7
0
        public void AliasElement()
        {
            var source =
                @"class C
{
    static (int, int) F;
    static void M()
    {
    }
}";
            var comp = CreateCompilationWithMscorlib40(source, new[] { ValueTupleRef, SystemRuntimeFacadeRef }, options: TestOptions.DebugDll);

            WithRuntimeInstance(comp, new[] { ValueTupleRef, SystemRuntimeFacadeRef, MscorlibRef }, runtime =>
            {
                var context = CreateMethodContext(
                    runtime,
                    "C.M");
                // (int A, (int, int D) B)[] t;
                var aliasElementNames = new ReadOnlyCollection <string>(new[] { "A", "B", null, "D" });
                var alias             = new Alias(
                    DkmClrAliasKind.Variable,
                    "t",
                    "t",
                    "System.ValueTuple`2[[System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.ValueTuple`2[[System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]], System.ValueTuple, Version=4.0.1.0, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51]][], System.ValueTuple, Version=4.0.1.0, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51",
                    CustomTypeInfo.PayloadTypeId,
                    CustomTypeInfo.Encode(null, aliasElementNames));
                var locals = ArrayBuilder <LocalAndMethod> .GetInstance();
                string typeName;
                var diagnostics = DiagnosticBag.GetInstance();
                var testData    = new CompilationTestData();
                var assembly    = context.CompileGetLocals(
                    locals,
                    argumentsOnly: false,
                    aliases: ImmutableArray.Create(alias),
                    diagnostics: diagnostics,
                    typeName: out typeName,
                    testData: testData);
                diagnostics.Verify();
                diagnostics.Free();
                Assert.Equal(1, locals.Count);
                ReadOnlyCollection <byte> customTypeInfo;
                var customTypeInfoId = locals[0].GetCustomTypeInfo(out customTypeInfo);
                ReadOnlyCollection <byte> dynamicFlags;
                ReadOnlyCollection <string> tupleElementNames;
                CustomTypeInfo.Decode(customTypeInfoId, customTypeInfo, out dynamicFlags, out tupleElementNames);
                Assert.Equal(aliasElementNames, tupleElementNames);
                var method = (MethodSymbol)testData.GetExplicitlyDeclaredMethods().Single().Value.Method;
                CheckAttribute(assembly, method, AttributeDescription.TupleElementNamesAttribute, expected: true);
                var returnType = (TypeSymbol)method.ReturnType;
                Assert.False(returnType.IsTupleType);
                Assert.True(((ArrayTypeSymbol)returnType).ElementType.IsTupleType);
                VerifyLocal(testData, typeName, locals[0], "<>m0", "t", expectedILOpt:
                            @"{
  // Code size       16 (0x10)
  .maxstack  1
  IL_0000:  ldstr      ""t""
  IL_0005:  call       ""object Microsoft.VisualStudio.Debugger.Clr.IntrinsicMethods.GetObjectByAlias(string)""
  IL_000a:  castclass  ""System.ValueTuple<int, System.ValueTuple<int, int>>[]""
  IL_000f:  ret
}");
                locals.Free();
            });
        }
        public void NullableConversionFromFloatingPointConst()
        {
            var source = @"
class C
{
    void Use(int? p)
    {

    }

    void Test()
    {
        int? i;

        // double checks
        i = (int?)3.5d;
        i = (int?)double.MaxValue;
        i = (int?)double.NaN;
        i = (int?)double.NegativeInfinity;
        i = (int?)double.PositiveInfinity;

        // float checks
        i = (int?)3.5d;
        i = (int?)float.MaxValue;
        i = (int?)float.NaN;
        i = (int?)float.NegativeInfinity;
        i = (int?)float.PositiveInfinity;

        Use(i);

        unchecked {
            // double checks
            i = (int?)3.5d;
            i = (int?)double.MaxValue;
            i = (int?)double.NaN;
            i = (int?)double.NegativeInfinity;
            i = (int?)double.PositiveInfinity;

            // float checks
            i = (int?)3.5d;
            i = (int?)float.MaxValue;
            i = (int?)float.NaN;
            i = (int?)float.NegativeInfinity;
            i = (int?)float.PositiveInfinity;
        }
    }
}
";

            var compilation = CreateCompilationWithMscorlib(source);

            compilation.VerifyDiagnostics(
                // (15,13): error CS0030: Cannot convert type 'double' to 'int?'
                //         i = (int?)double.MaxValue;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)double.MaxValue").WithArguments("double", "int?").WithLocation(15, 13),
                // (16,13): error CS0030: Cannot convert type 'double' to 'int?'
                //         i = (int?)double.NaN;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)double.NaN").WithArguments("double", "int?").WithLocation(16, 13),
                // (17,13): error CS0030: Cannot convert type 'double' to 'int?'
                //         i = (int?)double.NegativeInfinity;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)double.NegativeInfinity").WithArguments("double", "int?").WithLocation(17, 13),
                // (18,13): error CS0030: Cannot convert type 'double' to 'int?'
                //         i = (int?)double.PositiveInfinity;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)double.PositiveInfinity").WithArguments("double", "int?").WithLocation(18, 13),
                // (22,13): error CS0030: Cannot convert type 'float' to 'int?'
                //         i = (int?)float.MaxValue;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)float.MaxValue").WithArguments("float", "int?").WithLocation(22, 13),
                // (23,13): error CS0030: Cannot convert type 'float' to 'int?'
                //         i = (int?)float.NaN;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)float.NaN").WithArguments("float", "int?").WithLocation(23, 13),
                // (24,13): error CS0030: Cannot convert type 'float' to 'int?'
                //         i = (int?)float.NegativeInfinity;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)float.NegativeInfinity").WithArguments("float", "int?").WithLocation(24, 13),
                // (25,13): error CS0030: Cannot convert type 'float' to 'int?'
                //         i = (int?)float.PositiveInfinity;
                Diagnostic(ErrorCode.ERR_NoExplicitConv, "(int?)float.PositiveInfinity").WithArguments("float", "int?").WithLocation(25, 13));

            var syntaxTree = compilation.SyntaxTrees.First();
            var target     = syntaxTree.GetRoot().DescendantNodes().OfType <CastExpressionSyntax>().ToList()[2];
            var operand    = target.Expression;

            Assert.Equal("double.NaN", operand.ToFullString());

            // Note: there is a valid conversion here at the type level.  It's the process of evaluating the conversion, which for
            // constants happens at compile time, that triggers the error.
            HashSet <DiagnosticInfo> unused = null;
            var bag             = DiagnosticBag.GetInstance();
            var nullableIntType = compilation.GetSpecialType(SpecialType.System_Nullable_T).Construct(compilation.GetSpecialType(SpecialType.System_Int32));
            var conversion      = compilation.Conversions.ClassifyConversionFromExpression(
                compilation.GetBinder(target).BindExpression(operand, bag),
                nullableIntType,
                ref unused);

            Assert.True(conversion.IsExplicit && conversion.IsNullable);
        }
Beispiel #9
0
        /// <summary>
        /// The spec describes an algorithm for finding the following types:
        ///   1) Collection type
        ///   2) Enumerator type
        ///   3) Element type
        ///
        /// The implementation details are a bit difference.  If we're iterating over a string or an array, then we don't need to record anything
        /// but the inferredType (in case the iteration variable is implicitly typed).  If we're iterating over anything else, then we want the
        /// inferred type plus a ForEachEnumeratorInfo.Builder with:
        ///   1) Collection type
        ///   2) Element type
        ///   3) GetEnumerator method of the collection type (return type will be the enumerator type from the spec)
        ///   4) Current property of the enumerator type
        ///   5) MoveNext method of the enumerator type
        ///
        /// The caller will have to do some extra conversion checks before creating a ForEachEnumeratorInfo for the BoundForEachStatement.
        /// </summary>
        /// <param name="builder">Builder to fill in (partially, all but conversions).</param>
        /// <param name="collectionExpr">The expression over which to iterate.</param>
        /// <param name="diagnostics">Populated with binding diagnostics.</param>
        /// <returns>Partially populated (all but conversions) or null if there was an error.</returns>
        private bool GetEnumeratorInfo(ref ForEachEnumeratorInfo.Builder builder, BoundExpression collectionExpr, DiagnosticBag diagnostics)
        {
            TypeSymbol collectionExprType = collectionExpr.Type;

            if (collectionExpr.ConstantValue != null && collectionExpr.ConstantValue.IsNull)
            {
                // Spec seems to refer to null literals, but Dev10 reports anything known to be null.
                Debug.Assert(collectionExpr.ConstantValue.IsNull); // only constant value with no type
                diagnostics.Add(ErrorCode.ERR_NullNotValid, _syntax.Expression.Location);

                return(false);
            }

            if ((object)collectionExprType == null) // There's no way to enumerate something without a type.
            {
                // The null literal was caught above, so anything else with a null type is a method group or anonymous function
                diagnostics.Add(ErrorCode.ERR_AnonMethGrpInForEach, _syntax.Expression.Location, collectionExpr.Display);
                // CONSIDER: dev10 also reports ERR_ForEachMissingMember (i.e. failed pattern match).

                return(false);
            }

            if (collectionExpr.ResultKind == LookupResultKind.NotAValue)
            {
                // Short-circuiting to prevent strange behavior in the case where the collection
                // expression is a type expression and the type is enumerable.
                Debug.Assert(collectionExpr.HasAnyErrors); // should already have been reported
                return(false);
            }

            // The spec specifically lists the collection, enumerator, and element types for arrays and dynamic.
            if (collectionExprType.Kind == SymbolKind.ArrayType || collectionExprType.Kind == SymbolKind.DynamicType)
            {
                // NOTE: for arrays, we won't actually use any of these members - they're just for the API.
                builder.CollectionType = GetSpecialType(SpecialType.System_Collections_IEnumerable, diagnostics, _syntax);
                builder.ElementType    =
                    collectionExprType.IsDynamic() ?
                    (_syntax.Type.IsVar ? (TypeSymbol)DynamicTypeSymbol.Instance : GetSpecialType(SpecialType.System_Object, diagnostics, _syntax)) :
                    ((ArrayTypeSymbol)collectionExprType).ElementType;

                // CONSIDER:
                // For arrays none of these members will actually be emitted, so it seems strange to prevent compilation if they can't be found.
                // skip this work in the batch case? (If so, also special case string, which won't use the pattern methods.)
                builder.GetEnumeratorMethod   = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerable__GetEnumerator, diagnostics, _syntax);
                builder.CurrentPropertyGetter = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerator__get_Current, diagnostics, _syntax);
                builder.MoveNextMethod        = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerator__MoveNext, diagnostics, _syntax);

                Debug.Assert((object)builder.GetEnumeratorMethod == null ||
                             builder.GetEnumeratorMethod.ReturnType == this.Compilation.GetSpecialType(SpecialType.System_Collections_IEnumerator));

