private static AggregatedCrumData AggregateCrumbData(string sensorName, Device3 device)
        {
            if (device.Data == null || device.Data.Count == 0)
            {
                return(new AggregatedCrumData());
            }

            var sensor = device.Data
                         .Where(data => data.SensorType == sensorName);

            if (sensor.Count() > 0)
            {
                return(sensor
                       .GroupBy(item => 1)
                       .Select(data => new AggregatedCrumData
                {
                    FirstCrumbDtm = data.Min(a => a.DateTime),
                    LastCrumbDtm = data.Max(a => a.DateTime),
                    CrumbCount = data.Count(),
                    AvgValue = Math.Round(data.Average(a => a.Value), 2)
                })
                       .First());
            }

            return(new AggregatedCrumData());
        }
Beispiel #2
0
        public WindowsMixedRealityGraphicsPresenter(GraphicsDevice device, PresentationParameters presentationParameters)
            : base(device, presentationParameters)
        {
            holographicSpace = HolographicSpace.CreateForCoreWindow(CoreWindow.GetForCurrentThread());
            CoreWindow.GetForCurrentThread().Activate();

            Device3         d3DDevice        = device.NativeDevice.QueryInterface <Device3>();
            IDirect3DDevice d3DInteropDevice = null;

            // Acquire the DXGI interface for the Direct3D device.
            using (var dxgiDevice = d3DDevice.QueryInterface <SharpDX.DXGI.Device3>())
            {
                // Wrap the native device using a WinRT interop object.
                uint hr = CreateDirect3D11DeviceFromDXGIDevice(dxgiDevice.NativePointer, out IntPtr pUnknown);

                if (hr == 0)
                {
                    d3DInteropDevice = Marshal.GetObjectForIUnknown(pUnknown) as IDirect3DDevice;
                    Marshal.Release(pUnknown);
                }
            }

            holographicSpace.SetDirect3D11Device(d3DInteropDevice);

            BeginDraw(null);
            ResizeDepthStencilBuffer(backBuffer.Width, backBuffer.Height, 0);

            // Set a dummy back buffer as we use a seperate one for each eye.
            BackBuffer = Texture.New(GraphicsDevice, backBuffer.Description, null);
        }
Beispiel #3
0
 public BusWindow()
 {
     InitializeComponent();
     Device1.SetBinding(TextBlock.TextProperty, new Binding("Info1")
     {
         Source = DataList
     });
     Device2.SetBinding(TextBlock.TextProperty, new Binding("Info2")
     {
         Source = DataList
     });
     Device3.SetBinding(TextBlock.TextProperty, new Binding("Info3")
     {
         Source = DataList
     });
     Device4.SetBinding(TextBlock.TextProperty, new Binding("Info4")
     {
         Source = DataList
     });
     Device5.SetBinding(TextBlock.TextProperty, new Binding("Info5")
     {
         Source = DataList
     });
 }
Beispiel #4
0
        /// <summary>
        /// Configures the Direct3D device, and stores handles to it and the device context.
        /// </summary>
        private void CreateDeviceResources()
        {
            DisposeDeviceAndContext();

            // This flag adds support for surfaces with a different color channel ordering
            // than the API default. It is required for compatibility with Direct2D.
            DeviceCreationFlags creationFlags = DeviceCreationFlags.BgraSupport;

#if DEBUG
            if (DirectXHelper.SdkLayersAvailable())
            {
                // If the project is in a debug build, enable debugging via SDK Layers with this flag.
                creationFlags |= DeviceCreationFlags.Debug;
            }
#endif

            // This array defines the set of DirectX hardware feature levels this app will support.
            // Note the ordering should be preserved.
            // Note that HoloLens supports feature level 11.1. The HoloLens emulator is also capable
            // of running on graphics cards starting with feature level 10.0.
            FeatureLevel[] featureLevels =
            {
                FeatureLevel.Level_12_1,
                FeatureLevel.Level_12_0,
                FeatureLevel.Level_11_1,
                FeatureLevel.Level_11_0,
                FeatureLevel.Level_10_1,
                FeatureLevel.Level_10_0
            };

            // Create the Direct3D 11 API device object and a corresponding context.
            try
            {
                if (null != dxgiAdapter)
                {
                    using (var device = new Device(dxgiAdapter, creationFlags, featureLevels))
                    {
                        // Store pointers to the Direct3D 11.1 API device.
                        d3dDevice = this.ToDispose(device.QueryInterface <Device3>());
                    }
                }
                else
                {
                    using (var device = new Device(DriverType.Hardware, creationFlags, featureLevels))
                    {
                        // Store a pointer to the Direct3D device.
                        d3dDevice = this.ToDispose(device.QueryInterface <Device3>());
                    }
                }
            }
            catch
            {
                // If the initialization fails, fall back to the WARP device.
                // For more information on WARP, see:
                // http://go.microsoft.com/fwlink/?LinkId=286690
                using (var device = new Device(DriverType.Warp, creationFlags, featureLevels))
                {
                    d3dDevice = this.ToDispose(device.QueryInterface <Device3>());
                }
            }

            // Cache the feature level of the device that was created.
            d3dFeatureLevel = d3dDevice.FeatureLevel;

            // Store a pointer to the Direct3D immediate context.
            d3dContext = this.ToDispose(d3dDevice.ImmediateContext3);

            // Acquire the DXGI interface for the Direct3D device.
            using (var dxgiDevice = d3dDevice.QueryInterface <SharpDX.DXGI.Device3>())
            {
                // Wrap the native device using a WinRT interop object.
                IntPtr pUnknown;
                UInt32 hr = InteropStatics.CreateDirect3D11DeviceFromDXGIDevice(dxgiDevice.NativePointer, out pUnknown);
                if (hr == 0)
                {
                    d3dInteropDevice = (IDirect3DDevice)Marshal.GetObjectForIUnknown(pUnknown);
                    Marshal.Release(pUnknown);
                }

                // Store a pointer to the DXGI adapter.
                // This is for the case of no preferred DXGI adapter, or fallback to WARP.
                dxgiAdapter = this.ToDispose(dxgiDevice.Adapter.QueryInterface <SharpDX.DXGI.Adapter3>());
            }

