static void Main(string[] args)
    {
        string CifarDataBatch = null;

        int split_size = 0;

        var p = new OptionSet();

        p.Add <string>("dataset=", "CIFAR dataset file name", (x => CifarDataBatch = x));
        p.Add <int>("split-size=", "Number of images per split", (x => split_size = x));

        Cmd.RunOptionSet(p, args);

        if (CifarDataBatch == null || split_size <= 0)
        {
            Console.WriteLine("Invalid arguments, use --help");
            Environment.Exit(1);
        }

        /* Initialize parameters */
        Options.InitializeNNAnalysis();

        // Plain old CIFAR binary format
        ImageDataset data = CIFAR.ReadData(CifarDataBatch, CIFAR.ALL_IMAGES, 0);

        // Split
        var splits = data.ShuffleSplitMany(split_size);
        int count  = 0;

        foreach (var s in splits)
        {
            CIFAR.WriteData(CifarDataBatch + ".split_" + count.ToString(), s);
            count++;
        }
    }
    static void Main(string[] args)
    {
        string CifarDataBatch = null;

        string[] split_files = null;

        var p = new OptionSet();

        p.Add <string>("dataset=", "CIFAR dataset file name to store result", (x => CifarDataBatch = x));
        p.Add <string>("files=", "CIFAR dataset files to join", (x => split_files = x.Split()));
        Cmd.RunOptionSet(p, args);

        if (CifarDataBatch == null || split_files == null)
        {
            Console.WriteLine("Invalid arguments, use --help");
            Environment.Exit(1);
        }

        List <ImageDataset> dss = new List <ImageDataset>();

        Console.WriteLine("Joining files ...");
        for (int i = 0; i < split_files.Length; i++)
        {
            Console.WriteLine(split_files[i]);
            dss.Add(CIFAR.ReadData(split_files[i], CIFAR.ALL_IMAGES, 0));
        }

        var data = Data.UnionMany(dss);

        var sd = data.Dataset.CreateShuffle(new Random());

        data.Dataset = sd;


        Console.WriteLine("Output file ...");
        Console.WriteLine(CifarDataBatch);

        CIFAR.WriteData(CifarDataBatch, data);
    }
    static void Main(string[] args)
    {
        string CifarDataBatch = null;

        int      how_many   = 1;
        RANDTYPE randomness = RANDTYPE.UNIFORM;

        var p = new OptionSet();

        p.Add <string>("dataset=", "CIFAR dataset file name", (x => CifarDataBatch = x));
        p.Add <int>("how-many=", "Number of new images per image", (x => how_many = x));
        p.Add <string>("randomness=", "Gaussian|Uniform", (x => randomness = (x.Equals("Gaussian") ? RANDTYPE.GAUSSIAN : RANDTYPE.UNIFORM)));

        int  xoffset   = 0;
        int  yoffset   = 0;
        bool geometric = false;

        p.Add("geometric", "Use geometric transform", (x => geometric = (x != null)));
        p.Add <int>("xoffset=", "x-offset for geometric transform", (x => xoffset = x));
        p.Add <int>("yoffset=", "y-offset for geometric transform", (x => yoffset = x));

        bool   random  = false;
        double epsilon = 0.0;

        p.Add("random", "Use random perturbation", (x => random = (x != null)));
        p.Add <double>("epsilon=", "Distance (for uniform) or standard deviation (for gaussian) random perturbation", (x => epsilon = x));

        bool   brightness        = false;
        double brightness_offset = 0.0;

        p.Add("brightness", "Use brightness perturbation", (x => brightness = (x != null)));
        p.Add <double>("brightness-offset=", "Brightness offset (<= RobustnessOptions.MaxValue - RobustnessOptions.MinValue)", (x => brightness_offset = x));

        bool   contrast            = false;
        double contrast_min_factor = 1.0;
        double contrast_max_factor = 1.0;

        p.Add("contrast", "Use contrast perturbation", (x => contrast = (x != null)));
        p.Add <double>("contrast-min-factor=", "Contrast min factor (0.0-1.0)", (x => contrast_min_factor = x));
        p.Add <double>("contrast-max-factor=", "Contrast max factor (0.0-1.0)", (x => contrast_max_factor = x));


        bool lossy_jpeg   = false;
        int  photoquality = 90;

        p.Add("lossy-jpeg", "Use lossy jpeg perturbation (default photoquality = 90)", (x => lossy_jpeg = (x != null)));
        p.Add <int>("jpeg-photoquality=", "Lossy jpeg photoquality", (x => photoquality = x));


        bool  rotate = false;
        float angle  = 45.0F;

        p.Add("rotation", "Rotation transformation (default angle = 45.0)", (x => rotate = (x != null)));
        p.Add <double>("rotation-angle=", (x => angle = (float)x));


        bool perturbe_only = false;

        p.Add("perturbe-only", "Only perturbe (not augment)", (x => perturbe_only = (x != null)));