                // We don't know the runtime type, so we will have to insert a runtime check for IDisposable (with a conditional call to IDisposable.Dispose).
                builder.NeedsDisposeMethod = true;

                return(true);
            }

            bool foundMultipleGenericIEnumerableInterfaces;

            if (SatisfiesGetEnumeratorPattern(ref builder, collectionExprType, diagnostics))
            {
                Debug.Assert((object)builder.GetEnumeratorMethod != null);

                builder.CollectionType = collectionExprType;

                if (SatisfiesForEachPattern(ref builder, diagnostics))
                {
                    builder.ElementType = ((PropertySymbol)builder.CurrentPropertyGetter.AssociatedSymbol).Type;

                    // NOTE: if IDisposable is not available at all, no diagnostics will be reported - we will just assume that
                    // the enumerator is not disposable.  If it has IDisposable in its interface list, there will be a diagnostic there.
                    // If IDisposable is available but its Dispose method is not, then diagnostics will be reported only if the enumerator
                    // is potentially disposable.

                    var        useSiteDiagnosticBag             = DiagnosticBag.GetInstance();
                    TypeSymbol enumeratorType                   = builder.GetEnumeratorMethod.ReturnType;
                    HashSet <DiagnosticInfo> useSiteDiagnostics = null;
                    if (!enumeratorType.IsSealed || this.Conversions.ClassifyImplicitConversion(enumeratorType, this.Compilation.GetSpecialType(SpecialType.System_IDisposable), ref useSiteDiagnostics).IsImplicit)
                    {
                        builder.NeedsDisposeMethod = true;
                        diagnostics.AddRange(useSiteDiagnosticBag);
                    }
                    useSiteDiagnosticBag.Free();

                    diagnostics.Add(_syntax, useSiteDiagnostics);
                    return(true);
                }

                MethodSymbol getEnumeratorMethod = builder.GetEnumeratorMethod;
                diagnostics.Add(ErrorCode.ERR_BadGetEnumerator, _syntax.Expression.Location, getEnumeratorMethod.ReturnType, getEnumeratorMethod);
                return(false);
            }

            if (IsIEnumerable(collectionExprType))
            {
                // This indicates a problem with the special IEnumerable type - it should have satisfied the GetEnumerator pattern.
                diagnostics.Add(ErrorCode.ERR_ForEachMissingMember, _syntax.Expression.Location, collectionExprType, GetEnumeratorMethodName);
                return(false);
            }

            if (AllInterfacesContainsIEnumerable(ref builder, collectionExprType, diagnostics, out foundMultipleGenericIEnumerableInterfaces))
            {
                CSharpSyntaxNode errorLocationSyntax = _syntax.Expression;

                if (foundMultipleGenericIEnumerableInterfaces)
                {
                    diagnostics.Add(ErrorCode.ERR_MultipleIEnumOfT, errorLocationSyntax.Location, collectionExprType, this.Compilation.GetSpecialType(SpecialType.System_Collections_Generic_IEnumerable_T));
                    return(false);
                }

                Debug.Assert((object)builder.CollectionType != null);

                NamedTypeSymbol collectionType = (NamedTypeSymbol)builder.CollectionType;
                if (collectionType.IsGenericType)
                {
                    // If the type is generic, we have to search for the methods
                    Debug.Assert(collectionType.OriginalDefinition.SpecialType == SpecialType.System_Collections_Generic_IEnumerable_T);
                    builder.ElementType = collectionType.TypeArgumentsNoUseSiteDiagnostics.Single();

                    MethodSymbol getEnumeratorMethod = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_Generic_IEnumerable_T__GetEnumerator, diagnostics, errorLocationSyntax);
                    if ((object)getEnumeratorMethod != null)
                    {
                        builder.GetEnumeratorMethod = getEnumeratorMethod.AsMember(collectionType);

                        TypeSymbol enumeratorType = builder.GetEnumeratorMethod.ReturnType;
                        Debug.Assert(enumeratorType.OriginalDefinition.SpecialType == SpecialType.System_Collections_Generic_IEnumerator_T);
                        MethodSymbol currentPropertyGetter = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_Generic_IEnumerator_T__get_Current, diagnostics, errorLocationSyntax);
                        if ((object)currentPropertyGetter != null)
                        {
                            builder.CurrentPropertyGetter = currentPropertyGetter.AsMember((NamedTypeSymbol)enumeratorType);
                        }
                    }

                    builder.MoveNextMethod = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerator__MoveNext, diagnostics, errorLocationSyntax); // NOTE: MoveNext is actually inherited from System.Collections.IEnumerator
                }
                else
                {
                    // Non-generic - use special members to avoid re-computing
                    Debug.Assert(collectionType.SpecialType == SpecialType.System_Collections_IEnumerable);
                    builder.ElementType = GetSpecialType(SpecialType.System_Object, diagnostics, errorLocationSyntax);

                    builder.GetEnumeratorMethod   = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerable__GetEnumerator, diagnostics, errorLocationSyntax);
                    builder.CurrentPropertyGetter = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerator__get_Current, diagnostics, errorLocationSyntax);
                    builder.MoveNextMethod        = (MethodSymbol)GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerator__MoveNext, diagnostics, errorLocationSyntax);

                    Debug.Assert((object)builder.GetEnumeratorMethod == null ||
                                 builder.GetEnumeratorMethod.ReturnType == GetSpecialType(SpecialType.System_Collections_IEnumerator, diagnostics, errorLocationSyntax));
                }

                // We don't know the runtime type, so we will have to insert a runtime check for IDisposable (with a conditional call to IDisposable.Dispose).
                builder.NeedsDisposeMethod = true;
                return(true);
            }


            if (!string.IsNullOrEmpty(collectionExprType.Name) || !collectionExpr.HasErrors)
            {
                diagnostics.Add(ErrorCode.ERR_ForEachMissingMember, _syntax.Expression.Location, collectionExprType.ToDisplayString(), GetEnumeratorMethodName);
            }
            return(false);
        }
        public void EmitCtor(Emit.PEModuleBuilder module, Action <Microsoft.CodeAnalysis.CodeGen.ILBuilder> builder)
        {
            Debug.Assert(_ctor == null);

            // emit default .ctor

            _ctor = new SynthesizedCtorSymbol(this);
            _ctor.SetParameters();// empty params (default ctor)

            var body = CodeGen.MethodGenerator.GenerateMethodBody(module, _ctor, builder, null, DiagnosticBag.GetInstance(), false);

            module.SetMethodBody(_ctor, body);
        }
        public void EmitInit(Emit.PEModuleBuilder module, Action <Microsoft.CodeAnalysis.CodeGen.ILBuilder> builder)
        {
            Debug.Assert(_initMethod == null);

            var tt = DeclaringCompilation.CoreTypes;

            // override IStaticInit.Init(Context)

            _initMethod = new SynthesizedMethodSymbol(this, "Init", false, true, tt.Void, Accessibility.Public);
            _initMethod.SetParameters(new SynthesizedParameterSymbol(_initMethod, tt.Context, 0, RefKind.None, "ctx"));

            var body = CodeGen.MethodGenerator.GenerateMethodBody(module, _initMethod, builder, null, DiagnosticBag.GetInstance(), false);

            module.SetMethodBody(_initMethod, body);
        }
Beispiel #12
0
        internal static MethodBody GenerateMethodBody(TypeCompilationState compilationState, MethodSymbol method, BoundStatement block, DiagnosticBag diagnostics,
                                                      bool optimize, DebugDocumentProvider debugDocumentProvider, ImmutableArray <NamespaceScope> namespaceScopes)
        {
            // Note: don't call diagnostics.HasAnyErrors() in release; could be expensive if compilation has many warnings.
            Debug.Assert(!diagnostics.HasAnyErrors(), "Running code generator when errors exist might be dangerous; code generator not well hardened");

            bool emitSequencePoints = !namespaceScopes.IsDefault && !method.IsAsync;
            var  module             = compilationState.ModuleBuilder;
            var  compilation        = module.Compilation;
            var  localSlotManager   = module.CreateLocalSlotManager(method);

            ILBuilder     builder = new ILBuilder(module, localSlotManager, optimize);
            DiagnosticBag diagnosticsForThisMethod = DiagnosticBag.GetInstance();

            try
            {
                AsyncMethodBodyDebugInfo asyncDebugInfo = null;
                if ((object)method.AsyncKickoffMethod == null) // is this the MoveNext of an async method?
                {
                    CodeGen.CodeGenerator.Run(
                        method, block, builder, module, diagnosticsForThisMethod, optimize, emitSequencePoints);
                }
                else
                {
                    int asyncCatchHandlerOffset;
                    ImmutableArray <int> asyncYieldPoints;
                    ImmutableArray <int> asyncResumePoints;
                    CodeGen.CodeGenerator.Run(
                        method, block, builder, module, diagnosticsForThisMethod, optimize, emitSequencePoints,
                        out asyncCatchHandlerOffset, out asyncYieldPoints, out asyncResumePoints);
                    asyncDebugInfo = new AsyncMethodBodyDebugInfo(method.AsyncKickoffMethod, asyncCatchHandlerOffset, asyncYieldPoints, asyncResumePoints);
                }

                var localVariables = builder.LocalSlotManager.LocalsInOrder();

                if (localVariables.Length > 0xFFFE)
                {
                    diagnosticsForThisMethod.Add(ErrorCode.ERR_TooManyLocals, method.Locations.First());
                }

                if (diagnosticsForThisMethod.HasAnyErrors())
                {
                    // we are done here. Since there were errors we should not emit anything.
                    return(null);
                }

                // We will only save the IL builders when running tests.
                if (module.SaveTestData)
                {
                    module.SetMethodTestData(method, builder.GetSnapshot());
                }

                // Only compiler-generated MoveNext methods have iterator scopes.  See if this is one.
                bool hasIteratorScopes =
                    method.Locations.IsEmpty && method.Name == "MoveNext" &&
                    (method.ExplicitInterfaceImplementations.Contains(compilation.GetSpecialTypeMember(SpecialMember.System_Collections_IEnumerator__MoveNext) as MethodSymbol) ||
                     method.ExplicitInterfaceImplementations.Contains(compilation.GetWellKnownTypeMember(WellKnownMember.System_Runtime_CompilerServices_IAsyncStateMachine_MoveNext) as MethodSymbol));

                var iteratorScopes = hasIteratorScopes ? builder.GetIteratorScopes() : ImmutableArray <LocalScope> .Empty;

                var iteratorOrAsyncImplementation = compilationState.GetIteratorOrAsyncImplementationClass(method);
                return(new MethodBody(
                           builder.RealizedIL,
                           builder.MaxStack,
                           method,
                           localVariables,
                           builder.RealizedSequencePoints,
                           debugDocumentProvider,
                           builder.RealizedExceptionHandlers,
                           builder.GetAllScopes(),
                           Microsoft.Cci.CustomDebugInfoKind.CSharpStyle,
                           builder.HasDynamicLocal,
                           namespaceScopes,
                           (object)iteratorOrAsyncImplementation == null ? null : iteratorOrAsyncImplementation.MetadataName,
                           iteratorScopes,
                           asyncMethodDebugInfo: asyncDebugInfo
                           ));
            }
            finally
            {
                // Basic blocks contain poolable builders for IL and sequence points. Free those back
                // to their pools.
                builder.FreeBasicBlocks();

