public void Move(ClientPhysicsQuadTreeNode root, Matrix newPose)
        {
            if (actor == null)
            {
                throw new InvalidOperationException();
            }
            // NOTE: IMPORTANT: this is actually a partial implementation of the algorithm itself

            Matrix oldPose = World;
            ClientPhysicsQuadTreeNode oldNode = Node;


            // Update location in quadtree
            world = newPose;
            root.OrdenObject(this);

            // Update dynamic object count

            Node.AddDynamicObjectToIntersectingNodes(this); // Add must come before remove to prevent overhead

            if (oldNode != null)
            {
                world = oldPose; // set old state
                oldNode.RemoveDynamicObjectFromIntersectingNodes(this);

                world = newPose;  // set new state
            }
        }
        public void Update(ClientPhysicsQuadTreeNode root)
        {
            if (sleeping && actor.IsSleeping)
            {
                return;
            }
            if (sleeping && !actor.IsSleeping)
            {
                // Make dynamic again!
                sleeping = false;
                Node.AddDynamicObjectToIntersectingNodes(this);
            }

            if (actor.IsSleeping && !sleeping)
            {
                // Disable dynamic, thus make static
                if (node != null)
                {
                    node.RemoveDynamicObjectFromIntersectingNodes(this);
                }

                sleeping = true;
                if (node != null && node.PhysicsEnabled == false)
                {
                    DisablePhysics(); // disable movement
                }
                return;
            }


            Move(root, actor.GlobalPose);
        }
Beispiel #3
0
        public Microsoft.Xna.Framework.ContainmentType ContainedInNode(ClientPhysicsQuadTreeNode _node)
        {
            //TODO: make this the actual size of the controller
            BoundingBox bb = new BoundingBox(currentPosition + new Vector3(-0.5f, -0.5f, -0.5f), currentPosition + new Vector3(0.5f, 0.5f, 0.5f));

            return(_node.NodeData.BoundingBox.xna().Contains(bb));
        }
        public MeshPhysicsElementFactory(PhysicsEngine engine, ClientPhysicsQuadTreeNode root)
        {
            Engine = engine;
            Root   = root;

            MeshPhysicsPool = new MeshPhysicsPool();
            actorBuilder    = new MeshPhysicsActorBuilder(MeshPhysicsPool);
        }
 public TestSphereShooter(IXNAGame game, PhysicsEngine engine, ClientPhysicsQuadTreeNode root, ICamera shooterCamera)
 {
     this.game          = game;
     this.engine        = engine;
     this.root          = root;
     this.shooterCamera = shooterCamera;
     sphereMesh         = new SphereMesh(0.3f, 20, Color.Green);
 }
        public void TestTestSphereShooter()
        {
            var game = new XNAGame();

            game.IsFixedTimeStep = false;
            //game.DrawFps = true;

            PhysicsEngine engine = new PhysicsEngine();

            engine.Initialize();
            var debugRenderer = new PhysicsDebugRendererXNA(game, engine.Scene);

            game.AddXNAObject(debugRenderer);
            game.AddXNAObject(engine);


            ClientPhysicsQuadTreeNode root;

            int numNodes = 20;

            root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(
                    new Vector3(-numNodes * numNodes / 2f, -100, -numNodes * numNodes / 2f),
                    new Vector3(numNodes * numNodes / 2f, 100, numNodes * numNodes / 2f)));

            QuadTree.Split(root, 5);


            var shooter = new TestSphereShooter(game, engine, root, game.SpectaterCamera);

            game.AddXNAObject(shooter);

            var visualizer = new QuadTreeVisualizerXNA();

            game.DrawEvent += delegate
            {
                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.PhysicsObjects.Count == 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Orange;

                    return(node.PhysicsObjects.Count > 0);
                });
            };

            game.Run();
        }
        public static ClientPhysicsQuadTreeNode CreatePhysicsQuadtree(int numNodes, int numSplits)
        {
            TheWizards.Client.ClientPhysicsQuadTreeNode root;
            root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(
                    new Vector3(-numNodes * numNodes / 2f, -100, -numNodes * numNodes / 2f),
                    new Vector3(numNodes * numNodes / 2f, 100, numNodes * numNodes / 2f)));

            QuadTree.Split(root, numSplits);
            return(root);
        }
Beispiel #8
0
        public static ClientPhysicsQuadTreeNode CreateTestClientPhysicsQuadtree()
        {
            ClientPhysicsQuadTreeNode root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(
                    new Vector3(-100, -100, -100), new Vector3(100, 100, 100))
                );



