public static double GetLoss(NeuralNet nn, Dataset ds)
            {
                double loss = 0.0;
                int    prg  = 0;

                Parallel.For(0, ds.Count(), RobustnessOptions.ParallelOptions, i =>
                             //                for (int i =0; i < ds.Count(); i++)
                {
                    double[] softmax = Utils.ULabel.RunWithSoftmax(nn, ds.GetDatum(i), true);
                    lock (lockObject)
                    {
                        prg++;
                        int lab = ds.GetLabel(i);

                        // safety for infinity ...
                        if (softmax[lab] == 0.0)
                        {
                            softmax[lab] += 1e-10;
                        }
                        loss += Math.Log(softmax[lab]);
                        Console.Write("\r{0:0.000}%", (double)prg * 100.0 / ds.Count());
                    }
                });

                Console.Write("\nTotal loss: ");
                Console.WriteLine(loss);

                return(loss);
            }
Beispiel #2
0
 public static int[] Label(NeuralNet model, Dataset input)
 {
     int[] result = new int[input.Count()];
     for (int i = 0; i < input.Count(); i++)
     {
         result[i] = Label(model, input.GetDatum(i), true);
     }
     return(result);
 }
Beispiel #3
0
 public static LabelWithConfidence[] LabelWithConfidence(NeuralNet model, Dataset input)
 {
     LabelWithConfidence[] result = new LabelWithConfidence[input.Count()];
     for (int i = 0; i < input.Count(); i++)
     {
         result[i] = LabelWithConfidence(model, input.GetDatum(i), true);
     }
     return(result);
 }
            public static double GetAccuracy(NeuralNet nn, Dataset ds)
            {
                int cnt = 0;
                int prg = 0;

                // Parallel.For(0, ds.Count(), RobustnessOptions.ParallelOptions, i =>
                for (int i = 0; i < ds.Count(); i++)
                {
                    //if (i < 10000) { continue;  }

                    double[] datum;
                    int      ground_label;

                    datum        = ds.GetDatum(i);
                    ground_label = ds.GetLabel(i);


                    var labconf = Utils.ULabel.LabelWithConfidence(nn, ds.GetDatum(i), true);
                    int label   = labconf.actualLabel;
                    // int label = Utils.ULabel.Label(nn, ds.GetDatum(i), true);

                    lock (lockObject)
                    {
                        prg++;
                        // Console.WriteLine("Confidence = {0}", labconf.softMaxValue);
                    }

                    if (label == ground_label)
                    {
                        lock (lockObject)
                        {
                            cnt++;
                        }
                    }
                    else
                    {
                        // Console.WriteLine("Missclassifciation: " + label + " vs " + testImages.Dataset.GetLabel(i));
                    }
                    lock (lockObject)
                    {
                        Console.Write("\r{0:0.000}%, Accuracy:{1:0.000}%", (double)prg * 100.0 / ds.Count(), (double)cnt * 100.0 / prg);
                        // Utils.UDraw.DisplayImageAndPause(Utils.UArray.ToRGBArray(datum, 1.0, 0.0), 32, 32, true);
                    }
                }
                ;

                Console.WriteLine("\nCorrectly classified = {0}", cnt);
                Console.WriteLine("Total images         = {0}", ds.Count());
                double acc = (double)cnt / ds.Count();

                Console.Write("\nAccuracy: ");
                Console.WriteLine(acc);
                Console.WriteLine("ReLU Collisions = {0}", Instrumentation.Collisions);
                return(acc);
            }
Beispiel #5
0
            public static void CalculateDistances(Dataset dataset)
            {
                double[,] avgdata = new double[dataset.LabelCount(), dataset.LabelCount()];
                int[,] countdata  = new int[dataset.LabelCount(), dataset.LabelCount()];

                List <Tuple <double[], int> > data = new List <Tuple <double[], int> >();

                for (int i = 0; i < dataset.Count(); i++)
                {
                    data.Add(new Tuple <double[], int>(dataset.GetDatum(i), dataset.GetLabel(i)));
                }

                var query = data.GroupBy(x => x.Item2);

                foreach (IGrouping <int, Tuple <double[], int> > grp1 in query)
                {
                    foreach (IGrouping <int, Tuple <double[], int> > grp2 in query)
                    {
                        if (grp1 == grp2)
                        {
                            continue;
                        }
                        foreach (var x1 in grp1)
                        {
                            foreach (var x2 in grp2)
                            {
                                double dist = UMath.L1Distance(x1.Item1, x2.Item1);
                                avgdata[x1.Item2, x2.Item2] += dist;
                                countdata[x1.Item2, x2.Item2]++;
                            }
                        }
                    }
                }

                for (int i = 0; i < dataset.LabelCount(); i++)
                {
                    for (int j = 0; j < dataset.LabelCount(); j++)
                    {
                        if (i == j)
                        {
                            continue;
                        }
                        avgdata[i, j] = avgdata[i, j] / (double)countdata[i, j];
                    }
                }
                Console.WriteLine("Distance statistics:");

                for (int i = 0; i < dataset.LabelCount(); i++)
                {
                    for (int j = 0; j < dataset.LabelCount(); j++)
                    {
                        if (i == j)
                        {
                            continue;
                        }
                        Console.WriteLine("Average distance, classes {0}-{1} = {2}", i, j, avgdata[i, j]);
                    }
                }
            }
            public static Dataset Filter(NeuralNet nn, Dataset ds, Func <NeuralNet, double[], int, bool> predicate)
            {
                Dataset ret = new Dataset(ds.LabelCount());

                for (int i = 0; i < ds.Count(); i++)
                {
                    double[] datum;
                    int      ground_label;

                    datum        = ds.GetDatum(i);
                    ground_label = ds.GetLabel(i);

                    if (predicate(nn, datum, ground_label))
                    {
                        ret.Data.Add(new MemAccessor <double[]>(datum));
                        ret.Labels.Add(new MemAccessor <int>(ground_label));
                    }
                }

                return(ret);
            }