                // Remember diagnostics.
                diagnostics.AddRange(diagnosticsForThisMethod);
                diagnosticsForThisMethod.Free();
            }
        }
        /// <summary>
        /// This method handles duplicate types in a few different ways:
        /// - for types before C# 7, the first candidate is returned with a warning
        /// - for types after C# 7, the type is considered missing
        /// - in both cases, when BinderFlags.IgnoreCorLibraryDuplicatedTypes is set, any duplicate coming from corlib will be ignored (ie not count as a duplicate)
        /// </summary>
        internal NamedTypeSymbol GetWellKnownType(WellKnownType type)
        {
            Debug.Assert(type.IsValid());

            bool ignoreCorLibraryDuplicatedTypes = this.Options.TopLevelBinderFlags.Includes(BinderFlags.IgnoreCorLibraryDuplicatedTypes);

            int index = (int)type - (int)WellKnownType.First;

            if (_lazyWellKnownTypes == null || (object)_lazyWellKnownTypes[index] == null)
            {
                if (_lazyWellKnownTypes == null)
                {
                    Interlocked.CompareExchange(ref _lazyWellKnownTypes, new NamedTypeSymbol[(int)WellKnownTypes.Count], null);
                }

                string          mdName   = type.GetMetadataName();
                var             warnings = DiagnosticBag.GetInstance();
                NamedTypeSymbol result;

                if (IsTypeMissing(type))
                {
                    result = null;
                }
                else
                {
                    // well-known types introduced before CSharp7 allow lookup ambiguity and report a warning
                    DiagnosticBag legacyWarnings = (type <= WellKnownType.CSharp7Sentinel) ? warnings : null;

                    result = this.Assembly.GetTypeByMetadataName(
                        mdName, includeReferences: true, useCLSCompliantNameArityEncoding: true, isWellKnownType: true,
                        warnings: legacyWarnings, ignoreCorLibraryDuplicatedTypes: ignoreCorLibraryDuplicatedTypes);
                }

                if ((object)result == null)
                {
                    // TODO: should GetTypeByMetadataName rather return a missing symbol?
                    MetadataTypeName emittedName = MetadataTypeName.FromFullName(mdName, useCLSCompliantNameArityEncoding: true);
                    if (type.IsValueTupleType())
                    {
                        result = new MissingMetadataTypeSymbol.TopLevelWithCustomErrorInfo(this.Assembly.Modules[0], ref emittedName,
                                                                                           new CSDiagnosticInfo(ErrorCode.ERR_PredefinedValueTupleTypeNotFound, emittedName.FullName), type);
                    }
                    else
                    {
                        result = new MissingMetadataTypeSymbol.TopLevel(this.Assembly.Modules[0], ref emittedName, type);
                    }
                }

                if ((object)Interlocked.CompareExchange(ref _lazyWellKnownTypes[index], result, null) != null)
                {
                    Debug.Assert(
                        result == _lazyWellKnownTypes[index] || (_lazyWellKnownTypes[index].IsErrorType() && result.IsErrorType())
                        );
                }
                else
                {
                    AdditionalCodegenWarnings.AddRange(warnings);
                }

                warnings.Free();
            }

            return(_lazyWellKnownTypes[index]);
        }
        /// <summary>
        /// Emits the compilation into given <see cref="ModuleBuilder"/> using Reflection.Emit APIs.
        /// </summary>
        /// <param name="compilation">Compilation.</param>
        /// <param name="moduleBuilder">
        /// The module builder to add the types into. Can be reused for multiple compilation units.
        /// </param>
        /// <param name="assemblyLoader">
        /// Loads an assembly given an <see cref="AssemblyIdentity"/>.
        /// This callback is used for loading assemblies referenced by the compilation.
        /// <see cref="System.Reflection.Assembly.Load(AssemblyName)"/> is used if not specified.
        /// </param>
        /// <param name="assemblySymbolMapper">
        /// Applied when converting assembly symbols to assembly references.
        /// <see cref="IAssemblySymbol"/> is mapped to its <see cref="IAssemblySymbol.Identity"/> by default.
        /// </param>
        /// <param name="cancellationToken">Can be used to cancel the emit process.</param>
        /// <param name="recoverOnError">If false the method returns an unsuccessful result instead of falling back to CCI writer.</param>
        /// <param name="compiledAssemblyImage">Assembly image, returned only if we fallback to CCI writer.</param>
        /// <param name="entryPoint">An entry point or null if not applicable or on failure.</param>
        /// <param name="diagnostics">Diagnostics.</param>
        /// <returns>True on success, false if a compilation error occurred or the compilation doesn't contain any code or declarations.</returns>
        /// <remarks>
        /// Reflection.Emit doesn't support all metadata constructs. If an unsupported construct is
        /// encountered a metadata writer that procudes uncollectible code is used instead. This is
        /// indicated by
        /// <see cref="ReflectionEmitResult.IsUncollectible"/> flag on the result.
        ///
        /// Reusing <see cref="System.Reflection.Emit.ModuleBuilder"/> may be beneficial in certain
        /// scenarios. For example, when emitting a sequence of code snippets one at a time (like in
        /// REPL). All the snippets can be compiled into a single module as long as the types being
        /// emitted have unique names. Reusing a single module/assembly reduces memory overhead. On
        /// the other hand, collectible assemblies are units of collection. Defining too many
        /// unrelated types in a single assemly might prevent the unused types to be collected.
        ///
        /// No need to provide a name override when using Reflection.Emit, since the assembly already
        /// exists.
        /// </remarks>
        /// <exception cref="InvalidOperationException">Referenced assembly can't be resolved.</exception>
        internal static bool Emit(
            this Compilation compilation,
            ModuleBuilder moduleBuilder,
            AssemblyLoader assemblyLoader,
            Func <IAssemblySymbol, AssemblyIdentity> assemblySymbolMapper,
            bool recoverOnError,
            DiagnosticBag diagnostics,
            CancellationToken cancellationToken,
            out MethodInfo entryPoint,
            out byte[] compiledAssemblyImage)
        {
            compiledAssemblyImage = default(byte[]);

            var moduleBeingBuilt = compilation.CreateModuleBuilder(
                emitOptions: EmitOptions.Default,
                manifestResources: null,
                assemblySymbolMapper: assemblySymbolMapper,
                testData: null,
                diagnostics: diagnostics,
                cancellationToken: cancellationToken);

            if (moduleBeingBuilt == null)
            {
                entryPoint = null;
                return(false);
            }

            if (!compilation.Compile(
                    moduleBeingBuilt,
                    win32Resources: null,
                    xmlDocStream: null,
                    generateDebugInfo: false,
                    diagnostics: diagnostics,
                    filterOpt: null,
                    cancellationToken: cancellationToken))
            {
                entryPoint = null;
                return(false);
            }

            Cci.IMethodReference cciEntryPoint = moduleBeingBuilt.EntryPoint;

            cancellationToken.ThrowIfCancellationRequested();

            DiagnosticBag metadataDiagnostics = DiagnosticBag.GetInstance();

            var context = new EmitContext((Cci.IModule)moduleBeingBuilt, null, metadataDiagnostics);

            // try emit via Reflection.Emit
            try
            {
                var referencedAssemblies = from referencedAssembly in compilation.GetBoundReferenceManager().GetReferencedAssemblies()
                                           let peReference = referencedAssembly.Key as PortableExecutableReference
                                                             select KeyValuePair.Create(
                    moduleBeingBuilt.Translate(referencedAssembly.Value, metadataDiagnostics),
                    (peReference != null)?peReference.FilePath : null);

                entryPoint = ReflectionEmitter.Emit(
                    context,
                    referencedAssemblies,
                    moduleBuilder,
                    assemblyLoader ?? AssemblyLoader.Default,
                    cciEntryPoint,
                    cancellationToken);

                // translate metadata errors.
                return(compilation.FilterAndAppendAndFreeDiagnostics(diagnostics, ref metadataDiagnostics));
            }
            catch (TypeLoadException)
            {
                // attempted to emit reference to a type that can't be loaded (has invalid metadata)
            }
            catch (NotSupportedException)
            {
                // nop
            }

            // TODO (tomat):
            //
            // Another possible approach would be to just return an error, that we can't emit via
            // Ref.Emit and let the user choose another method of emitting. For that we would want
            // to preserve the state of the Emit.Assembly object with all the compiled methods so
            // that the subsequent emit doesn't need to compile method bodies again.

            // TODO (tomat):
            //
            // If Ref.Emit fails to emit the code the type builders already created will stay
            // defined on the module builder. Ideally we would clean them up but Ref.Emit doesn't
            // provide any API to do so. In fact it also keeps baked TypeBuilders alive as well.

            if (!recoverOnError)
            {
                metadataDiagnostics.Free();
                entryPoint = null;
                return(false);
            }

            using (var stream = new System.IO.MemoryStream())
            {
                Cci.PeWriter.WritePeToStream(
                    context,
                    compilation.MessageProvider,
                    () => stream,
                    nativePdbWriterOpt: null,
                    pdbPathOpt: null,
                    allowMissingMethodBodies: false,
                    deterministic: false,
                    cancellationToken: cancellationToken);

                compiledAssemblyImage = stream.ToArray();
            }

            var compiledAssembly = Assembly.Load(compiledAssemblyImage);

            entryPoint = (cciEntryPoint != null) ? ReflectionEmitter.ResolveEntryPoint(compiledAssembly, cciEntryPoint, context) : null;

            // translate metadata errors.
            return(compilation.FilterAndAppendAndFreeDiagnostics(diagnostics, ref metadataDiagnostics));
        }
Beispiel #15
0
        private BoundExpression FinalTranslation(QueryTranslationState state, DiagnosticBag diagnostics)
        {
            Debug.Assert(state.clauses.IsEmpty());
            switch (state.selectOrGroup.Kind())
            {
            case SyntaxKind.SelectClause:
            {
                // A query expression of the form
                //     from x in e select v
                // is translated into
                //     ( e ) . Select ( x => v )
                var selectClause = (SelectClauseSyntax)state.selectOrGroup;
                var x            = state.rangeVariable;
                var e            = state.fromExpression;
                var v            = selectClause.Expression;
                var lambda       = MakeQueryUnboundLambda(state.RangeVariableMap(), x, v);
                var result       = MakeQueryInvocation(state.selectOrGroup, e, "Select", lambda, diagnostics);
                return(MakeQueryClause(selectClause, result, queryInvocation: result));
            }

            case SyntaxKind.GroupClause:
            {
                // A query expression of the form
                //     from x in e group v by k
                // is translated into
                //     ( e ) . GroupBy ( x => k , x => v )
                // except when v is the identifier x, the translation is
                //     ( e ) . GroupBy ( x => k )
                var       groupClause = (GroupClauseSyntax)state.selectOrGroup;
                var       x           = state.rangeVariable;
                var       e           = state.fromExpression;
                var       v           = groupClause.GroupExpression;
                var       k           = groupClause.ByExpression;
                var       vId         = v as IdentifierNameSyntax;
                BoundCall result;
                var       lambdaLeft = MakeQueryUnboundLambda(state.RangeVariableMap(), x, k);