            QuadTree.Split(root, 4);

            QuadTree.Merge(root.NodeData.LowerRight.NodeData.LowerRight.NodeData.UpperLeft);

            QuadTree.MergeRecursive(root.NodeData.LowerLeft.NodeData.UpperRight);

            QuadTree.MergeRecursive(root.NodeData.UpperRight);

            return(root);
        }
Beispiel #9
0
        public PhysXSimulator()
        {
            data = TW.Data.GetSingleton <PhysXData>();

            root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(new Vector3(-1000, -1000, -1000), new Vector3(1000, 1000, 1000)).xna());
            QuadTree.Split(root, 6);

            data.RootNode = root;

            factory = new MeshPhysicsElementFactory(TW.Physics, root);

            factory.Initialize();

            entityUpdater = new EntityPhysXUpdater(factory, root);

            DebugRenderer = new PhysicsDebugRenderer(TW.Graphics, TW.Physics.Scene);
            DebugRenderer.Initialize();
        }
Beispiel #10
0
        /// <summary>
        /// This updates the position of the client physics object to the controller's position,
        /// and updates the dynamicobjectscount in the Client Physics
        /// This uses the dynamic object trick
        /// </summary>
        public void Update(ClientPhysicsQuadTreeNode root)
        {
            // First adds count, then removes. This is simply to ensure that objects are not flicked on of this frame

            Vector3 oldPosition = currentPosition;
            Vector3 newPosition = controller.GlobalPosition;

            currentPosition = newPosition;

            ClientPhysicsQuadTreeNode oldNode = node;

            root.OrdenObject(this);

            node.AddDynamicObjectToIntersectingNodes(this);

            if (oldNode != null)
            {
                currentPosition = oldPosition;
                oldNode.RemoveDynamicObjectFromIntersectingNodes(this);
                currentPosition = newPosition;
            }
        }
Beispiel #11
0
            public void Move(ClientPhysicsQuadTreeNode root, Vector3 newCenter)
            {
                // NOTE: IMPORTANT: this is actually a partial implementation of the algorithm itself

                Vector3 oldCenter = Center;
                ClientPhysicsQuadTreeNode oldNode = Node;


                // Update location in quadtree
                Center = newCenter;
                root.OrdenObject(this);

                // Update dynamic object count

                Node.AddDynamicObjectToIntersectingNodes(this);   // Add must come before remove to prevent overhead

                if (oldNode != null)
                {
                    Center = oldCenter; // set old state
                    oldNode.RemoveDynamicObjectFromIntersectingNodes(this);

                    Center = newCenter; // set new state
                }
            }
Beispiel #12
0
 public Microsoft.Xna.Framework.ContainmentType ContainedInNode(ClientPhysicsQuadTreeNode _node)
 {
     return(_node.NodeData.BoundingBox.xna().Contains(boundingSphere));
 }
 public ContainmentType ContainedInNode(ClientPhysicsQuadTreeNode _node)
 {
     return(_node.NodeData.BoundingBox.xna().Contains(GetBoundingSphere().xna()));
 }
 public void Update(ClientPhysicsQuadTreeNode root)
 {
     move(root, Matrix.Translation(controller.GlobalPosition.dx()));
 }
Beispiel #15
0
 public MeshPhysicsFactoryXNA(PhysicsEngine engine, ClientPhysicsQuadTreeNode root)
 {
     Factory = new MeshPhysicsElementFactory(engine, root);
 }
 public EntityPhysXUpdater(MeshPhysicsElementFactory factory, ClientPhysicsQuadTreeNode root)
 {
     this.factory = factory;
     this.root    = root;
 }
        public void TestOBJToRAMMeshConverterPerObjectVisual()
        {
            var c = new OBJToRAMMeshConverter(new RAMTextureFactory());


            var importer = new ObjImporter();

            importer.AddMaterialFileStream("Town001.mtl", new FileStream(TestFiles.TownMtl, FileMode.Open));
            importer.ImportObjFile(TestFiles.TownObj);

            var meshes = c.CreateMeshesFromObjects(importer);

            var texturePool           = new TexturePool();
            var meshpartPool          = new MeshPartPool();
            var vertexDeclarationPool = new VertexDeclarationPool();

            var renderer = new SimpleMeshRenderer(texturePool, meshpartPool, vertexDeclarationPool);

            vertexDeclarationPool.SetVertexElements <TangentVertex>(TangentVertex.VertexElements);



            var spheres = new List <ClientPhysicsTestSphere>();
            var engine  = new PhysicsEngine();
            PhysicsDebugRendererXNA debugRenderer = null;

            var builder = new MeshPhysicsActorBuilder(new MeshPhysicsPool());