            // Check for device support for the optional feature that allows setting the render target array index from the vertex shader stage.
            var options = d3dDevice.CheckD3D113Features3();
            if (options.VPAndRTArrayIndexFromAnyShaderFeedingRasterizer)
            {
                d3dDeviceSupportsVprt = true;
            }
        }
Beispiel #5
0
        public void BuildPSO(Device3 device, GraphicsCommandList commandList)
        {
            World        = Matrix.Translation(-2.5f, -2.5f, -2.5f);
            buffer.World = World;
            light        = new Lighting
            {
                GlobalAmbientX = 1,
                GlobalAmbientY = 1,
                GlobalAmbientZ = 1,
                KaX            = .1f,
                KaY            = .1f,
                KaZ            = .1f,
                KdX            = .5f,
                KdY            = .5f,
                KdZ            = .5f,
                KeX            = .25f,
                KeY            = .25f,
                KeZ            = .25f,
                KsX            = .1f,
                KsY            = .1f,
                KsZ            = .1f,
                LightColorX    = 1,
                LightColorY    = 1,
                LightColorZ    = 1,
                LightPositionX = 10,
                LightPositionY = 10,
                LightPositionZ = 10,
                shininess      = 5
            };

            DescriptorHeapDescription srvHeapDesc = new DescriptorHeapDescription()
            {
                DescriptorCount = 1,
                Flags           = DescriptorHeapFlags.ShaderVisible,
                Type            = DescriptorHeapType.ConstantBufferViewShaderResourceViewUnorderedAccessView
            };

            _srvDescriptorHeap = device.CreateDescriptorHeap(srvHeapDesc);

            //setup descriptor ranges
            DescriptorRange[] ranges = new DescriptorRange[] { new DescriptorRange()
                                                               {
                                                                   RangeType = DescriptorRangeType.ShaderResourceView, DescriptorCount = 1, OffsetInDescriptorsFromTableStart = int.MinValue, BaseShaderRegister = 0
                                                               } };

            //Get sampler state setup
            StaticSamplerDescription sampler = new StaticSamplerDescription()
            {
                Filter           = Filter.MinimumMinMagMipPoint,
                AddressU         = TextureAddressMode.Border,
                AddressV         = TextureAddressMode.Border,
                AddressW         = TextureAddressMode.Border,
                MipLODBias       = 0,
                MaxAnisotropy    = 0,
                ComparisonFunc   = Comparison.Never,
                BorderColor      = StaticBorderColor.TransparentBlack,
                MinLOD           = 0.0f,
                MaxLOD           = float.MaxValue,
                ShaderRegister   = 0,
                RegisterSpace    = 0,
                ShaderVisibility = ShaderVisibility.Pixel,
            };

            Projection = Matrix.PerspectiveFovLH((float)Math.PI / 3f, 4f / 3f, 1, 1000);
            View       = Matrix.LookAtLH(new Vector3(10 * (float)Math.Sin(rotation), 5, 10 * (float)Math.Cos(rotation)), Vector3.Zero, Vector3.UnitY);
            World      = Matrix.Translation(-2.5f, -2.5f, -2.5f);

            DescriptorHeapDescription cbvHeapDesc = new DescriptorHeapDescription()
            {
                DescriptorCount = 1,
                Flags           = DescriptorHeapFlags.ShaderVisible,
                Type            = DescriptorHeapType.ConstantBufferViewShaderResourceViewUnorderedAccessView
            };

            _objectViewHeap   = device.CreateDescriptorHeap(cbvHeapDesc);
            _lightingViewHeap = device.CreateDescriptorHeap(cbvHeapDesc);

            RootParameter[] rootParameters = new RootParameter[] { new RootParameter(ShaderVisibility.Pixel, ranges),
                                                                   new RootParameter(ShaderVisibility.All, new RootDescriptor(1, 0), RootParameterType.ConstantBufferView),
                                                                   new RootParameter(ShaderVisibility.All, new RootDescriptor(2, 0), RootParameterType.ConstantBufferView) };


            // Create an empty root signature.
            RootSignatureDescription rootSignatureDesc = new RootSignatureDescription(RootSignatureFlags.AllowInputAssemblerInputLayout, rootParameters, new StaticSamplerDescription[] { sampler });

            _rootSignature = device.CreateRootSignature(rootSignatureDesc.Serialize());

            // Create the pipeline state, which includes compiling and loading shaders.

#if DEBUG
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/LitVertex.hlsl", "VSMain", "vs_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/LitVertex.hlsl", "VSMain", "vs_5_0"));
#endif

#if DEBUG
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/LitVertex.hlsl", "PSMain", "ps_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/LitVertex.hlsl", "PSMain", "ps_5_0"));
#endif

            // Define the vertex input layout.
            InputElement[] inputElementDescs = new InputElement[]
            {
                new InputElement("POSITION", 0, Format.R32G32B32_Float, 0, 0),
                new InputElement("NORMAL", 0, Format.R32G32B32_Float, 12, 0),
                new InputElement("TEXCOORD", 0, Format.R32G32_Float, 24, 0)
            };

            // Describe and create the graphics pipeline state object (PSO).
            GraphicsPipelineStateDescription psoDesc = new GraphicsPipelineStateDescription()
            {
                InputLayout           = new InputLayoutDescription(inputElementDescs),
                RootSignature         = _rootSignature,
                VertexShader          = vertexShader,
                PixelShader           = pixelShader,
                RasterizerState       = RasterizerStateDescription.Default(),
                BlendState            = BlendStateDescription.Default(),
                DepthStencilFormat    = SharpDX.DXGI.Format.D24_UNorm_S8_UInt,
                DepthStencilState     = DepthStencilStateDescription.Default(),
                SampleMask            = int.MaxValue,
                PrimitiveTopologyType = PrimitiveTopologyType.Triangle,
                RenderTargetCount     = 1,
                Flags             = PipelineStateFlags.None,
                SampleDescription = new SharpDX.DXGI.SampleDescription(1, 0),
                StreamOutput      = new StreamOutputDescription()
            };
            psoDesc.RenderTargetFormats[0] = SharpDX.DXGI.Format.R8G8B8A8_UNorm;

            _pipelineState = device.CreateGraphicsPipelineState(psoDesc);

            // Define the geometry for a triangle.
            Vertex[] triangleVertices = new Vertex[]
            {
                //Front
                new Vertex()
                {
                    Position = new Vector3(0, 0, 0), TexCoord = new Vector2(1, 1), Normal = -Vector3.UnitZ
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 0), TexCoord = new Vector2(1, 0), Normal = -Vector3.UnitZ
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 0), TexCoord = new Vector2(0, 1), Normal = -Vector3.UnitZ
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 0), TexCoord = new Vector2(0, 0), Normal = -Vector3.UnitZ
                },

                //Back
                new Vertex()
                {
                    Position = new Vector3(0, 0, 5), TexCoord = new Vector2(1, 1), Normal = Vector3.UnitZ
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 5), TexCoord = new Vector2(1, 0), Normal = Vector3.UnitZ
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 5), TexCoord = new Vector2(0, 1), Normal = Vector3.UnitZ
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 5), TexCoord = new Vector2(0, 0), Normal = Vector3.UnitZ
                },