        Cmd.RunOptionSet(p, args);

        if (CifarDataBatch == null)
        {
            Console.WriteLine("Invalid arguments, use --help");
            Environment.Exit(1);
        }

        /* Initialize parameters */
        Options.InitializeNNAnalysis();

        // Plain old CIFAR binary format
        ImageDataset data = CIFAR.ReadData(CifarDataBatch, CIFAR.ALL_IMAGES, 0);

        IAugmentor augmentor = null; // TODO

        if (geometric)
        {
            augmentor = new AugmentGeometric(CIFAR.InputCoordinates, randomness, how_many, xoffset, yoffset);
            goto KONT;
        }
        if (random)
        {
            augmentor = new AugmentRandom(CIFAR.InputCoordinates, randomness, how_many, epsilon);
            goto KONT;
        }
        if (brightness)
        {
            augmentor = new AugmentBrightness(CIFAR.InputCoordinates, randomness, how_many, brightness_offset);
            goto KONT;
        }
        if (contrast)
        {
            augmentor = new AugmentContrast(CIFAR.InputCoordinates, how_many, contrast_min_factor, contrast_max_factor);
            goto KONT;
        }
        if (lossy_jpeg)
        {
            augmentor = new AugmentLossyJpeg(CIFAR.InputCoordinates, how_many, photoquality);
            goto KONT;
        }
        if (rotate)
        {
            augmentor = new AugmentRotation(CIFAR.InputCoordinates, how_many, angle);
            goto KONT;
        }


KONT:

        int count = data.Dataset.Count();

        ImageDataset initial = null;

        if (perturbe_only)
        {
            initial = new ImageDataset(new Dataset(10), CIFAR.InputCoordinates.ChannelCount,
                                       CIFAR.InputCoordinates.RowCount,
                                       CIFAR.InputCoordinates.ColumnCount, true);
        }
        else
        {
            initial = data;
        }

        for (int i = 0; i < count; i++)
        {
            double[] datum     = data.Dataset.GetDatum(i);
            int      label     = data.Dataset.GetLabel(i);
            var      augmented = augmentor.Augment(datum);
            initial.Update(augmented, label);
        }

        if (perturbe_only)
        {
            CIFAR.WriteData(CifarDataBatch + ".perturbed", initial);
        }
        else
        {
            CIFAR.WriteData(CifarDataBatch + ".augmented", initial);
        }
    }
Beispiel #4
0
    static void Main(string[] args)
    {
        string CifarNNFile    = null;
        string CifarDataBatch = null;

        bool just_accuracy = false;
        bool just_loss     = false;

        bool raw_directory = false;

        var p = new OptionSet();

        p.Add <string>("nnet=", "CIFAR neural network file name", (x => CifarNNFile = x));
        p.Add <string>("dataset=", "CIFAR dataset file name", (x => CifarDataBatch = x));
        p.Add <string>("rawdir", "If set then --dataset value should be a directory in raw directory format", (x => raw_directory = (x != null)));
        p.Add <bool>  ("optimization=", "Do optimization (Default: true)", (x => RobustnessOptions.DoOptimization = x));
        p.Add <double>("sub=", "Subsample from 'live' constraints (0.0-1.0)", (x => RobustnessOptions.LiveConstraintSamplingRatio = x));
        p.Add <string>("registry=", "Unique name to store output examples and statistics", (x => RobustnessOptions.Registry = x));
        p.Add <bool>  ("cegar=", "Do CEGAR (default: true)", (x => RobustnessOptions.CEGAR = x));
        p.Add <string>("only-accuracy", "Only evaluate accuracy", (x => just_accuracy = (x != null)));
        p.Add <string>("only-loss", "Only evaluate loss", (x => just_loss = (x != null)));