            TheWizards.Client.ClientPhysicsQuadTreeNode root;

            int numNodes = 20;

            root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(
                    new Vector3(-numNodes * numNodes / 2f, -100, -numNodes * numNodes / 2f),
                    new Vector3(numNodes * numNodes / 2f, 100, numNodes * numNodes / 2f)));

            QuadTree.Split(root, 5);

            var physicsElementFactoryXNA = new MeshPhysicsFactoryXNA(engine, root);
            var physicsElementFactory    = physicsElementFactoryXNA.Factory;

            var physicsElements = new List <MeshStaticPhysicsElement>();

            for (int i = 0; i < 0 * 100 + 1 * meshes.Count; i++)
            {
                var mesh = meshes[i];
                var el   = renderer.AddMesh(mesh);
                el.WorldMatrix = Matrix.CreateTranslation(Vector3.Right * 0 * 2 + Vector3.UnitZ * 0 * 2);

                var pEl = physicsElementFactory.CreateStaticElement(mesh, Matrix.Identity);
                physicsElements.Add(pEl);
            }

            var game = new XNAGame();

            game.IsFixedTimeStep                    = false;
            game.DrawFps                            = true;
            game.SpectaterCamera.FarClip            = 5000;
            game.Graphics1.PreparingDeviceSettings += delegate(object sender, PreparingDeviceSettingsEventArgs e)
            {
                DisplayMode displayMode = GraphicsAdapter.DefaultAdapter.CurrentDisplayMode;
                e.GraphicsDeviceInformation.PresentationParameters.BackBufferFormat = displayMode.Format;
                e.GraphicsDeviceInformation.PresentationParameters.BackBufferWidth  = displayMode.Width;
                e.GraphicsDeviceInformation.PresentationParameters.BackBufferHeight = displayMode.Height;
                game.SpectaterCamera.AspectRatio = displayMode.Width / (float)displayMode.Height;
            };
            game.Graphics1.ToggleFullScreen();

            var sphereMesh = new SphereMesh(0.3f, 20, Color.Green);
            var visualizer = new QuadTreeVisualizerXNA();

            game.AddXNAObject(physicsElementFactoryXNA);

            game.AddXNAObject(texturePool);
            game.AddXNAObject(meshpartPool);
            game.AddXNAObject(vertexDeclarationPool);
            game.AddXNAObject(renderer);


            game.InitializeEvent += delegate
            {
                engine.Initialize();
                debugRenderer = new PhysicsDebugRendererXNA(game, engine.Scene);
                debugRenderer.Initialize(game);
                sphereMesh.Initialize(game);
            };

            bool showPhysics = true;

            game.DrawEvent += delegate
            {
                if (game.Keyboard.IsKeyPressed(Keys.P))
                {
                    showPhysics = !showPhysics;
                }
                if (showPhysics)
                {
                    debugRenderer.Render(game);
                }
                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.PhysicsObjects.Count == 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Orange;

                    return(node.PhysicsObjects.Count > 0);
                });

                for (int i = 0; i < physicsElements.Count; i++)
                {
                    var el = physicsElements[i];
                    //game.LineManager3D.AddBox(BoundingBox.CreateFromSphere( el.BoundingSphere), Color.Orange);
                }
                for (int i = 0; i < spheres.Count; i++)
                {
                    sphereMesh.WorldMatrix = Matrix.CreateTranslation(spheres[i].Center);
                    sphereMesh.Render(game);
                }
            };
            game.UpdateEvent += delegate
            {
                engine.Update(game.Elapsed);
                sphereMesh.Update(game);
                if (game.Keyboard.IsKeyPressed(Microsoft.Xna.Framework.Input.Keys.F))
                {
                    var iSphere = new ClientPhysicsTestSphere(engine.Scene,
                                                              game.SpectaterCamera.CameraPosition + game.SpectaterCamera.CameraDirection
                                                              , 0.3f);

                    iSphere.InitDynamic();
                    iSphere.Actor.LinearVelocity = game.SpectaterCamera.CameraDirection * 10;

                    spheres.Add(iSphere);
                }



                for (int i = 0; i < spheres.Count; i++)
                {
                    spheres[i].Update(root, game);
                }
            };

            game.Run();
        }
Beispiel #18
0
        public void TestMeshPhysicsElementFactoryDynamic()
        {
            XNAGame game = new XNAGame();