                // this is the unoptimized form (when v is not the identifier x)
                var             d           = DiagnosticBag.GetInstance();
                BoundExpression lambdaRight = MakeQueryUnboundLambda(state.RangeVariableMap(), x, v);
                result = MakeQueryInvocation(state.selectOrGroup, e, "GroupBy", ImmutableArray.Create(lambdaLeft, lambdaRight), d);
                // k and v appear reversed in the invocation, so we reorder their evaluation
                result = ReverseLastTwoParameterOrder(result);

                BoundExpression unoptimizedForm = null;
                if (vId != null && vId.Identifier.ValueText == x.Name)
                {
                    // The optimized form.  We store the unoptimized form for analysis
                    unoptimizedForm = result;
                    result          = MakeQueryInvocation(state.selectOrGroup, e, "GroupBy", lambdaLeft, diagnostics);
                    if (unoptimizedForm.HasAnyErrors && !result.HasAnyErrors)
                    {
                        unoptimizedForm = null;
                    }
                }
                else
                {
                    diagnostics.AddRange(d);
                }

                d.Free();
                return(MakeQueryClause(groupClause, result, queryInvocation: result, unoptimizedForm: unoptimizedForm));
            }

            default:
            {
                // there should have been a syntax error if we get here.
                return(new BoundBadExpression(
                           state.selectOrGroup, LookupResultKind.OverloadResolutionFailure, ImmutableArray <Symbol> .Empty,
                           ImmutableArray.Create <BoundNode>(state.fromExpression), state.fromExpression.Type));
            }
            }
        }
Beispiel #16
0
        internal static EmitDifferenceResult EmitDifference(
            CSharpCompilation compilation,
            EmitBaseline baseline,
            IEnumerable <SemanticEdit> edits,
            Stream metadataStream,
            Stream ilStream,
            Stream pdbStream,
            ICollection <uint> updatedMethodTokens,
            CompilationTestData testData,
            CancellationToken cancellationToken)
        {
            Guid moduleVersionId;

            try
            {
                moduleVersionId = baseline.OriginalMetadata.GetModuleVersionId();
            }
            catch (BadImageFormatException)
            {
                // return MakeEmitResult(success: false, diagnostics: ..., baseline: null);
                throw;
            }

            var pdbName = PathUtilities.ChangeExtension(compilation.SourceModule.Name, "pdb");


            var    diagnostics             = DiagnosticBag.GetInstance();
            string runtimeMDVersion        = compilation.GetRuntimeMetadataVersion(diagnostics);
            var    serializationProperties = compilation.ConstructModuleSerializationProperties(runtimeMDVersion, moduleVersionId);
            var    manifestResources       = SpecializedCollections.EmptyEnumerable <ResourceDescription>();

            var moduleBeingBuilt = new PEDeltaAssemblyBuilder(
                compilation.SourceAssembly,
                outputName: null,
                outputKind: compilation.Options.OutputKind,
                serializationProperties: serializationProperties,
                manifestResources: manifestResources,
                assemblySymbolMapper: null,
                previousGeneration: baseline,
                edits: edits);

            if (testData != null)
            {
                moduleBeingBuilt.SetMethodTestData(testData.Methods);
                testData.Module = moduleBeingBuilt;
            }

            baseline = moduleBeingBuilt.PreviousGeneration;

            var definitionMap = moduleBeingBuilt.PreviousDefinitions;
            var changes       = moduleBeingBuilt.Changes;

            if (compilation.Compile(
                    moduleBeingBuilt,
                    outputName: null,
                    win32Resources: null,
                    xmlDocStream: null,
                    cancellationToken: cancellationToken,
                    generateDebugInfo: true,
                    diagnostics: diagnostics,
                    filterOpt: changes.RequiresCompilation))
            {
                // Map the definitions from the previous compilation to the current compilation.
                // This must be done after compiling above since synthesized definitions
                // (generated when compiling method bodies) may be required.
                baseline = MapToCompilation(compilation, moduleBeingBuilt);

                using (var pdbWriter = new Cci.PdbWriter(pdbName, pdbStream, (testData != null) ? testData.SymWriterFactory : null))
                {
                    var context = new EmitContext(moduleBeingBuilt, null, diagnostics);
                    var encId   = Guid.NewGuid();

                    try
                    {
                        var writer = new DeltaPeWriter(
                            context,
                            compilation.MessageProvider,
                            pdbWriter,
                            baseline,
                            encId,
                            definitionMap,
                            changes,
                            cancellationToken);

                        writer.WriteMetadataAndIL(metadataStream, ilStream);
                        writer.GetMethodTokens(updatedMethodTokens);

                        return(new EmitDifferenceResult(
                                   success: true,
                                   diagnostics: diagnostics.ToReadOnlyAndFree(),
                                   baseline: writer.GetDelta(baseline, compilation, encId)));
                    }
                    catch (Cci.PdbWritingException e)
                    {
                        diagnostics.Add(ErrorCode.FTL_DebugEmitFailure, Location.None, e.Message);
                    }
                    catch (PermissionSetFileReadException e)
                    {
                        diagnostics.Add(ErrorCode.ERR_PermissionSetAttributeFileReadError, Location.None, e.FileName, e.PropertyName, e.Message);
                    }
                }
            }

            return(new EmitDifferenceResult(success: false, diagnostics: diagnostics.ToReadOnlyAndFree(), baseline: null));
        }
Beispiel #17
0
        public override Compilation?CreateCompilation(
            TextWriter consoleOutput,
            TouchedFileLogger touchedFilesLogger,
            ErrorLogger errorLogger,
            ImmutableArray <AnalyzerConfigOptionsResult> analyzerConfigOptions,
            AnalyzerConfigOptionsResult globalConfigOptions)
        {
            var parseOptions = Arguments.ParseOptions;

            // We compute script parse options once so we don't have to do it repeatedly in
            // case there are many script files.
            var scriptParseOptions = parseOptions.WithKind(SourceCodeKind.Script);

            bool hadErrors = false;

            var sourceFiles         = Arguments.SourceFiles;
            var trees               = new SyntaxTree?[sourceFiles.Length];
            var normalizedFilePaths = new string[sourceFiles.Length];
            var diagnosticBag       = DiagnosticBag.GetInstance();

            if (Arguments.CompilationOptions.ConcurrentBuild)
            {
                RoslynParallel.For(
                    0,
                    sourceFiles.Length,
                    UICultureUtilities.WithCurrentUICulture <int>(i =>
                {
                    //NOTE: order of trees is important!!
                    trees[i] = ParseFile(
                        parseOptions,
                        scriptParseOptions,
                        ref hadErrors,
                        sourceFiles[i],
                        diagnosticBag,
                        out normalizedFilePaths[i]);
                }),
                    CancellationToken.None);
            }
            else
            {
                for (int i = 0; i < sourceFiles.Length; i++)
                {
                    //NOTE: order of trees is important!!
                    trees[i] = ParseFile(
                        parseOptions,
                        scriptParseOptions,
                        ref hadErrors,
                        sourceFiles[i],
                        diagnosticBag,
                        out normalizedFilePaths[i]);
                }
            }

            // If errors had been reported in ParseFile, while trying to read files, then we should simply exit.
            if (ReportDiagnostics(diagnosticBag.ToReadOnlyAndFree(), consoleOutput, errorLogger))
            {
                Debug.Assert(hadErrors);
                return(null);
            }

            var diagnostics     = new List <DiagnosticInfo>();
            var uniqueFilePaths = new HashSet <string>(StringComparer.OrdinalIgnoreCase);

            for (int i = 0; i < sourceFiles.Length; i++)
            {
                var normalizedFilePath = normalizedFilePaths[i];
                Debug.Assert(normalizedFilePath != null);
                Debug.Assert(sourceFiles[i].IsInputRedirected || PathUtilities.IsAbsolute(normalizedFilePath));

                if (!uniqueFilePaths.Add(normalizedFilePath))
                {
                    // warning CS2002: Source file '{0}' specified multiple times
                    diagnostics.Add(new DiagnosticInfo(MessageProvider, (int)ErrorCode.WRN_FileAlreadyIncluded,
                                                       Arguments.PrintFullPaths ? normalizedFilePath : _diagnosticFormatter.RelativizeNormalizedPath(normalizedFilePath)));

                    trees[i] = null;
                }
            }

            if (Arguments.TouchedFilesPath != null)
            {
                foreach (var path in uniqueFilePaths)
                {
                    touchedFilesLogger.AddRead(path);
                }
            }

            var assemblyIdentityComparer = DesktopAssemblyIdentityComparer.Default;
            var appConfigPath            = this.Arguments.AppConfigPath;

            if (appConfigPath != null)
            {
                try
                {
                    using (var appConfigStream = new FileStream(appConfigPath, FileMode.Open, FileAccess.Read))
                    {
                        assemblyIdentityComparer = DesktopAssemblyIdentityComparer.LoadFromXml(appConfigStream);
                    }

                    if (touchedFilesLogger != null)
                    {
                        touchedFilesLogger.AddRead(appConfigPath);
                    }
                }
                catch (Exception ex)
                {
                    diagnostics.Add(new DiagnosticInfo(MessageProvider, (int)ErrorCode.ERR_CantReadConfigFile, appConfigPath, ex.Message));
                }
            }

            var xmlFileResolver    = new LoggingXmlFileResolver(Arguments.BaseDirectory, touchedFilesLogger);
            var sourceFileResolver = new LoggingSourceFileResolver(ImmutableArray <string> .Empty, Arguments.BaseDirectory, Arguments.PathMap, touchedFilesLogger);