                //Left
                new Vertex()
                {
                    Position = new Vector3(0, 0, 0), TexCoord = new Vector2(1, 1), Normal = -Vector3.UnitX
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 0), TexCoord = new Vector2(1, 0), Normal = -Vector3.UnitX
                },
                new Vertex()
                {
                    Position = new Vector3(0, 0, 5), TexCoord = new Vector2(0, 1), Normal = -Vector3.UnitX
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 5), TexCoord = new Vector2(0, 0), Normal = -Vector3.UnitX
                },

                //Right
                new Vertex()
                {
                    Position = new Vector3(5, 0, 0), TexCoord = new Vector2(1, 1), Normal = Vector3.UnitX
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 0), TexCoord = new Vector2(1, 0), Normal = Vector3.UnitX
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 5), TexCoord = new Vector2(0, 1), Normal = Vector3.UnitX
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 5), TexCoord = new Vector2(0, 0), Normal = Vector3.UnitX
                },

                //Top
                new Vertex()
                {
                    Position = new Vector3(0, 0, 0), TexCoord = new Vector2(1, 1), Normal = -Vector3.UnitY
                },
                new Vertex()
                {
                    Position = new Vector3(0, 0, 5), TexCoord = new Vector2(1, 0), Normal = -Vector3.UnitY
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 0), TexCoord = new Vector2(0, 1), Normal = -Vector3.UnitY
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 5), TexCoord = new Vector2(0, 0), Normal = -Vector3.UnitY
                },

                //Bottom
                new Vertex()
                {
                    Position = new Vector3(0, 5, 0), TexCoord = new Vector2(1, 1), Normal = Vector3.UnitY
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 5), TexCoord = new Vector2(1, 0), Normal = Vector3.UnitY
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 0), TexCoord = new Vector2(0, 1), Normal = Vector3.UnitY
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 5), TexCoord = new Vector2(0, 0), Normal = Vector3.UnitY
                }
            };

            int vertexBufferSize = Utilities.SizeOf(triangleVertices);

            // Note: using upload heaps to transfer static data like vert buffers is not
            // recommended. Every time the GPU needs it, the upload heap will be marshalled
            // over. Please read up on Default Heap usage. An upload heap is used here for
            // code simplicity and because there are very few verts to actually transfer.
            _vertexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(vertexBufferSize), ResourceStates.GenericRead);

            // Copy the triangle data to the vertex buffer.
            IntPtr pVertexDataBegin = _vertexBuffer.Map(0);
            Utilities.Write(pVertexDataBegin, triangleVertices, 0, triangleVertices.Length);
            _vertexBuffer.Unmap(0);

            _indicies = new int[] { 0, 1, 2,
                                    3, 2, 1,
                                    6, 5, 4,
                                    5, 6, 7,

                                    10, 9, 8,
                                    9, 10, 11,
                                    12, 13, 14,
                                    15, 14, 13,

                                    18, 17, 16,
                                    17, 18, 19,
                                    20, 21, 22,
                                    23, 22, 21 };

            int indBufferSize = Utilities.SizeOf(_indicies);

            _indexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(indBufferSize), ResourceStates.GenericRead);

            IntPtr pIndBegin = _indexBuffer.Map(0);
            Utilities.Write(pIndBegin, _indicies, 0, _indicies.Length);
            _indexBuffer.Unmap(0);

            _indexBufferView = new IndexBufferView()
            {
                BufferLocation = _indexBuffer.GPUVirtualAddress,
                Format         = Format.R32_UInt,
                SizeInBytes    = indBufferSize
            };

            // Initialize the vertex buffer view.
            _vertexBufferView = new VertexBufferView
            {
                BufferLocation = _vertexBuffer.GPUVirtualAddress,
                StrideInBytes  = Utilities.SizeOf <Vertex>(),
                SizeInBytes    = vertexBufferSize
            };

            _objectBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(Utilities.SizeOf <ObjectData>()), ResourceStates.GenericRead);

            //// Describe and create a constant buffer view.
            ConstantBufferViewDescription cbvDesc = new ConstantBufferViewDescription()
            {
                BufferLocation = _objectBuffer.GPUVirtualAddress,
                SizeInBytes    = (Utilities.SizeOf <ObjectData>() + 255) & ~255
            };
            device.CreateConstantBufferView(cbvDesc, _objectViewHeap.CPUDescriptorHandleForHeapStart);

            // Initialize and map the constant buffers. We don't unmap this until the
            // app closes. Keeping things mapped for the lifetime of the resource is okay.
            _objectPointer = _objectBuffer.Map(0);
            Utilities.Write(_objectPointer, ref buffer);

            _lightingBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(Utilities.SizeOf <Lighting>()), ResourceStates.GenericRead);

            //// Describe and create a constant buffer view.
            ConstantBufferViewDescription cbvDesc2 = new ConstantBufferViewDescription()
            {
                BufferLocation = _objectBuffer.GPUVirtualAddress,
                SizeInBytes    = (Utilities.SizeOf <Lighting>() + 255) & ~255
            };
            device.CreateConstantBufferView(cbvDesc2, _lightingViewHeap.CPUDescriptorHandleForHeapStart);

            // Initialize and map the constant buffers. We don't unmap this until the
            // app closes. Keeping things mapped for the lifetime of the resource is okay.
            _lightingPointer = _lightingBuffer.Map(0);
            Utilities.Write(_lightingPointer, ref light);

            Resource textureUploadHeap;

            // Create the texture.
            // Describe and create a Texture2D.
            ResourceDescription textureDesc = ResourceDescription.Texture2D(Format.R8G8B8A8_UNorm, textureWidth, textureHeight);
            _texture = device.CreateCommittedResource(new HeapProperties(HeapType.Default), HeapFlags.None, textureDesc, ResourceStates.CopyDestination);

            long uploadBufferSize = GetRequiredIntermediateSize(device, _texture, 0, 1);

            // Create the GPU upload buffer.
            textureUploadHeap = device.CreateCommittedResource(new HeapProperties(CpuPageProperty.WriteBack, MemoryPool.L0), HeapFlags.None, ResourceDescription.Texture2D(Format.R8G8B8A8_UNorm, textureWidth, textureHeight), ResourceStates.GenericRead);

            // Copy data to the intermediate upload heap and then schedule a copy
            // from the upload heap to the Texture2D.
            byte[] textureData = GenerateTextureData();

            GCHandle handle = GCHandle.Alloc(textureData, GCHandleType.Pinned);
            IntPtr   ptr    = Marshal.UnsafeAddrOfPinnedArrayElement(textureData, 0);
            textureUploadHeap.WriteToSubresource(0, null, ptr, 4 * textureWidth, textureData.Length);
            handle.Free();

            commandList.CopyTextureRegion(new TextureCopyLocation(_texture, 0), 0, 0, 0, new TextureCopyLocation(textureUploadHeap, 0), null);

            commandList.ResourceBarrierTransition(_texture, ResourceStates.CopyDestination, ResourceStates.PixelShaderResource);