            RAMMesh mesh = createTwoBoxMesh();


            BoundingBox bb = new BoundingBox();



            PhysicsEngine           engine        = new PhysicsEngine();
            PhysicsDebugRendererXNA debugRenderer = null;

            ClientPhysicsQuadTreeNode root = CreatePhysicsQuadtree(16, 4);



            var visualizer = new QuadTreeVisualizerXNA();

            var meshes = new List <MeshDynamicPhysicsElement>();

            var physicsElementFactoryXNA = new MeshPhysicsFactoryXNA(engine, root);
            var factory = physicsElementFactoryXNA.Factory;

            game.AddXNAObject(physicsElementFactoryXNA);

            game.InitializeEvent += delegate
            {
                engine.Initialize();
                debugRenderer = new PhysicsDebugRendererXNA(game, engine.Scene);
                debugRenderer.Initialize(game);
            };

            game.DrawEvent += delegate
            {
                debugRenderer.Render(game);


                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.PhysicsObjects.Count == 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Orange;

                    return(node.PhysicsObjects.Count > 0);
                });
            };
            game.UpdateEvent += delegate
            {
                if (game.Keyboard.IsKeyPressed(Microsoft.Xna.Framework.Input.Keys.F))
                {
                    var el = factory.CreateDynamicElement(mesh,
                                                          Matrix.CreateTranslation(game.SpectaterCamera.CameraPosition +
                                                                                   game.SpectaterCamera.CameraDirection));
                    el.Actor.LinearVelocity = game.SpectaterCamera.CameraDirection * 10;


                    meshes.Add(el);
                }

                engine.Update(game.Elapsed);
            };


            game.Run();
        }
Beispiel #19
0
        public void TestMeshDynamicPhysicsElement()
        {
            XNAGame game = new XNAGame();

            var mesh = new RAMMesh();
            var data = mesh.GetCollisionData();

            var box = new MeshCollisionData.Box();

            box.Dimensions  = Vector3.One * 2;
            box.Orientation = Matrix.Identity;

            data.Boxes.Add(box);


            box             = new MeshCollisionData.Box();
            box.Dimensions  = Vector3.One * 4;
            box.Orientation = Matrix.CreateTranslation(new Vector3(2, 2, 2));

            data.Boxes.Add(box);


            BoundingBox bb = new BoundingBox();



            PhysicsEngine           engine        = new PhysicsEngine();
            PhysicsDebugRendererXNA debugRenderer = null;

            TheWizards.Client.ClientPhysicsQuadTreeNode root;
            root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(
                    new Vector3(-16 * 16 / 2f, -100, -16 * 16 / 2f),
                    new Vector3(16 * 16 / 2f, 100, 16 * 16 / 2f)));

            QuadTree.Split(root, 4);


            var   builder    = new MeshPhysicsActorBuilder(new MeshPhysicsPool());
            var   visualizer = new QuadTreeVisualizerXNA();
            float time       = 0;

            var spheres = new List <MeshDynamicPhysicsElement>();
            var meshes  = new List <MeshStaticPhysicsElement>();

            var physicsElementFactoryXNA = new MeshPhysicsFactoryXNA(engine, root);
            var factory = physicsElementFactoryXNA.Factory;

            game.AddXNAObject(physicsElementFactoryXNA);


            game.InitializeEvent += delegate
            {
                engine.Initialize();
                debugRenderer = new PhysicsDebugRendererXNA(game, engine.Scene);
                debugRenderer.Initialize(game);
            };

            game.DrawEvent += delegate
            {
                debugRenderer.Render(game);


                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.PhysicsObjects.Count == 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Orange;

                    return(node.PhysicsObjects.Count > 0);
                });

                for (int i = 0; i < meshes.Count; i++)
                {
                    game.LineManager3D.AddCenteredBox(meshes[i].BoundingSphere.Center,
                                                      meshes[i].BoundingSphere.Radius * 2, Color.Black);
                }
            };
            game.UpdateEvent += delegate
            {
                time += game.Elapsed;



                if (game.Keyboard.IsKeyPressed(Microsoft.Xna.Framework.Input.Keys.F))
                {
                    var dEl = new MeshDynamicPhysicsElement(mesh,
                                                            Matrix.CreateTranslation(
                                                                game.SpectaterCamera.CameraPosition +
                                                                game.SpectaterCamera.CameraDirection), builder);

                    dEl.InitDynamic(engine.Scene);
                    dEl.Actor.LinearVelocity = game.SpectaterCamera.CameraDirection * 10;

                    spheres.Add(dEl);
                }



                for (int i = 0; i < spheres.Count; i++)
                {
                    spheres[i].Update(root);
                }



                engine.Update(game.Elapsed);
            };


            game.Run();
        }
Beispiel #20
0
        public void TestEntityClientPhysis()
        {
            XNAGame game = new XNAGame();