            MetadataReferenceResolver referenceDirectiveResolver;
            var resolvedReferences = ResolveMetadataReferences(diagnostics, touchedFilesLogger, out referenceDirectiveResolver);

            if (ReportDiagnostics(diagnostics, consoleOutput, errorLogger))
            {
                return(null);
            }

            var loggingFileSystem = new LoggingStrongNameFileSystem(touchedFilesLogger, _tempDirectory);
            var optionsProvider   = new CompilerSyntaxTreeOptionsProvider(trees, analyzerConfigOptions, globalConfigOptions);

            return(CSharpCompilation.Create(
                       Arguments.CompilationName,
                       trees.WhereNotNull(),
                       resolvedReferences,
                       Arguments.CompilationOptions
                       .WithMetadataReferenceResolver(referenceDirectiveResolver)
                       .WithAssemblyIdentityComparer(assemblyIdentityComparer)
                       .WithXmlReferenceResolver(xmlFileResolver)
                       .WithStrongNameProvider(Arguments.GetStrongNameProvider(loggingFileSystem))
                       .WithSourceReferenceResolver(sourceFileResolver)
                       .WithSyntaxTreeOptionsProvider(optionsProvider)));
        }
        private static void AppendAllLoadedSyntaxTrees(
            ArrayBuilder <SyntaxTree> treesBuilder,
            SyntaxTree tree,
            string scriptClassName,
            SourceReferenceResolver resolver,
            CommonMessageProvider messageProvider,
            bool isSubmission,
            IDictionary <SyntaxTree, int> ordinalMapBuilder,
            IDictionary <SyntaxTree, ImmutableArray <DeclarationLoadDirective> > loadDirectiveMapBuilder,
            IDictionary <string, SyntaxTree> loadedSyntaxTreeMapBuilder,
            IDictionary <SyntaxTree, Lazy <RootSingleNamespaceDeclaration> > declMapBuilder,
            ref DeclarationTable declTable)
        {
            ArrayBuilder <DeclarationLoadDirective> loadDirectives = null;

            foreach (var directive in tree.GetCompilationUnitRoot().GetLoadDirectives())
            {
                var fileToken = directive.File;
                var path      = (string)fileToken.Value;
                if (path == null)
                {
                    // If there is no path, the parser should have some Diagnostics to report (if we're in an active region).
                    Debug.Assert(!directive.IsActive || tree.GetDiagnostics().Any(d => d.Severity == DiagnosticSeverity.Error));
                    continue;
                }

                var    diagnostics      = DiagnosticBag.GetInstance();
                string resolvedFilePath = null;
                if (resolver == null)
                {
                    diagnostics.Add(
                        messageProvider.CreateDiagnostic(
                            (int)ErrorCode.ERR_SourceFileReferencesNotSupported,
                            directive.Location));
                }
                else
                {
                    resolvedFilePath = resolver.ResolveReference(path, baseFilePath: tree.FilePath);
                    if (resolvedFilePath == null)
                    {
                        diagnostics.Add(
                            messageProvider.CreateDiagnostic(
                                (int)ErrorCode.ERR_NoSourceFile,
                                fileToken.GetLocation(),
                                path,
                                CSharpResources.CouldNotFindFile));
                    }
                    else if (!loadedSyntaxTreeMapBuilder.ContainsKey(resolvedFilePath))
                    {
                        try
                        {
                            var code       = resolver.ReadText(resolvedFilePath);
                            var loadedTree = SyntaxFactory.ParseSyntaxTree(
                                code,
                                tree.Options, // Use ParseOptions propagated from "external" tree.
                                resolvedFilePath);

                            // All #load'ed trees should have unique path information.
                            loadedSyntaxTreeMapBuilder.Add(loadedTree.FilePath, loadedTree);

                            AppendAllSyntaxTrees(
                                treesBuilder,
                                loadedTree,
                                scriptClassName,
                                resolver,
                                messageProvider,
                                isSubmission,
                                ordinalMapBuilder,
                                loadDirectiveMapBuilder,
                                loadedSyntaxTreeMapBuilder,
                                declMapBuilder,
                                ref declTable);
                        }
                        catch (Exception e)
                        {
                            diagnostics.Add(
                                CommonCompiler.ToFileReadDiagnostics(messageProvider, e, resolvedFilePath),
                                fileToken.GetLocation());
                        }
                    }
                    else
                    {
                        // The path resolved, but we've seen this file before,
                        // so don't attempt to load it again.
                        Debug.Assert(diagnostics.IsEmptyWithoutResolution);
                    }
                }

                if (loadDirectives == null)
                {
                    loadDirectives = ArrayBuilder <DeclarationLoadDirective> .GetInstance();
                }
                loadDirectives.Add(new DeclarationLoadDirective(resolvedFilePath, diagnostics.ToReadOnlyAndFree()));
            }

            if (loadDirectives != null)
            {
                loadDirectiveMapBuilder.Add(tree, loadDirectives.ToImmutableAndFree());
            }
        }
Beispiel #19
0
        internal static EmitDifferenceResult EmitDifference(
            CSharpCompilation compilation,
            EmitBaseline baseline,
            IEnumerable <SemanticEdit> edits,
            Func <ISymbol, bool> isAddedSymbol,
            Stream metadataStream,
            Stream ilStream,
            Stream pdbStream,
            ICollection <MethodDefinitionHandle> updatedMethods,
            CompilationTestData testData,
            CancellationToken cancellationToken)
        {
            var diagnostics = DiagnosticBag.GetInstance();

            var    emitOptions             = EmitOptions.Default.WithDebugInformationFormat(baseline.HasPortablePdb ? DebugInformationFormat.PortablePdb : DebugInformationFormat.Pdb);
            string runtimeMDVersion        = compilation.GetRuntimeMetadataVersion(emitOptions, diagnostics);
            var    serializationProperties = compilation.ConstructModuleSerializationProperties(emitOptions, runtimeMDVersion, baseline.ModuleVersionId);
            var    manifestResources       = SpecializedCollections.EmptyEnumerable <ResourceDescription>();

            PEDeltaAssemblyBuilder moduleBeingBuilt;

            try
            {
                moduleBeingBuilt = new PEDeltaAssemblyBuilder(
                    compilation.SourceAssembly,
                    emitOptions: emitOptions,
                    outputKind: compilation.Options.OutputKind,
                    serializationProperties: serializationProperties,
                    manifestResources: manifestResources,
                    previousGeneration: baseline,
                    edits: edits,
                    isAddedSymbol: isAddedSymbol);
            }
            catch (NotSupportedException)
            {
                // TODO: better error code (https://github.com/dotnet/roslyn/issues/8910)
                diagnostics.Add(ErrorCode.ERR_ModuleEmitFailure, NoLocation.Singleton, compilation.AssemblyName);
                return(new EmitDifferenceResult(success: false, diagnostics: diagnostics.ToReadOnlyAndFree(), baseline: null));
            }

            if (testData != null)
            {
                moduleBeingBuilt.SetMethodTestData(testData.Methods);
                testData.Module = moduleBeingBuilt;
            }

            var definitionMap = moduleBeingBuilt.PreviousDefinitions;
            var changes       = moduleBeingBuilt.Changes;

            EmitBaseline newBaseline = null;

            if (compilation.Compile(
                    moduleBeingBuilt,
                    emittingPdb: true,
                    diagnostics: diagnostics,
                    filterOpt: changes.RequiresCompilation,
                    cancellationToken: cancellationToken))
            {
                // Map the definitions from the previous compilation to the current compilation.
                // This must be done after compiling above since synthesized definitions
                // (generated when compiling method bodies) may be required.
                var mappedBaseline = MapToCompilation(compilation, moduleBeingBuilt);

                newBaseline = compilation.SerializeToDeltaStreams(
                    moduleBeingBuilt,
                    mappedBaseline,
                    definitionMap,
                    changes,
                    metadataStream,
                    ilStream,
                    pdbStream,
                    updatedMethods,
                    diagnostics,
                    testData?.SymWriterFactory,
                    cancellationToken);
            }

            return(new EmitDifferenceResult(
                       success: newBaseline != null,
                       diagnostics: diagnostics.ToReadOnlyAndFree(),
                       baseline: newBaseline));
        }
Beispiel #20
0
        private BoundLambda ReallyBind(NamedTypeSymbol delegateType)
        {
            var returnType = DelegateReturnType(delegateType);

            LambdaSymbol lambdaSymbol;
            Binder       lambdaBodyBinder;
            BoundBlock   block;

            var diagnostics = DiagnosticBag.GetInstance();

            // when binding for real (not for return inference), there is still
            // a good chance that we could reuse a body of a lambda previously bound for
            // return type inference.
            MethodSymbol cacheKey = GetCacheKey(delegateType);

            BoundLambda returnInferenceLambda;

            if (_returnInferenceCache.TryGetValue(cacheKey, out returnInferenceLambda) && returnInferenceLambda.InferredFromSingleType)
            {
                var lambdaSym     = returnInferenceLambda.Symbol;
                var lambdaRetType = lambdaSym.ReturnType;
                if (lambdaRetType == returnType)
                {
                    lambdaSymbol     = lambdaSym;
                    lambdaBodyBinder = returnInferenceLambda.Binder;
                    block            = returnInferenceLambda.Body;
                    diagnostics.AddRange(returnInferenceLambda.Diagnostics);

                    goto haveLambdaBodyAndBinders;
                }
            }

            var parameters = DelegateParameters(delegateType);

            lambdaSymbol     = new LambdaSymbol(binder.Compilation, binder.ContainingMemberOrLambda, _unboundLambda, parameters, returnType);
            lambdaBodyBinder = new ExecutableCodeBinder(_unboundLambda.Syntax, lambdaSymbol, ParameterBinder(lambdaSymbol, binder));
            block            = BindLambdaBody(lambdaSymbol, ref lambdaBodyBinder, diagnostics);
            ValidateUnsafeParameters(diagnostics, parameters);

haveLambdaBodyAndBinders:

            bool reachableEndpoint = ControlFlowPass.Analyze(binder.Compilation, lambdaSymbol, block, diagnostics);

            if (reachableEndpoint)
            {
                if (DelegateNeedsReturn(delegateType))
                {
                    // Not all code paths return a value in {0} of type '{1}'
                    diagnostics.Add(ErrorCode.ERR_AnonymousReturnExpected, lambdaSymbol.Locations[0], this.MessageID.Localize(), delegateType);
                }
                else
                {
                    block = FlowAnalysisPass.AppendImplicitReturn(block, lambdaSymbol, _unboundLambda.Syntax);
                }
            }

            if (IsAsync && !ErrorFacts.PreventsSuccessfulDelegateConversion(diagnostics))
            {
                if ((object)returnType != null && // Can be null if "delegateType" is not actually a delegate type.
                    returnType.SpecialType != SpecialType.System_Void &&
                    returnType != binder.Compilation.GetWellKnownType(WellKnownType.System_Threading_Tasks_Task) &&
                    returnType.OriginalDefinition != binder.Compilation.GetWellKnownType(WellKnownType.System_Threading_Tasks_Task_T))
                {
                    // Cannot convert async {0} to delegate type '{1}'. An async {0} may return void, Task or Task&lt;T&gt;, none of which are convertible to '{1}'.
                    diagnostics.Add(ErrorCode.ERR_CantConvAsyncAnonFuncReturns, lambdaSymbol.Locations[0], lambdaSymbol.MessageID.Localize(), delegateType);
                }
            }

            if (IsAsync)
            {
                Debug.Assert(lambdaSymbol.IsAsync);
                SourceMemberMethodSymbol.ReportAsyncParameterErrors(lambdaSymbol, diagnostics, lambdaSymbol.Locations[0]);
            }

            var result = new BoundLambda(_unboundLambda.Syntax, block, diagnostics.ToReadOnlyAndFree(), lambdaBodyBinder, delegateType, inferReturnType: false)
            {
                WasCompilerGenerated = _unboundLambda.WasCompilerGenerated
            };

            return(result);
        }
Beispiel #21
0
        internal override void ForceComplete(SourceLocation locationOpt, CancellationToken cancellationToken)
        {
            while (true)
            {
                cancellationToken.ThrowIfCancellationRequested();
                var incompletePart = _state.NextIncompletePart;
                switch (incompletePart)
                {
                case CompletionPart.Attributes:
                    GetAttributes();
                    break;

                case CompletionPart.StartValidatingReferencedAssemblies:
                {
                    DiagnosticBag diagnostics = null;

                    if (AnyReferencedAssembliesAreLinked)
                    {
                        diagnostics = DiagnosticBag.GetInstance();
                        ValidateLinkedAssemblies(diagnostics, cancellationToken);
                    }

                    if (_state.NotePartComplete(CompletionPart.StartValidatingReferencedAssemblies))
                    {
                        if (diagnostics != null)
                        {
                            _assemblySymbol.DeclaringCompilation.DeclarationDiagnostics.AddRange(diagnostics);
                        }