            // Describe and create a SRV for the texture.
            ShaderResourceViewDescription srvDesc = new ShaderResourceViewDescription()
            {
                Shader4ComponentMapping = ComponentMapping(0, 1, 2, 3),
                Format    = textureDesc.Format,
                Dimension = ShaderResourceViewDimension.Texture2D,
            };
            srvDesc.Texture2D.MipLevels = 1;

            device.CreateShaderResourceView(_texture, srvDesc, _srvDescriptorHeap.CPUDescriptorHandleForHeapStart);

            _resources = new[] { new GraphicsResource()
                                 {
                                     Heap = _srvDescriptorHeap, Register = 0, type = ResourceType.DescriptorTable
                                 },
                                 new GraphicsResource()
                                 {
                                     Resource = _objectBuffer, Register = 2, type = ResourceType.ConstantBufferView
                                 },
                                 new GraphicsResource()
                                 {
                                     Resource = _lightingBuffer, Register = 1, type = ResourceType.ConstantBufferView
                                 } };
        }
Beispiel #6
0
        public void BuildPSO(Device3 device, GraphicsCommandList commandList)
        {
            buffer = new CBuffer()
            {
                Rows    = 3,
                Columns = 5
            };

            DescriptorHeapDescription cbvHeapDesc = new DescriptorHeapDescription()
            {
                DescriptorCount = 1,
                Flags           = DescriptorHeapFlags.ShaderVisible,
                Type            = DescriptorHeapType.ConstantBufferViewShaderResourceViewUnorderedAccessView
            };

            _constantBufferViewHeap = device.CreateDescriptorHeap(cbvHeapDesc);


            DescriptorHeapDescription srvHeapDesc = new DescriptorHeapDescription()
            {
                DescriptorCount = 1,
                Flags           = DescriptorHeapFlags.ShaderVisible,
                Type            = DescriptorHeapType.ConstantBufferViewShaderResourceViewUnorderedAccessView
            };

            _srvDescriptorHeap = device.CreateDescriptorHeap(srvHeapDesc);

            DescriptorRange[] ranges = new DescriptorRange[] { new DescriptorRange()
                                                               {
                                                                   RangeType = DescriptorRangeType.ShaderResourceView, DescriptorCount = 1, OffsetInDescriptorsFromTableStart = int.MinValue, BaseShaderRegister = 0
                                                               } };

            //Get sampler state setup
            StaticSamplerDescription sampler = new StaticSamplerDescription()
            {
                Filter           = Filter.MinimumMinMagMipPoint,
                AddressU         = TextureAddressMode.Border,
                AddressV         = TextureAddressMode.Border,
                AddressW         = TextureAddressMode.Border,
                MipLODBias       = 0,
                MaxAnisotropy    = 0,
                ComparisonFunc   = Comparison.Never,
                BorderColor      = StaticBorderColor.TransparentBlack,
                MinLOD           = 0.0f,
                MaxLOD           = float.MaxValue,
                ShaderRegister   = 0,
                RegisterSpace    = 0,
                ShaderVisibility = ShaderVisibility.Pixel,
            };

            RootParameter[] rootParameters = new RootParameter[] { new RootParameter(ShaderVisibility.Pixel, ranges),
                                                                   new RootParameter(ShaderVisibility.Pixel, new RootDescriptor(1, 0), RootParameterType.ConstantBufferView) };


            // Create an empty root signature.
            RootSignatureDescription rootSignatureDesc = new RootSignatureDescription(RootSignatureFlags.AllowInputAssemblerInputLayout, rootParameters, new StaticSamplerDescription[] { sampler });

            _rootSignature = device.CreateRootSignature(rootSignatureDesc.Serialize());

            // Create the pipeline state, which includes compiling and loading shaders.

#if DEBUG
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/AtlasWalk.hlsl", "VSMain", "vs_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/AtlasWalk.hlsl", "VSMain", "vs_5_0"));
#endif

#if DEBUG
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/AtlasWalk.hlsl", "PSMain", "ps_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/AtlasWalk.hlsl", "PSMain", "ps_5_0"));
#endif

            // Define the vertex input layout.
            InputElement[] inputElementDescs = new InputElement[]
            {
                new InputElement("POSITION", 0, Format.R32G32B32_Float, 0, 0),
                new InputElement("TEXCOORD", 0, Format.R32G32_Float, 12, 0)
            };

            // Describe and create the graphics pipeline state object (PSO).
            GraphicsPipelineStateDescription psoDesc = new GraphicsPipelineStateDescription()
            {
                InputLayout        = new InputLayoutDescription(inputElementDescs),
                RootSignature      = _rootSignature,
                VertexShader       = vertexShader,
                PixelShader        = pixelShader,
                RasterizerState    = RasterizerStateDescription.Default(),
                BlendState         = BlendStateDescription.Default(),
                DepthStencilFormat = SharpDX.DXGI.Format.D32_Float,
                DepthStencilState  = new DepthStencilStateDescription()
                {
                    IsDepthEnabled = false, IsStencilEnabled = false
                },
                SampleMask            = int.MaxValue,
                PrimitiveTopologyType = PrimitiveTopologyType.Triangle,
                RenderTargetCount     = 1,
                Flags             = PipelineStateFlags.None,
                SampleDescription = new SharpDX.DXGI.SampleDescription(1, 0),
                StreamOutput      = new StreamOutputDescription()
            };
            psoDesc.RenderTargetFormats[0] = SharpDX.DXGI.Format.R8G8B8A8_UNorm;

            _pipelineState = device.CreateGraphicsPipelineState(psoDesc);

            // Define the geometry for a triangle.
            Vertex[] triangleVertices = new Vertex[]
            {
                new Vertex()
                {
                    position = new Vector3(-0.5f, -0.5f, 0.5f), texCoord = new Vector2(1.0f, 1.0f)
                },
                new Vertex()
                {
                    position = new Vector3(-0.5f, 0.5f, 0.5f), texCoord = new Vector2(1.0f, 0.0f)
                },
                new Vertex()
                {
                    position = new Vector3(0.5f, -0.5f, 0.5f), texCoord = new Vector2(0.0f, 1.0f)
                },
                new Vertex()
                {
                    position = new Vector3(0.5f, 0.5f, 0.5f), texCoord = new Vector2(0.0f, 0.0f)
                }
            };

            int vertexBufferSize = Utilities.SizeOf(triangleVertices);