            Database.Database database = loadDatabaseServices();

            EntityManagerService ems = new EntityManagerService(database);

            BoundingBox bb = new BoundingBox();



            PhysicsEngine           engine        = new PhysicsEngine();
            PhysicsDebugRendererXNA debugRenderer = null;

            TheWizards.Client.ClientPhysicsQuadTreeNode root;
            root = new ClientPhysicsQuadTreeNode(
                new BoundingBox(
                    new Vector3(-16 * 16 / 2f, -100, -16 * 16 / 2f),
                    new Vector3(16 * 16 / 2f, 100, 16 * 16 / 2f)));

            QuadTree.Split(root, 4);


            ClientPhysicsTestSphere sphere = new ClientPhysicsTestSphere(Vector3.Zero, 2);

            Curve3D curve1 = ClientTest.CreateTestObject1MovementCurve();


            QuadTreeVisualizerXNA visualizer = new QuadTreeVisualizerXNA();
            float time = 0;

            List <ClientPhysicsTestSphere> spheres  = new List <ClientPhysicsTestSphere>();
            List <EntityClientPhysics>     entities = new List <EntityClientPhysics>();


            game.InitializeEvent += delegate
            {
                engine.Initialize();
                debugRenderer = new PhysicsDebugRendererXNA(game, engine.Scene);
                debugRenderer.Initialize(game);

                EntityFullData      entityData;
                EntityClientPhysics entPhysics;



                entityData           = CreatePyramidEntity(ems, 5);
                entityData.Transform = new Transformation(
                    Vector3.One, Quaternion.Identity,
                    new Vector3(10, 2, 20));

                entPhysics = new EntityClientPhysics(entityData);
                entPhysics.LoadInClientPhysics(engine.Scene, root);
                entities.Add(entPhysics);

                entityData           = CreatePyramidEntity(ems, 20);
                entityData.Transform = new Transformation(
                    Vector3.One, Quaternion.Identity,
                    new Vector3(-32, 0, -40));

                entPhysics = new EntityClientPhysics(entityData);
                entPhysics.LoadInClientPhysics(engine.Scene, root);
                entities.Add(entPhysics);


                entityData = CreateTwoPyramidEntity(ems, 5, 3);
                entityData.ObjectFullData.Models[0].ObjectMatrix *= Matrix.CreateTranslation(new Vector3(-3, 0, 3));
                entityData.ObjectFullData.Models[1].ObjectMatrix *= Matrix.CreateTranslation(new Vector3(3, 1, 2));
                entityData.Transform = new Transformation(
                    Vector3.One * 2, Quaternion.Identity,
                    new Vector3(80, 0, -45));

                entPhysics = new EntityClientPhysics(entityData);
                entPhysics.LoadInClientPhysics(engine.Scene, root);
                entities.Add(entPhysics);
            };

            game.DrawEvent += delegate
            {
                debugRenderer.Render(game);


                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.PhysicsObjects.Count == 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Orange;

                    return(node.PhysicsObjects.Count > 0);
                });
                game.LineManager3D.AddCenteredBox(sphere.Center, sphere.Radius, Color.Red);

                for (int i = 0; i < entities.Count; i++)
                {
                    game.LineManager3D.AddCenteredBox(entities[i].BoundingSphere.Center,
                                                      entities[i].BoundingSphere.Radius * 2, Color.Black);
                }
            };
            game.UpdateEvent += delegate
            {
                time += game.Elapsed;


                sphere.Move(root, curve1.Evaluate(time * (1 / 4f)));


                if (game.Keyboard.IsKeyPressed(Microsoft.Xna.Framework.Input.Keys.F))
                {
                    ClientPhysicsTestSphere iSphere = new ClientPhysicsTestSphere(engine.Scene,
                                                                                  game.SpectaterCamera.CameraPosition + game.SpectaterCamera.CameraDirection
                                                                                  , 1);

                    iSphere.InitDynamic();
                    iSphere.Actor.LinearVelocity = game.SpectaterCamera.CameraDirection * 10;

                    spheres.Add(iSphere);
                }



                for (int i = 0; i < spheres.Count; i++)
                {
                    spheres[i].Update(root, game);
                }



                engine.Update(game.Elapsed);
            };


            game.Run();
        }
Beispiel #21
0
        public void TestPhysicsQuadTreeOrdenObjects()
        {
            ClientPhysicsQuadTreeNode root = CreateTestClientPhysicsQuadtree();