                        _state.NotePartComplete(CompletionPart.FinishValidatingReferencedAssemblies);
                    }

                    if (diagnostics != null)
                    {
                        diagnostics.Free();
                    }
                }
                break;

                case CompletionPart.FinishValidatingReferencedAssemblies:
                    // some other thread has started validating references (otherwise we would be in the case above) so
                    // we just wait for it to both finish and report the diagnostics.
                    Debug.Assert(_state.HasComplete(CompletionPart.StartValidatingReferencedAssemblies));
                    _state.SpinWaitComplete(CompletionPart.FinishValidatingReferencedAssemblies, cancellationToken);
                    break;

                case CompletionPart.MembersCompleted:
                    this.GlobalNamespace.ForceComplete(locationOpt, cancellationToken);

                    if (this.GlobalNamespace.HasComplete(CompletionPart.MembersCompleted))
                    {
                        _state.NotePartComplete(CompletionPart.MembersCompleted);
                    }
                    else
                    {
                        Debug.Assert(locationOpt != null, "If no location was specified, then the namespace members should be completed");
                        return;
                    }

                    break;

                case CompletionPart.None:
                    return;

                default:
                    // any other values are completion parts intended for other kinds of symbols
                    _state.NotePartComplete(incompletePart);
                    break;
                }

                _state.SpinWaitComplete(incompletePart, cancellationToken);
            }
        }
Beispiel #22
0
        private BoundPattern BindDeclarationPattern(
            DeclarationPatternSyntax node,
            BoundExpression operand,
            TypeSymbol operandType,
            bool hasErrors,
            DiagnosticBag diagnostics)
        {
            Debug.Assert(operand != null && operandType != (object)null);

            var typeSyntax = node.Type;

            bool        isVar;
            AliasSymbol aliasOpt;
            TypeSymbol  declType = BindType(typeSyntax, diagnostics, out isVar, out aliasOpt);

            if (isVar)
            {
                declType = operandType;
            }

            if (declType == (object)null)
            {
                Debug.Assert(hasErrors);
                declType = this.CreateErrorType("var");
            }

            var boundDeclType = new BoundTypeExpression(typeSyntax, aliasOpt, inferredType: isVar, type: declType);

            if (IsOperatorErrors(node, operandType, boundDeclType, diagnostics))
            {
                hasErrors = true;
            }
            else
            {
                hasErrors |= CheckValidPatternType(typeSyntax, operand, operandType, declType,
                                                   isVar: isVar, patternTypeWasInSource: true, diagnostics: diagnostics);
            }

            switch (node.Designation.Kind())
            {
            case SyntaxKind.SingleVariableDesignation:
                break;

            case SyntaxKind.DiscardDesignation:
                return(new BoundDeclarationPattern(node, null, boundDeclType, isVar, hasErrors));

            default:
                throw ExceptionUtilities.UnexpectedValue(node.Designation.Kind());
            }

            var designation = (SingleVariableDesignationSyntax)node.Designation;
            var identifier  = designation.Identifier;
            SourceLocalSymbol localSymbol = this.LookupLocal(identifier);

            if (localSymbol != (object)null)
            {
                if ((InConstructorInitializer || InFieldInitializer) && ContainingMemberOrLambda.ContainingSymbol.Kind == SymbolKind.NamedType)
                {
                    Error(diagnostics, ErrorCode.ERR_ExpressionVariableInConstructorOrFieldInitializer, node);
                }

                localSymbol.SetType(declType);

                // Check for variable declaration errors.
                hasErrors |= localSymbol.ScopeBinder.ValidateDeclarationNameConflictsInScope(localSymbol, diagnostics);

                if (!hasErrors)
                {
                    hasErrors = CheckRestrictedTypeInAsync(this.ContainingMemberOrLambda, declType, diagnostics, typeSyntax);
                }

                return(new BoundDeclarationPattern(node, localSymbol, boundDeclType, isVar, hasErrors));
            }
            else
            {
                // We should have the right binder in the chain for a script or interactive, so we use the field for the pattern.
                Debug.Assert(node.SyntaxTree.Options.Kind != SourceCodeKind.Regular);
                GlobalExpressionVariable expressionVariableField = LookupDeclaredField(designation);
                DiagnosticBag            tempDiagnostics         = DiagnosticBag.GetInstance();
                expressionVariableField.SetType(declType, tempDiagnostics);
                tempDiagnostics.Free();
                BoundExpression receiver       = SynthesizeReceiver(node, expressionVariableField, diagnostics);
                var             variableAccess = new BoundFieldAccess(node, receiver, expressionVariableField, null, hasErrors);
                return(new BoundDeclarationPattern(node, expressionVariableField, variableAccess, boundDeclType, isVar, hasErrors));
            }
        }
Beispiel #23
0
        /// <summary>
        /// This method does the following set of operations in the specified order:
        /// (1) GetAttributesToBind: Merge attributes from the given attributesSyntaxLists and filter out attributes by attribute target.
        /// (2) BindAttributeTypes: Bind all the attribute types to enable early decode of certain well-known attributes by type.
        /// (3) EarlyDecodeWellKnownAttributes: Perform early decoding of certain well-known attributes that could be queried by the binder in subsequent steps.
        ///     (NOTE: This step has the side effect of updating the symbol state based on the data extracted from well known attributes).
        /// (4) GetAttributes: Bind the attributes (attribute arguments and constructor) using bound attribute types.
        /// (5) DecodeWellKnownAttributes: Decode and validate bound well known attributes.
        ///     (NOTE: This step has the side effect of updating the symbol state based on the data extracted from well known attributes).
        /// (6) StoreBoundAttributesAndDoPostValidation:
        ///     (a) Store the bound attributes in lazyCustomAttributes in a thread safe manner.
        ///     (b) Perform some additional post attribute validations, such as
        ///         1) Duplicate attributes, attribute usage target validation, etc.
        ///         2) Post validation for attributes dependant on other attributes
        ///         These validations cannot be performed prior to step 6(a) as we might need to
        ///         perform a GetAttributes() call on a symbol which can introduce a cycle in attribute binding.
        ///         We avoid this cycle by performing such validations in PostDecodeWellKnownAttributes after lazyCustomAttributes have been set.
        ///     NOTE: PostDecodeWellKnownAttributes SHOULD NOT change the symbol state.
        /// </summary>
        /// <remarks>
        /// Current design of early decoding well-known attributes doesn't permit decoding attribute arguments/constructor as this can lead to binding cycles.
        /// For well-known attributes used by the binder, where we need the decoded arguments, we must handle them specially in one of the following possible ways:
        ///   (a) Avoid decoding the attribute arguments during binding and delay the corresponding binder tasks to a separate post-pass executed after binding.
        ///   (b) As the cycles can be caused only when we are binding attribute arguments/constructor, special case the corresponding binder tasks based on the current BinderFlags.
        /// </remarks>
        /// <param name="attributesSyntaxLists"></param>
        /// <param name="lazyCustomAttributesBag"></param>
        /// <param name="symbolPart">Specific part of the symbol to which the attributes apply, or <see cref="AttributeLocation.None"/> if the attributes apply to the symbol itself.</param>
        /// <param name="earlyDecodingOnly">Indicates that only early decoding should be performed.  WARNING: the resulting bag will not be sealed.</param>
        /// <returns>Flag indicating whether lazyCustomAttributes were stored on this thread. Caller should check for this flag and perform NotePartComplete if true.</returns>
        internal bool LoadAndValidateAttributes(
            OneOrMany <SyntaxList <AttributeListSyntax> > attributesSyntaxLists,
            ref CustomAttributesBag <CSharpAttributeData> lazyCustomAttributesBag,
            AttributeLocation symbolPart = AttributeLocation.None,
            bool earlyDecodingOnly       = false)
        {
            var diagnostics = DiagnosticBag.GetInstance();
            var compilation = this.DeclaringCompilation;

            ImmutableArray <Binder>          binders;
            ImmutableArray <AttributeSyntax> attributesToBind = this.GetAttributesToBind(attributesSyntaxLists, symbolPart, diagnostics, compilation, out binders);

            Debug.Assert(!attributesToBind.IsDefault);

            ImmutableArray <CSharpAttributeData> boundAttributes;
            WellKnownAttributeData wellKnownAttributeData;

            if (attributesToBind.Any())
            {
                Debug.Assert(!binders.IsDefault);
                Debug.Assert(binders.Length == attributesToBind.Length);

                // Initialize the bag so that data decoded from early attributes can be stored onto it.
                if (lazyCustomAttributesBag == null)
                {
                    Interlocked.CompareExchange(ref lazyCustomAttributesBag, new CustomAttributesBag <CSharpAttributeData>(), null);
                }

                // Bind the attribute types and then early decode them.
                int totalAttributesCount  = attributesToBind.Length;
                var attributeTypesBuilder = new NamedTypeSymbol[totalAttributesCount];

                Binder.BindAttributeTypes(binders, attributesToBind, this, attributeTypesBuilder, diagnostics);
                ImmutableArray <NamedTypeSymbol> boundAttributeTypes = attributeTypesBuilder.AsImmutableOrNull();

                this.EarlyDecodeWellKnownAttributeTypes(boundAttributeTypes, attributesToBind);
                this.PostEarlyDecodeWellKnownAttributeTypes();

                // Bind the attribute in two stages - early and normal.
                var attributesBuilder = new CSharpAttributeData[totalAttributesCount];

                // Early bind and decode some well-known attributes.
                EarlyWellKnownAttributeData earlyData = this.EarlyDecodeWellKnownAttributes(binders, boundAttributeTypes, attributesToBind, symbolPart, attributesBuilder);
                Debug.Assert(!attributesBuilder.Contains((attr) => attr != null && attr.HasErrors));

                // Store data decoded from early bound well-known attributes.
                // TODO: what if this succeeds on another thread, not ours?
                lazyCustomAttributesBag.SetEarlyDecodedWellKnownAttributeData(earlyData);

                if (earlyDecodingOnly)
                {
                    diagnostics.Free(); //NOTE: dropped.
                    return(false);
                }

                // Bind attributes.
                Binder.GetAttributes(binders, attributesToBind, boundAttributeTypes, attributesBuilder, diagnostics);
                boundAttributes = attributesBuilder.AsImmutableOrNull();

                // All attributes must be bound by now.
                Debug.Assert(!boundAttributes.Any((attr) => attr == null));

                // Validate attribute usage and Decode remaining well-known attributes.
                wellKnownAttributeData = this.ValidateAttributeUsageAndDecodeWellKnownAttributes(binders, attributesToBind, boundAttributes, diagnostics, symbolPart);