            // Note: using upload heaps to transfer static data like vert buffers is not
            // recommended. Every time the GPU needs it, the upload heap will be marshalled
            // over. Please read up on Default Heap usage. An upload heap is used here for
            // code simplicity and because there are very few verts to actually transfer.
            _vertexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(vertexBufferSize), ResourceStates.GenericRead);

            // Copy the triangle data to the vertex buffer.
            IntPtr pVertexDataBegin = _vertexBuffer.Map(0);
            Utilities.Write(pVertexDataBegin, triangleVertices, 0, triangleVertices.Length);
            _vertexBuffer.Unmap(0);

            _indicies = new int[] { 0, 1, 2,
                                    3, 2, 1 };

            int indBufferSize = Utilities.SizeOf(_indicies);

            _indexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(indBufferSize), ResourceStates.GenericRead);

            IntPtr pIndBegin = _indexBuffer.Map(0);
            Utilities.Write(pIndBegin, _indicies, 0, _indicies.Length);
            _indexBuffer.Unmap(0);

            _indexBufferView = new IndexBufferView()
            {
                BufferLocation = _indexBuffer.GPUVirtualAddress,
                Format         = Format.R32_UInt,
                SizeInBytes    = indBufferSize
            };

            // Initialize the vertex buffer view.
            _vertexBufferView = new VertexBufferView
            {
                BufferLocation = _vertexBuffer.GPUVirtualAddress,
                StrideInBytes  = Utilities.SizeOf <Vertex>(),
                SizeInBytes    = vertexBufferSize
            };

            Resource textureUploadHeap;

            // Create the texture.
            // Describe and create a Texture2D.
            ResourceDescription textureDesc = ResourceDescription.Texture2D(Format.R8G8B8A8_UNorm, textureWidth, textureHeight);
            _texture = device.CreateCommittedResource(new HeapProperties(HeapType.Default), HeapFlags.None, textureDesc, ResourceStates.CopyDestination);

            long uploadBufferSize = GetRequiredIntermediateSize(device, _texture, 0, 1);

            // Create the GPU upload buffer.
            textureUploadHeap = device.CreateCommittedResource(new HeapProperties(CpuPageProperty.WriteBack, MemoryPool.L0), HeapFlags.None, ResourceDescription.Texture2D(Format.R8G8B8A8_UNorm, textureWidth, textureHeight), ResourceStates.GenericRead);

            // Copy data to the intermediate upload heap and then schedule a copy
            // from the upload heap to the Texture2D.
            byte[] textureData = GenerateTextureData();

            GCHandle handle = GCHandle.Alloc(textureData, GCHandleType.Pinned);
            IntPtr   ptr    = Marshal.UnsafeAddrOfPinnedArrayElement(textureData, 0);
            textureUploadHeap.WriteToSubresource(0, null, ptr, 4 * textureWidth, textureData.Length);
            handle.Free();

            commandList.CopyTextureRegion(new TextureCopyLocation(_texture, 0), 0, 0, 0, new TextureCopyLocation(textureUploadHeap, 0), null);

            commandList.ResourceBarrierTransition(_texture, ResourceStates.CopyDestination, ResourceStates.PixelShaderResource);

            // Describe and create a SRV for the texture.
            ShaderResourceViewDescription srvDesc = new ShaderResourceViewDescription()
            {
                Shader4ComponentMapping = ComponentMapping(0, 1, 2, 3),
                Format    = textureDesc.Format,
                Dimension = ShaderResourceViewDimension.Texture2D,
            };
            srvDesc.Texture2D.MipLevels = 1;

            device.CreateShaderResourceView(_texture, srvDesc, _srvDescriptorHeap.CPUDescriptorHandleForHeapStart);

            _constantBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(1024 * 64), ResourceStates.GenericRead);

            //// Describe and create a constant buffer view.
            ConstantBufferViewDescription cbvDesc = new ConstantBufferViewDescription()
            {
                BufferLocation = _constantBuffer.GPUVirtualAddress,
                SizeInBytes    = (Utilities.SizeOf <CBuffer>() + 255) & ~255
            };
            device.CreateConstantBufferView(cbvDesc, _constantBufferViewHeap.CPUDescriptorHandleForHeapStart);

            // Initialize and map the constant buffers. We don't unmap this until the
            // app closes. Keeping things mapped for the lifetime of the resource is okay.
            _constantBufferPointer = _constantBuffer.Map(0);
            Utilities.Write(_constantBufferPointer, ref buffer);

            _resources = new[] { new GraphicsResource()
                                 {
                                     Heap = _srvDescriptorHeap, Register = 0, type = ResourceType.DescriptorTable
                                 },
                                 new GraphicsResource()
                                 {
                                     Resource = _constantBuffer, Register = 1, type = ResourceType.ConstantBufferView
                                 } };
        }
Beispiel #7
0
        void loadDevice()
        {
            _resources = new GraphicsResource[0];

            _viewport.Width    = WIDTH;
            _viewport.Height   = HEIGHT;
            _viewport.MaxDepth = 1.0f;

            _scissorRect.Right  = WIDTH;
            _scissorRect.Bottom = HEIGHT;

#if DEBUG
            // Enable the D3D12 debug layer.
            {
                DebugInterface.Get().EnableDebugLayer();
            }
#endif

            using (var factory = new Factory4())
            {
                _device = new Device(factory.GetAdapter(_adapterIndex), SharpDX.Direct3D.FeatureLevel.Level_12_1).QueryInterface <Device3>();
                // Describe and create the command queue.
                CommandQueueDescription queueDesc = new CommandQueueDescription(CommandListType.Direct);
                _graphicsQueue = _device.CreateCommandQueue(queueDesc);


                // Describe and create the swap chain.
                SwapChainDescription swapChainDesc = new SwapChainDescription()
                {
                    BufferCount       = FRAME_COUNT,
                    ModeDescription   = new ModeDescription(WIDTH, HEIGHT, new Rational(60, 1), Format.R8G8B8A8_UNorm),
                    Usage             = Usage.RenderTargetOutput,
                    SwapEffect        = SwapEffect.FlipDiscard,
                    OutputHandle      = _window.Handle,
                    Flags             = SwapChainFlags.AllowModeSwitch,
                    SampleDescription = new SampleDescription(1, 0),
                    IsWindowed        = true
                };

                SwapChain tempSwapChain = new SwapChain(factory, _graphicsQueue, swapChainDesc);
                _swapChain = tempSwapChain.QueryInterface <SwapChain3>();
                tempSwapChain.Dispose();
                _frameIndex = _swapChain.CurrentBackBufferIndex;
            }