            List <ClientPhysicsTestSphere> spheres = new List <ClientPhysicsTestSphere>();

            spheres.Add(new ClientPhysicsTestSphere(new Vector3(3, 0, 3), 1));
            spheres.Add(new ClientPhysicsTestSphere(new Vector3(33, 0, -83), 1));
            spheres.Add(new ClientPhysicsTestSphere(new Vector3(-25, 0, 40), 1));
            spheres.Add(new ClientPhysicsTestSphere(new Vector3(-25, 0, -35), 1));
            for (int i = 0; i < spheres.Count; i++)
            {
                root.OrdenObject(spheres[i]);
            }


            ClientPhysicsTestSphere movingSphere = new ClientPhysicsTestSphere(Vector3.Zero, 2);
            Curve3D curve = CreateTestObject1MovementCurve();

            float time = 0;

            QuadTreeVisualizerXNA visualizer = new QuadTreeVisualizerXNA();

            XNAGame game = new XNAGame();

            game.UpdateEvent +=
                delegate
            {
                time += game.Elapsed;
                movingSphere.Center = curve.Evaluate(time * (1 / 4f));
                root.OrdenObject(movingSphere);
            };

            game.DrawEvent +=
                delegate
            {
                for (int i = 0; i < spheres.Count; i++)
                {
                    game.LineManager3D.AddCenteredBox(spheres[i].Center, spheres[i].Radius, Color.Red);
                }
                game.LineManager3D.AddCenteredBox(movingSphere.Center, movingSphere.Radius, Color.Red);
                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.PhysicsObjects.Count == 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Orange;

                    return(node.PhysicsObjects.Count > 0);
                });
            };



            game.Run();
        }
Beispiel #22
0
 public void LoadInClientPhysics(StillDesign.PhysX.Scene _scene, ClientPhysicsQuadTreeNode root)
 {
     scene = _scene;
     //root.OrdenObject(this);
     root.AddStaticObject(this);
 }
Beispiel #23
0
        public void TestPhysicsEnableDisable()
        {
            List <ClientPhysicsTestSphere> spheres = new List <ClientPhysicsTestSphere>();

            ClientPhysicsQuadTreeNode root = CreateTestClientPhysicsQuadtree();



            spheres.Add(new ClientPhysicsTestSphere(new Vector3(0, 0, 0), 2));


            Curve3D curve1 = CreateTestObject1MovementCurve();



            float time         = 0;
            bool  progressTime = true;
            QuadTreeVisualizerXNA visualizer = new QuadTreeVisualizerXNA();

            XNAGame game = new XNAGame();

            game.UpdateEvent +=
                delegate
            {
                if (game.Keyboard.IsKeyPressed(Microsoft.Xna.Framework.Input.Keys.P))
                {
                    progressTime = !progressTime;
                }

                if (progressTime)
                {
                    time += game.Elapsed;
                }


                spheres[0].Move(root, curve1.Evaluate(time * (1 / 4f)));
            };

            game.DrawEvent +=
                delegate
            {
                for (int i = 0; i < spheres.Count; i++)
                {
                    game.LineManager3D.AddCenteredBox(spheres[i].Center, spheres[i].Radius, Color.Red);
                }
                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Green;

                    return(node.DynamicObjectsCount == 0 && !node.PhysicsEnabled);
                });
                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Red;

                    return(node.DynamicObjectsCount == 0 && node.PhysicsEnabled);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Yellow;
                    if (node.DynamicObjectsCount == 1)
                    {
                        col = Color.Orange;
                    }

                    return(node.DynamicObjectsCount > 0);
                });

                visualizer.RenderNodeGroundBoundig(game, root,
                                                   delegate(ClientPhysicsQuadTreeNode node, out Color col)
                {
                    col = Color.Purple;

                    return(node.DynamicObjectsCount < 0);
                });
            };



            game.Run();
        }