        p.Add <double>("bound=", "Linfinity-ball to search", (x => RobustnessOptions.Epsilon = x));
        p.Add <double>("minval=", "Minimum value of each entry", (x => RobustnessOptions.MinValue = x));
        p.Add <double>("maxval=", "Maximum value of each entry", (x => RobustnessOptions.MaxValue = x));
        p.Add <string>("no-quant-safety", "Quantization integrality safety off", (x => RobustnessOptions.QuantizationSafety = (x == null)));

        p.Add <double>("scale-preprocessed=", "If image data is preprocessed, scale before dumping to registry", (x => RobustnessOptions.ScalePreProcessed = x));
        p.Add <double>("offset-preprocessed=", "If image data is preprocessed, offset scaled before dumping to registry", (x => RobustnessOptions.OffsetPreProcessed = x));

        p.Add <string>("max-conf", "Use max-conf objective", (x =>
        {
            if (x != null)
            {
                RobustnessOptions.ObjectiveKind = LPSObjectiveKind.MaxConf;
            }
        }));

        p.Add <double>("winner-diff=", "Winning label should be that much different than second best", (x => RobustnessOptions.LabelConfidenceDiff = x));
        p.Add <string>("log-png", "Log png files", (x => RobustnessOptions.SavePNGCounterexamples = (x != null)));

        bool   only_filter = false;
        double filter_conf = 0.98;

        p.Add("only-filter", "Only filter by confidence", (x => only_filter = (x != null)));
        p.Add <double>("filter-conf=", "Filter confidence", (x => filter_conf = x));



        Cmd.RunOptionSet(p, args);

        if (CifarNNFile == null || CifarDataBatch == null)
        {
            Console.WriteLine("Invalid arguments, use --help");
            Environment.Exit(1);
        }

        /* Initialize parameters */
        Options.InitializeNNAnalysis();
        NeuralNet nn = CIFAR.GetNN(CifarNNFile);


        ImageDataset data;

        if (raw_directory)
        {
            // our raw data format (see lmdb2raw.py)
            data = CIFAR.ReadDirectoryData(CifarDataBatch);
        }
        else
        {
            // Plain old CIFAR binary format
            data = CIFAR.ReadData(CifarDataBatch, CIFAR.ALL_IMAGES, 0);
        }

        if (just_accuracy)
        {
            NNAccuracy.GetAccuracy(nn, data.Dataset);
            return;
        }

        if (just_loss)
        {
            NNAccuracy.GetLoss(nn, data.Dataset);
            return;
        }


        if (only_filter)
        {
            string filtered = RobustnessOptions.Registry + "-filtered-" + filter_conf.ToString();

            Console.WriteLine("Orig {0} data", data.Dataset.Count());

            var ds = NNAccuracy.KeepAboveConfidenceThreshold(nn, data.Dataset, filter_conf);

            Console.WriteLine("Kept {0} data", ds.Count());

            ImageDataset ret = new ImageDataset(ds,
                                                CIFAR.InputCoordinates.ChannelCount,
                                                CIFAR.InputCoordinates.RowCount,
                                                CIFAR.InputCoordinates.ColumnCount, true);

            CIFAR.WriteData(filtered, ret);
            return;
        }



        RobustnessOptions.Dump();


        string synthImagesName = RobustnessOptions.Registry + "-synth";

        int labelcount = data.Dataset.LabelCount();

        ImageDataset acc = new ImageDataset(new Dataset(labelcount),
                                            CIFAR.InputCoordinates.ChannelCount,
                                            CIFAR.InputCoordinates.RowCount,
                                            CIFAR.InputCoordinates.ColumnCount, true);
        int state = 0;

        Action <LabelWithConfidence> snapshot = x =>
        {
            acc.Dataset.Data.Add(new MemAccessor <double[]>(x.datum));
            acc.Dataset.Labels.Add(new MemAccessor <int>(x.actualLabel));
            state++;
            if (state >= 4)
            {
                CIFAR.WriteData(synthImagesName, acc);
                state = 0;
            }
        };

        ImageDataset synth = Robustness.SynthesizeCounterexamplesAndStore(nn, data, snapshot);

        if (synth.Dataset.Count() == 0)
        {
            Console.WriteLine("Did not synthesize any counterexamples, nothing to dump ...");
            return;
        }

        if (raw_directory)
        {
            throw new NotImplementedException("Output to raw directory format not yet implemented!");
        }
        else
        {
            CIFAR.WriteData(RobustnessOptions.Registry + "-synth", synth);
        }
    }