            // Create descriptor heaps.
            // Describe and create a render target view (RTV) descriptor heap.
            DescriptorHeapDescription rtvHeapDesc = new DescriptorHeapDescription()
            {
                DescriptorCount = FRAME_COUNT,
                Flags           = DescriptorHeapFlags.None,
                Type            = DescriptorHeapType.RenderTargetView
            };

            _renderTargetViewHeap = _device.CreateDescriptorHeap(rtvHeapDesc);

            DescriptorHeapDescription _dsvHeapDescription = new DescriptorHeapDescription()
            {
                DescriptorCount = 1,
                Flags           = DescriptorHeapFlags.None,
                NodeMask        = 0,
                Type            = DescriptorHeapType.DepthStencilView
            };
            _depthStencilView = _device.CreateDescriptorHeap(_dsvHeapDescription);

            _rtvDescriptorSize = _device.GetDescriptorHandleIncrementSize(DescriptorHeapType.RenderTargetView);

            // Create frame resources.
            CpuDescriptorHandle rtvHandle = _renderTargetViewHeap.CPUDescriptorHandleForHeapStart;
            for (int n = 0; n < FRAME_COUNT; n++)
            {
                _renderTargets[n] = _swapChain.GetBackBuffer <Resource>(n);
                _device.CreateRenderTargetView(_renderTargets[n], null, rtvHandle);
                rtvHandle += _rtvDescriptorSize;
            }

            //Initialize Depth/Stencil Buffer
            _depthStencilDesc = new ResourceDescription(ResourceDimension.Texture2D, 0,
                                                        _window.Width, _window.Height, 1, 1, Format.D24_UNorm_S8_UInt, 1, 0,
                                                        TextureLayout.Unknown, ResourceFlags.AllowDepthStencil);
            _depthStencilClear = new ClearValue()
            {
                DepthStencil = new DepthStencilValue()
                {
                    Depth   = 1.0f,
                    Stencil = 0
                },
                Format = Format.D24_UNorm_S8_UInt
            };
            _depthStencilBuffer = _device.CreateCommittedResource(new HeapProperties(HeapType.Default),
                                                                  HeapFlags.None, _depthStencilDesc, ResourceStates.Common, _depthStencilClear);

            //Create Descriptor to mip level 0 of the entire resource using format of the resouce
            _device.CreateDepthStencilView(_depthStencilBuffer, null, DepthStencilHandle);

            _commandAllocator       = _device.CreateCommandAllocator(CommandListType.Direct);
            _bundleCommandAllocator = _device.CreateCommandAllocator(CommandListType.Bundle);

            // Create the command list.
            _commandList       = _device.CreateCommandList(CommandListType.Direct, _commandAllocator, null);
            _bundleCommandList = _device.CreateCommandList(CommandListType.Bundle, _bundleCommandAllocator, null);

            _commandList.ResourceBarrier(new ResourceBarrier(new ResourceTransitionBarrier(_depthStencilBuffer,
                                                                                           ResourceStates.Common, ResourceStates.DepthWrite)));

            // Command lists are created in the recording state, but there is nothing
            // to record yet. The main loop expects it to be closed, so close it now.
            _bundleCommandList.Close();
        }
Beispiel #8
0
        public void BuildPSO(Device3 device, GraphicsCommandList commandList)
        {
            _resources = new GraphicsResource[0];
            // Create an empty root signature.
            RootSignatureDescription rootSignatureDesc = new RootSignatureDescription(RootSignatureFlags.AllowInputAssemblerInputLayout);

            _rootSignature = device.CreateRootSignature(rootSignatureDesc.Serialize());

            // Create the pipeline state, which includes compiling and loading shaders.

#if DEBUG
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/SimpleShader.hlsl", "VSMain", "vs_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/SimpleShader.hlsl", "VSMain", "vs_5_0"));
#endif

#if DEBUG
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/SimpleShader.hlsl", "PSMain", "ps_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/SimpleShader.hlsl", "PSMain", "ps_5_0"));
#endif

            // Define the vertex input layout.
            InputElement[] inputElementDescs = new InputElement[]
            {
                new InputElement("POSITION", 0, Format.R32G32B32_Float, 0, 0),
                new InputElement("COLOR", 0, Format.R32G32B32A32_Float, 12, 0)
            };

            // Describe and create the graphics pipeline state object (PSO).
            GraphicsPipelineStateDescription psoDesc = new GraphicsPipelineStateDescription()
            {
                InputLayout        = new InputLayoutDescription(inputElementDescs),
                RootSignature      = _rootSignature,
                VertexShader       = vertexShader,
                PixelShader        = pixelShader,
                RasterizerState    = RasterizerStateDescription.Default(),
                BlendState         = BlendStateDescription.Default(),
                DepthStencilFormat = SharpDX.DXGI.Format.D32_Float,
                DepthStencilState  = new DepthStencilStateDescription()
                {
                    IsDepthEnabled = false, IsStencilEnabled = false
                },
                SampleMask            = int.MaxValue,
                PrimitiveTopologyType = PrimitiveTopologyType.Triangle,
                RenderTargetCount     = 1,
                Flags             = PipelineStateFlags.None,
                SampleDescription = new SharpDX.DXGI.SampleDescription(1, 0),
                StreamOutput      = new StreamOutputDescription()
            };
            psoDesc.RenderTargetFormats[0] = SharpDX.DXGI.Format.R8G8B8A8_UNorm;

            _pipelineState = device.CreateGraphicsPipelineState(psoDesc);

            // Define the geometry for a triangle.
            Vertex[] triangleVertices = new Vertex[]
            {
                new Vertex()
                {
                    position = new Vector3(-0.5f, -0.5f, 0.5f), color = new Vector4(1.0f, 0.0f, 0.0f, 1.0f)
                },
                new Vertex()
                {
                    position = new Vector3(-0.5f, 0.5f, 0.5f), color = new Vector4(1.0f, 0.0f, 0.0f, 1.0f)
                },
                new Vertex()
                {
                    position = new Vector3(0.5f, -0.5f, 0.5f), color = new Vector4(1.0f, 0.0f, 0.0f, 1.0f)
                },
                new Vertex()
                {
                    position = new Vector3(0.5f, 0.5f, 0.5f), color = new Vector4(1.0f, 0.0f, 0.0f, 1.0f)
                }
            };

            int vertexBufferSize = Utilities.SizeOf(triangleVertices);

            // Note: using upload heaps to transfer static data like vert buffers is not
            // recommended. Every time the GPU needs it, the upload heap will be marshalled
            // over. Please read up on Default Heap usage. An upload heap is used here for
            // code simplicity and because there are very few verts to actually transfer.
            _vertexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(vertexBufferSize), ResourceStates.GenericRead);