                // Store data decoded from remaining well-known attributes.
                // TODO: what if this succeeds on another thread but not this thread?
                lazyCustomAttributesBag.SetDecodedWellKnownAttributeData(wellKnownAttributeData);
            }
            else if (earlyDecodingOnly)
            {
                diagnostics.Free(); //NOTE: dropped.
                return(false);
            }
            else
            {
                boundAttributes        = ImmutableArray <CSharpAttributeData> .Empty;
                wellKnownAttributeData = null;
                Interlocked.CompareExchange(ref lazyCustomAttributesBag, CustomAttributesBag <CSharpAttributeData> .WithEmptyData(), null);
                this.PostEarlyDecodeWellKnownAttributeTypes();
            }

            this.PostDecodeWellKnownAttributes(boundAttributes, attributesToBind, diagnostics, symbolPart, wellKnownAttributeData);

            // Store attributes into the bag.
            bool lazyAttributesStoredOnThisThread = false;

            if (lazyCustomAttributesBag.SetAttributes(boundAttributes))
            {
                this.AddDeclarationDiagnostics(diagnostics);
                lazyAttributesStoredOnThisThread = true;
                if (lazyCustomAttributesBag.IsEmpty)
                {
                    lazyCustomAttributesBag = CustomAttributesBag <CSharpAttributeData> .Empty;
                }
            }

            Debug.Assert(lazyCustomAttributesBag.IsSealed);
            diagnostics.Free();
            return(lazyAttributesStoredOnThisThread);
        }
Beispiel #24
0
        internal void ComputeReturnType()
        {
            if (_lazyReturnType is object)
            {
                return;
            }

            var                 diagnostics      = DiagnosticBag.GetInstance();
            TypeSyntax          returnTypeSyntax = _syntax.ReturnType;
            TypeWithAnnotations returnType       = _binder.BindType(returnTypeSyntax.SkipRef(), diagnostics);

            var compilation = DeclaringCompilation;

            // Skip some diagnostics when the local function is not associated with a compilation
            // (specifically, local functions nested in expressions in the EE).
            if (compilation is object)
            {
                if (this.IsAsync)
                {
                    if (this.RefKind != RefKind.None)
                    {
                        ReportBadRefToken(returnTypeSyntax, diagnostics);
                    }
                    else if (returnType.Type.IsBadAsyncReturn(compilation))
                    {
                        diagnostics.Add(ErrorCode.ERR_BadAsyncReturn, this.Locations[0]);
                    }
                }

                var location = _syntax.ReturnType.Location;
                if (_refKind == RefKind.RefReadOnly)
                {
                    compilation.EnsureIsReadOnlyAttributeExists(diagnostics, location, modifyCompilation: false);
                }

                if (compilation.ShouldEmitNullableAttributes(this) &&
                    returnType.NeedsNullableAttribute())
                {
                    compilation.EnsureNullableAttributeExists(diagnostics, location, modifyCompilation: false);
                    // Note: we don't need to warn on annotations used in #nullable disable context for local functions, as this is handled in binding already
                }
            }

            // span-like types are returnable in general
            if (returnType.IsRestrictedType(ignoreSpanLikeTypes: true))
            {
                // Method or delegate cannot return type '{0}'
                diagnostics.Add(ErrorCode.ERR_MethodReturnCantBeRefAny, returnTypeSyntax.Location, returnType.Type);
            }

            Debug.Assert(_refKind == RefKind.None ||
                         !returnType.IsVoidType() ||
                         returnTypeSyntax.HasErrors);

            lock (_declarationDiagnostics)
            {
                if (_lazyReturnType is object)
                {
                    diagnostics.Free();
                    return;
                }

                _declarationDiagnostics.AddRangeAndFree(diagnostics);
                Interlocked.CompareExchange(ref _lazyReturnType, new TypeWithAnnotations.Boxed(returnType), null);
            }
        }
Beispiel #25
0
        public static bool ReportDelegateMethodGroupDiagnostics(Binder binder, BoundMethodGroup expr, TypeSymbol targetType, DiagnosticBag diagnostics)
        {
            var invokeMethodOpt = GetDelegateInvokeMethodIfAvailable(targetType);
            HashSet <DiagnosticInfo> useSiteDiagnostics = null;
            var resolution = ResolveDelegateMethodGroup(binder, expr, invokeMethodOpt, ref useSiteDiagnostics);

            diagnostics.Add(expr.Syntax, useSiteDiagnostics);

            bool hasErrors = resolution.HasAnyErrors;

            diagnostics.AddRange(resolution.Diagnostics);

            // SPEC VIOLATION: Unfortunately, we cannot exactly implement the specification for
            // the scenario in which an extension method that extends a value type is converted
            // to a delegate. The code we generate that captures a delegate to a static method
            // that is "partially evaluated" with the bound-to-the-delegate first argument
            // requires that the first argument be of reference type.
            //
            // SPEC VIOLATION: Similarly, we cannot capture a method of Nullable<T>, because
            // boxing a Nullable<T> gives a T, not a boxed Nullable<T>.
            //
            // We give special error messages in these situations.

            if (resolution.MethodGroup != null)
            {
                var result = resolution.OverloadResolutionResult;
                if (result != null)
                {
                    if (result.Succeeded)
                    {
                        var method = result.BestResult.Member;
                        Debug.Assert((object)method != null);
                        if (resolution.MethodGroup.IsExtensionMethodGroup)
                        {
                            Debug.Assert(method.IsExtensionMethod);

                            var thisParameter = method.Parameters[0];
                            if (!thisParameter.Type.IsReferenceType)
                            {
                                // Extension method '{0}' defined on value type '{1}' cannot be used to create delegates
                                diagnostics.Add(
                                    ErrorCode.ERR_ValueTypeExtDelegate,
                                    expr.Syntax.Location,
                                    method,
                                    thisParameter.Type);
                                hasErrors = true;
                            }
                        }
                        else if (method.OriginalDefinition.ContainingType.SpecialType == SpecialType.System_Nullable_T && !method.IsOverride)
                        {
                            // CS1728: Cannot bind delegate to '{0}' because it is a member of 'System.Nullable<T>'
                            diagnostics.Add(
                                ErrorCode.ERR_DelegateOnNullable,
                                expr.Syntax.Location,
                                method);
                            hasErrors = true;
                        }
                    }
                    else if (!hasErrors &&
                             !resolution.IsEmpty &&
                             resolution.ResultKind == LookupResultKind.Viable)
                    {
                        var overloadDiagnostics = DiagnosticBag.GetInstance();

                        result.ReportDiagnostics(binder, expr.Syntax.Location, overloadDiagnostics,
                                                 expr.Name,
                                                 resolution.MethodGroup.Receiver, resolution.AnalyzedArguments, resolution.MethodGroup.Methods.ToImmutable(),
                                                 typeContainingConstructor: null, delegateTypeBeingInvoked: null, isMethodGroupConversion: true);

                        if (!overloadDiagnostics.IsEmptyWithoutResolution)
                        {
                            hasErrors = overloadDiagnostics.HasAnyErrors();
                            diagnostics.AddRange(overloadDiagnostics);
                        }

                        overloadDiagnostics.Free();
                    }
                }
            }

            resolution.Free();
            return(hasErrors);
        }
Beispiel #26
0
        internal sealed override TypeSymbol GetFieldType(ConsList <FieldSymbol> fieldsBeingBound)
        {
            Debug.Assert(fieldsBeingBound != null);

            if ((object)lazyType != null)
            {
                return(lazyType);
            }

            var declarator  = VariableDeclaratorNode;
            var fieldSyntax = GetFieldDeclaration(declarator);
            var typeSyntax  = fieldSyntax.Declaration.Type;

            var compilation = this.DeclaringCompilation;

            var        diagnostics = DiagnosticBag.GetInstance();
            TypeSymbol type;

            // When we have multiple declarators, we report the type diagnostics on only the first.
            DiagnosticBag diagnosticsForFirstDeclarator = DiagnosticBag.GetInstance();

            Symbol associatedPropertyOrEvent = this.AssociatedSymbol;

            if ((object)associatedPropertyOrEvent != null && associatedPropertyOrEvent.Kind == SymbolKind.Event)
            {
                EventSymbol @event = (EventSymbol)associatedPropertyOrEvent;
                if (@event.IsWindowsRuntimeEvent)
                {
                    NamedTypeSymbol tokenTableType = this.DeclaringCompilation.GetWellKnownType(WellKnownType.System_Runtime_InteropServices_WindowsRuntime_EventRegistrationTokenTable_T);
                    Binder.ReportUseSiteDiagnostics(tokenTableType, diagnosticsForFirstDeclarator, this.ErrorLocation);

                    // CONSIDER: Do we want to guard against the possibility that someone has created their own EventRegistrationTokenTable<T>
                    // type that has additional generic constraints?
                    type = tokenTableType.Construct(@event.Type);
                }
                else
                {
                    type = @event.Type;
                }
            }
            else
            {
                var binderFactory = compilation.GetBinderFactory(SyntaxTree);
                var binder        = binderFactory.GetBinder(typeSyntax);

                binder = binder.WithContainingMemberOrLambda(this);
                if (!ContainingType.IsScriptClass)
                {
                    type = binder.BindType(typeSyntax, diagnosticsForFirstDeclarator);
                    if (IsFixed)
                    {
                        type = new PointerTypeSymbol(type);
                    }
                }
                else
                {
                    bool isVar;
                    type = binder.BindType(typeSyntax, diagnostics, out isVar);

                    Debug.Assert((object)type != null || isVar);

                    if (isVar)
                    {
                        if (this.IsConst)
                        {
                            diagnosticsForFirstDeclarator.Add(ErrorCode.ERR_ImplicitlyTypedVariableCannotBeConst, typeSyntax.Location);
                        }

                        if (fieldsBeingBound.ContainsReference(this))
                        {
                            diagnostics.Add(ErrorCode.ERR_RecursivelyTypedVariable, this.ErrorLocation, this);
                            type = null;
                        }
                        else if (fieldSyntax.Declaration.Variables.Count > 1)
                        {
                            diagnosticsForFirstDeclarator.Add(ErrorCode.ERR_ImplicitlyTypedVariableMultipleDeclarator, typeSyntax.Location);
                        }
                        else
                        {
                            fieldsBeingBound = new ConsList <FieldSymbol>(this, fieldsBeingBound);

                            var initializerBinder = new ImplicitlyTypedFieldBinder(binder, fieldsBeingBound);
                            var initializerOpt    = initializerBinder.BindInferredVariableInitializer(diagnostics, declarator.Initializer, declarator);

                            if (initializerOpt != null)
                            {
                                if ((object)initializerOpt.Type != null && !initializerOpt.Type.IsErrorType())
                                {
                                    type = initializerOpt.Type;
                                }

                                this.lazyFieldTypeInferred = 1;
                            }
                        }