            // Copy the triangle data to the vertex buffer.
            IntPtr pVertexDataBegin = _vertexBuffer.Map(0);
            Utilities.Write(pVertexDataBegin, triangleVertices, 0, triangleVertices.Length);
            _vertexBuffer.Unmap(0);

            _indicies = new int[] { 0, 1, 2,
                                    3, 2, 1 };

            int indBufferSize = Utilities.SizeOf(_indicies);

            _indexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(indBufferSize), ResourceStates.GenericRead);

            IntPtr pIndBegin = _indexBuffer.Map(0);
            Utilities.Write(pIndBegin, _indicies, 0, _indicies.Length);
            _indexBuffer.Unmap(0);

            _indexBufferView = new IndexBufferView()
            {
                BufferLocation = _indexBuffer.GPUVirtualAddress,
                Format         = Format.R32_UInt,
                SizeInBytes    = indBufferSize
            };

            // Initialize the vertex buffer view.
            _vertexBufferView = new VertexBufferView
            {
                BufferLocation = _vertexBuffer.GPUVirtualAddress,
                StrideInBytes  = Utilities.SizeOf <Vertex>(),
                SizeInBytes    = vertexBufferSize
            };
        }
        public Window(SwapChainPanel panel, Aiv.Fast2D.UWP.IGame game)
        {
            this.context = panel;
            this.game    = game;

            using (D3D11.Device defaultDevice = new D3D11.Device(D3D.DriverType.Hardware, D3D11.DeviceCreationFlags.Debug))
            {
                this.device = defaultDevice.QueryInterface <D3D11.Device2>();
            }

            // Save the context instance
            this.deviceContext = this.device.ImmediateContext2;

            // Properties of the swap chain
            SwapChainDescription1 swapChainDescription = new SwapChainDescription1()
            {
                // No transparency.
                AlphaMode = AlphaMode.Ignore,
                // Double buffer.
                BufferCount = 2,
                // BGRA 32bit pixel format.
                Format = Format.R8G8B8A8_UNorm,
                // Unlike in CoreWindow swap chains, the dimensions must be set.
                Height = (int)(this.context.RenderSize.Height),
                Width  = (int)(this.context.RenderSize.Width),
                // Default multisampling.
                SampleDescription = new SampleDescription(1, 0),
                // In case the control is resized, stretch the swap chain accordingly.
                Scaling = Scaling.Stretch,
                // No support for stereo display.
                Stereo = false,
                // Sequential displaying for double buffering.
                SwapEffect = SwapEffect.FlipSequential,
                // This swapchain is going to be used as the back buffer.
                Usage = Usage.BackBuffer | Usage.RenderTargetOutput,
            };

            // Retrive the DXGI device associated to the Direct3D device.
            using (Device3 dxgiDevice3 = this.device.QueryInterface <Device3>())
            {
                // Get the DXGI factory automatically created when initializing the Direct3D device.
                using (Factory3 dxgiFactory3 = dxgiDevice3.Adapter.GetParent <Factory5>())
                {
                    // Create the swap chain and get the highest version available.
                    using (SwapChain1 swapChain1 = new SwapChain1(dxgiFactory3, this.device, ref swapChainDescription))
                    {
                        this.swapChain = swapChain1.QueryInterface <SwapChain2>();
                    }
                }
            }

            // Obtain a reference to the native COM object of the SwapChainPanel.
            using (ISwapChainPanelNative nativeObject = ComObject.As <ISwapChainPanelNative>(this.context))
            {
                // Set its swap chain.
                nativeObject.SwapChain = this.swapChain;
            }

            // Create a Texture2D from the existing swap chain to use as
            D3D11.Texture2D backBufferTexture = D3D11.Texture2D.FromSwapChain <D3D11.Texture2D>(this.swapChain, 0);
            this.renderTargetView = new D3D11.RenderTargetView(this.device, backBufferTexture);



            FinalizeSetup();

            width  = (int)this.context.RenderSize.Width;
            height = (int)this.context.RenderSize.Height;

            scaleX = 1;
            scaleY = 1;



            this.SetViewport(0, 0, width, height);

            // for now disable only backface culling
            D3D11.RasterizerStateDescription rasterizerDescription = D3D11.RasterizerStateDescription.Default();
            rasterizerDescription.CullMode      = D3D11.CullMode.None;
            this.deviceContext.Rasterizer.State = new SharpDX.Direct3D11.RasterizerState(this.device, rasterizerDescription);

            vsync = 1;

            CompositionTarget.Rendering += this.Update;
            this.game.GameSetup(this);

            watch = new Stopwatch();
        }
Beispiel #10
0
        public void BuildPSO(Device3 device, GraphicsCommandList commandList)
        {
            Projection = Matrix.PerspectiveFovLH((float)Math.PI / 3f, 4f / 3f, 1, 1000);
            View       = Matrix.LookAtLH(new Vector3(10 * (float)Math.Sin(rotation), 5, 10 * (float)Math.Cos(rotation)), Vector3.Zero, Vector3.UnitY);
            World      = Matrix.Translation(-2.5f, -2.5f, -2.5f);

            DescriptorHeapDescription cbvHeapDesc = new DescriptorHeapDescription()
            {
                DescriptorCount = 1,
                Flags           = DescriptorHeapFlags.ShaderVisible,
                Type            = DescriptorHeapType.ConstantBufferViewShaderResourceViewUnorderedAccessView
            };

            _perPassViewHeap = device.CreateDescriptorHeap(cbvHeapDesc);

            RootParameter[] rootParameters = new RootParameter[] { new RootParameter(ShaderVisibility.All, new RootDescriptor(0, 0), RootParameterType.ConstantBufferView) };


            // Create an empty root signature.
            RootSignatureDescription rootSignatureDesc = new RootSignatureDescription(RootSignatureFlags.AllowInputAssemblerInputLayout, rootParameters);

            _rootSignature = device.CreateRootSignature(rootSignatureDesc.Serialize());

            // Create the pipeline state, which includes compiling and loading shaders.

#if DEBUG
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/Untextured.hlsl", "VSMain", "vs_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var vertexShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/Untextured.hlsl", "VSMain", "vs_5_0"));
#endif

#if DEBUG
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/Untextured.hlsl", "PSMain", "ps_5_0", SharpDX.D3DCompiler.ShaderFlags.Debug));
#else
            var pixelShader = new ShaderBytecode(SharpDX.D3DCompiler.ShaderBytecode.CompileFromFile("Shaders/Untextured.hlsl", "PSMain", "ps_5_0"));
#endif

            // Define the vertex input layout.
            InputElement[] inputElementDescs = new InputElement[]
            {
                new InputElement("POSITION", 0, Format.R32G32B32_Float, 0, 0),
                new InputElement("COLOR", 0, Format.R32G32B32A32_Float, 12, 0)
            };

            // Describe and create the graphics pipeline state object (PSO).
            GraphicsPipelineStateDescription psoDesc = new GraphicsPipelineStateDescription()
            {
                InputLayout           = new InputLayoutDescription(inputElementDescs),
                RootSignature         = _rootSignature,
                VertexShader          = vertexShader,
                PixelShader           = pixelShader,
                RasterizerState       = RasterizerStateDescription.Default(),
                BlendState            = BlendStateDescription.Default(),
                DepthStencilFormat    = SharpDX.DXGI.Format.D24_UNorm_S8_UInt,
                DepthStencilState     = DepthStencilStateDescription.Default(),
                SampleMask            = int.MaxValue,
                PrimitiveTopologyType = PrimitiveTopologyType.Triangle,
                RenderTargetCount     = 1,
                Flags             = PipelineStateFlags.None,
                SampleDescription = new SharpDX.DXGI.SampleDescription(1, 0),
                StreamOutput      = new StreamOutputDescription()
            };
            psoDesc.RenderTargetFormats[0] = SharpDX.DXGI.Format.R8G8B8A8_UNorm;

            _pipelineState = device.CreateGraphicsPipelineState(psoDesc);

            // Define the geometry for a triangle.
            Vertex[] triangleVertices = new Vertex[]
            {
                //Front
                new Vertex()
                {
                    Position = new Vector3(0, 0, 0), Color = new Vector4(0, 0, 1, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 0), Color = new Vector4(0, 0, 1, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 0), Color = new Vector4(0, 0, 1, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 0), Color = new Vector4(0, 0, 1, 1)
                },

                //Back
                new Vertex()
                {
                    Position = new Vector3(0, 0, 5), Color = new Vector4(0, 0, 1, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 5), Color = new Vector4(0, 0, 1, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 5), Color = new Vector4(0, 0, 1, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 5), Color = new Vector4(0, 0, 1, 1)
                },

                //Left
                new Vertex()
                {
                    Position = new Vector3(0, 0, 0), Color = new Vector4(0, 1, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 0), Color = new Vector4(0, 1, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 0, 5), Color = new Vector4(0, 1, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 5), Color = new Vector4(0, 1, 0, 1)
                },

                //Right
                new Vertex()
                {
                    Position = new Vector3(5, 0, 0), Color = new Vector4(0, 1, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 0), Color = new Vector4(0, 1, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 5), Color = new Vector4(0, 1, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 5), Color = new Vector4(0, 1, 0, 1)
                },

                //Top
                new Vertex()
                {
                    Position = new Vector3(0, 0, 0), Color = new Vector4(1, 0, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 0, 5), Color = new Vector4(1, 0, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 0), Color = new Vector4(1, 0, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 0, 5), Color = new Vector4(1, 0, 0, 1)
                },

                //Bottom
                new Vertex()
                {
                    Position = new Vector3(0, 5, 0), Color = new Vector4(1, 0, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(0, 5, 5), Color = new Vector4(1, 0, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 0), Color = new Vector4(1, 0, 0, 1)
                },
                new Vertex()
                {
                    Position = new Vector3(5, 5, 5), Color = new Vector4(1, 0, 0, 1)
                }
            };

            int vertexBufferSize = Utilities.SizeOf(triangleVertices);

            // Note: using upload heaps to transfer static data like vert buffers is not
            // recommended. Every time the GPU needs it, the upload heap will be marshalled
            // over. Please read up on Default Heap usage. An upload heap is used here for
            // code simplicity and because there are very few verts to actually transfer.
            _vertexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(vertexBufferSize), ResourceStates.GenericRead);

            // Copy the triangle data to the vertex buffer.
            IntPtr pVertexDataBegin = _vertexBuffer.Map(0);
            Utilities.Write(pVertexDataBegin, triangleVertices, 0, triangleVertices.Length);
            _vertexBuffer.Unmap(0);

            _indicies = new int[] { 0, 1, 2,
                                    3, 2, 1,
                                    6, 5, 4,
                                    5, 6, 7,

                                    10, 9, 8,
                                    9, 10, 11,
                                    12, 13, 14,
                                    15, 14, 13,

                                    18, 17, 16,
                                    17, 18, 19,
                                    20, 21, 22,
                                    23, 22, 21 };

            int indBufferSize = Utilities.SizeOf(_indicies);

            _indexBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(indBufferSize), ResourceStates.GenericRead);

            IntPtr pIndBegin = _indexBuffer.Map(0);
            Utilities.Write(pIndBegin, _indicies, 0, _indicies.Length);
            _indexBuffer.Unmap(0);

            _indexBufferView = new IndexBufferView()
            {
                BufferLocation = _indexBuffer.GPUVirtualAddress,
                Format         = Format.R32_UInt,
                SizeInBytes    = indBufferSize
            };

            // Initialize the vertex buffer view.
            _vertexBufferView = new VertexBufferView
            {
                BufferLocation = _vertexBuffer.GPUVirtualAddress,
                StrideInBytes  = Utilities.SizeOf <Vertex>(),
                SizeInBytes    = vertexBufferSize
            };

            _perPassBuffer = device.CreateCommittedResource(new HeapProperties(HeapType.Upload), HeapFlags.None, ResourceDescription.Buffer(Utilities.SizeOf <PerPass>()), ResourceStates.GenericRead);

            //// Describe and create a constant buffer view.
            ConstantBufferViewDescription cbvDesc = new ConstantBufferViewDescription()
            {
                BufferLocation = _perPassBuffer.GPUVirtualAddress,
                SizeInBytes    = (Utilities.SizeOf <PerPass>() + 255) & ~255
            };
            device.CreateConstantBufferView(cbvDesc, _perPassViewHeap.CPUDescriptorHandleForHeapStart);

            // Initialize and map the constant buffers. We don't unmap this until the
            // app closes. Keeping things mapped for the lifetime of the resource is okay.
            _perPassPointer = _perPassBuffer.Map(0);
            Utilities.Write(_perPassPointer, ref buffer);

            _resources = new[] { new GraphicsResource()
                                 {
                                     Resource = _perPassBuffer, Register = 0, type = ResourceType.ConstantBufferView
                                 } };
        }
        private static Contracts.Models.TrackerData CreateTrakerData(Company company, Device3 device)
        {
            var aggregatedTemperature = AggregateCrumbData("TEMP", device);
            var aggregatedHumidty     = AggregateCrumbData("HUM", device);

            var normalizedTracker = new NormilizedTracker {
                TrackerId = device.ID, TrackerName = device.DeviceName
            };

            return(TrackerDataNormalizer.CreateTrakerData(company, normalizedTracker, aggregatedTemperature, aggregatedHumidty));
        }