                        if ((object)type == null)
                        {
                            type = binder.CreateErrorType("var");
                        }
                    }
                }

                if (IsFixed)
                {
                    if (ContainingType.TypeKind != TypeKind.Struct)
                    {
                        diagnostics.Add(ErrorCode.ERR_FixedNotInStruct, ErrorLocation);
                    }

                    if (IsStatic)
                    {
                        diagnostics.Add(ErrorCode.ERR_BadMemberFlag, ErrorLocation, SyntaxFacts.GetText(SyntaxKind.StaticKeyword));
                    }

                    if (IsVolatile)
                    {
                        diagnostics.Add(ErrorCode.ERR_BadMemberFlag, ErrorLocation, SyntaxFacts.GetText(SyntaxKind.VolatileKeyword));
                    }

                    var elementType = ((PointerTypeSymbol)type).PointedAtType;
                    int elementSize = elementType.FixedBufferElementSizeInBytes();
                    if (elementSize == 0)
                    {
                        var loc = typeSyntax.Location;
                        diagnostics.Add(ErrorCode.ERR_IllegalFixedType, loc);
                    }

                    if (!binder.InUnsafeRegion)
                    {
                        diagnosticsForFirstDeclarator.Add(ErrorCode.ERR_UnsafeNeeded, declarator.Location);
                    }
                }
            }

            // update the lazyType only if it contains value last seen by the current thread:
            if ((object)Interlocked.CompareExchange(ref lazyType, type, null) == null)
            {
                TypeChecks(type, fieldSyntax, declarator, diagnostics);

                // CONSIDER: SourceEventFieldSymbol would like to suppress these diagnostics.
                compilation.SemanticDiagnostics.AddRange(diagnostics);

                bool isFirstDeclarator = fieldSyntax.Declaration.Variables[0] == declarator;
                if (isFirstDeclarator)
                {
                    compilation.SemanticDiagnostics.AddRange(diagnosticsForFirstDeclarator);
                }

                state.NotePartComplete(CompletionPart.Type);
            }

            diagnostics.Free();
            diagnosticsForFirstDeclarator.Free();
            return(lazyType);
        }
        internal BoundExpression SetInferredTypeWithAnnotations(TypeWithAnnotations type, Binder?binderOpt, DiagnosticBag?diagnosticsOpt)
        {
            Debug.Assert(binderOpt != null || type.HasType);
            Debug.Assert(this.Syntax.Kind() == SyntaxKind.SingleVariableDesignation ||
                         (this.Syntax.Kind() == SyntaxKind.DeclarationExpression &&
                          ((DeclarationExpressionSyntax)this.Syntax).Designation.Kind() == SyntaxKind.SingleVariableDesignation));

            bool inferenceFailed = !type.HasType;

            if (inferenceFailed)
            {
                type = TypeWithAnnotations.Create(binderOpt !.CreateErrorType("var"));
            }

            switch (this.VariableSymbol.Kind)
            {
            case SymbolKind.Local:
                var localSymbol = (SourceLocalSymbol)this.VariableSymbol;

                if (diagnosticsOpt != null)
                {
                    if (inferenceFailed)
                    {
                        ReportInferenceFailure(diagnosticsOpt);
                    }
                    else
                    {
                        SyntaxNode typeOrDesignationSyntax = this.Syntax.Kind() == SyntaxKind.DeclarationExpression ?
                                                             ((DeclarationExpressionSyntax)this.Syntax).Type :
                                                             this.Syntax;

                        Binder.CheckRestrictedTypeInAsyncMethod(localSymbol.ContainingSymbol, type.Type, diagnosticsOpt, typeOrDesignationSyntax);
                    }
                }

                localSymbol.SetTypeWithAnnotations(type);
                return(new BoundLocal(this.Syntax, localSymbol, BoundLocalDeclarationKind.WithInferredType, constantValueOpt: null, isNullableUnknown: false, type: type.Type, hasErrors: this.HasErrors || inferenceFailed).WithWasConverted());

            case SymbolKind.Field:
                var fieldSymbol          = (GlobalExpressionVariable)this.VariableSymbol;
                var inferenceDiagnostics = DiagnosticBag.GetInstance();

                if (inferenceFailed)
                {
                    ReportInferenceFailure(inferenceDiagnostics);
                }

                type = fieldSymbol.SetTypeWithAnnotations(type, inferenceDiagnostics);
                inferenceDiagnostics.Free();

                return(new BoundFieldAccess(this.Syntax,
                                            this.ReceiverOpt,
                                            fieldSymbol,
                                            null,
                                            LookupResultKind.Viable,
                                            isDeclaration: true,
                                            type: type.Type,
                                            hasErrors: this.HasErrors || inferenceFailed));

            default:
                throw ExceptionUtilities.UnexpectedValue(this.VariableSymbol.Kind);
            }
        }
Beispiel #28
0
        internal override bool CompileImpl(CommonPEModuleBuilder moduleBuilder, Stream win32Resources, Stream xmlDocStream, bool emittingPdb, DiagnosticBag diagnostics, Predicate <ISymbol> filterOpt, CancellationToken cancellationToken)
        {
            // The diagnostics should include syntax and declaration errors. We insert these before calling Emitter.Emit, so that the emitter
            // does not attempt to emit if there are declaration errors (but we do insert all errors from method body binding...)
            bool hasDeclarationErrors = false;  // !FilterAndAppendDiagnostics(diagnostics, GetDiagnostics(CompilationStage.Declare, true, cancellationToken));

            var moduleBeingBuilt = (PEModuleBuilder)moduleBuilder;

            if (moduleBeingBuilt.EmitOptions.EmitMetadataOnly)
            {
                throw new NotImplementedException();
            }

            // Perform initial bind of method bodies in spite of earlier errors. This is the same
            // behavior as when calling GetDiagnostics()

            // Use a temporary bag so we don't have to refilter pre-existing diagnostics.
            DiagnosticBag methodBodyDiagnosticBag = DiagnosticBag.GetInstance();

            SourceCompiler.CompileSources(
                this,
                moduleBeingBuilt,
                emittingPdb,
                hasDeclarationErrors,
                methodBodyDiagnosticBag,
                cancellationToken);

            SetupWin32Resources(moduleBeingBuilt, win32Resources, methodBodyDiagnosticBag);

            ReportManifestResourceDuplicates(
                moduleBeingBuilt.ManifestResources,
                SourceAssembly.Modules.Skip(1).Select((m) => m.Name),   //all modules except the first one
                AddedModulesResourceNames(methodBodyDiagnosticBag),
                methodBodyDiagnosticBag);

            bool hasMethodBodyErrorOrWarningAsError = !FilterAndAppendAndFreeDiagnostics(diagnostics, ref methodBodyDiagnosticBag);

            if (hasDeclarationErrors || hasMethodBodyErrorOrWarningAsError)
            {
                return(false);
            }

            cancellationToken.ThrowIfCancellationRequested();

            // Use a temporary bag so we don't have to refilter pre-existing diagnostics.
            DiagnosticBag xmlDiagnostics = DiagnosticBag.GetInstance();

            //string assemblyName = FileNameUtilities.ChangeExtension(moduleBeingBuilt.EmitOptions.OutputNameOverride, extension: null);
            //DocumentationCommentCompiler.WriteDocumentationCommentXml(this, assemblyName, xmlDocStream, xmlDiagnostics, cancellationToken);

            if (!FilterAndAppendAndFreeDiagnostics(diagnostics, ref xmlDiagnostics))
            {
                return(false);
            }

            //// Use a temporary bag so we don't have to refilter pre-existing diagnostics.
            //DiagnosticBag importDiagnostics = DiagnosticBag.GetInstance();
            //this.ReportUnusedImports(importDiagnostics, cancellationToken);

            //if (!FilterAndAppendAndFreeDiagnostics(diagnostics, ref importDiagnostics))
            //{
            //    Debug.Assert(false, "Should never produce an error");
            //    return false;
            //}

            return(true);
        }
Beispiel #29
0
        internal SourceFieldLikeEventSymbol(SourceMemberContainerTypeSymbol containingType, Binder binder, SyntaxTokenList modifiers, VariableDeclaratorSyntax declaratorSyntax, DiagnosticBag diagnostics)
            : base(containingType, declaratorSyntax, modifiers, null, declaratorSyntax.Identifier, diagnostics)
        {
            this.name = declaratorSyntax.Identifier.ValueText;


            var declaratorDiagnostics = DiagnosticBag.GetInstance();
            var declarationSyntax     = (VariableDeclarationSyntax)declaratorSyntax.Parent;

            this.type = BindEventType(binder, declarationSyntax.Type, declaratorDiagnostics);

            // The runtime will not treat the accessors of this event as overrides or implementations
            // of those of another event unless both the signatures and the custom modifiers match.
            // Hence, in the case of overrides and *explicit* implementations (not possible for field-like
            // events), we need to copy the custom modifiers that are in the signatures of the
            // overridden/implemented event accessors. (From source, we know that there can only be one
            // overridden/implemented event, so there are no conflicts.)  This is unnecessary for implicit
            // implementations because, if the custom modifiers don't match, we'll insert bridge methods
            // for the accessors (explicit implementations that delegate to the implicit implementations)
            // with the correct custom modifiers (see SourceNamedTypeSymbol.ImplementInterfaceMember).

            // If this event is an override, we may need to copy custom modifiers from
            // the overridden event (so that the runtime will recognize it as an override).
            // We check for this case here, while we can still modify the parameters and
            // return type without losing the appearance of immutability.
            if (this.IsOverride)
            {
                EventSymbol overriddenEvent = this.OverriddenEvent;
                if ((object)overriddenEvent != null)
                {
                    CopyEventCustomModifiers(overriddenEvent, ref this.type);
                }
            }

            bool hasInitializer  = declaratorSyntax.Initializer != null;
            bool inInterfaceType = containingType.IsInterfaceType();

            if (hasInitializer)
            {
                if (inInterfaceType)
                {
                    diagnostics.Add(ErrorCode.ERR_InterfaceEventInitializer, this.Locations[0], this);
                }
                else if (this.IsAbstract)
                {
                    diagnostics.Add(ErrorCode.ERR_AbstractEventInitializer, this.Locations[0], this);
                }
            }

            // NOTE: if there's an initializer in source, we'd better create a backing field, regardless of
            // whether or not the initializer is legal.
            if (hasInitializer || !(inInterfaceType || this.IsExtern || this.IsAbstract))
            {
                this.associatedField = MakeAssociatedField(declaratorSyntax);
                // Don't initialize this.type - we'll just use the type of the field (which is lazy and handles var)
            }

            // Accessors will assume that Type is available.
            this.addMethod    = new SynthesizedFieldLikeEventAccessorSymbol(this, isAdder: true);
            this.removeMethod = new SynthesizedFieldLikeEventAccessorSymbol(this, isAdder: false);

            if (declarationSyntax.Variables[0] == declaratorSyntax)
            {
                // Don't report these diagnostics for every declarator in this declaration.
                diagnostics.AddRange(declaratorDiagnostics);
            }

            declaratorDiagnostics.Free();
        }
Beispiel #30
0
 void EmitOpCode(ILBuilder il, ILOpCode code)
 {
     il.EmitOpCode(code);
     il.EmitToken(_fieldref, null, DiagnosticBag.GetInstance());    // .{field}
 }