Beispiel #1
0
    static void Main()
    {
        Debug.Assert((CRootContainer.getRoot() != null));
        // create a new datamodel
        CDataModel dataModel = CRootContainer.addDatamodel();

        Debug.Assert((dataModel != null));
        Debug.Assert((CRootContainer.getDatamodelList().size() == 1));
        // next we import a simple SBML model from a string

        // clear the message queue so that we only have error messages from the import in the queue
        CCopasiMessage.clearDeque();
        bool result = true;

        try
        {
            result = dataModel.importSBMLFromString(MODEL_STRING);
        }
        catch
        {
            System.Console.Error.WriteLine("Import of model failed miserably.");
            System.Environment.Exit(1);
        }
        // check if the import was successful
        int mostSevere = CCopasiMessage.getHighestSeverity();

        // if it was a filtered error, we convert it to an unfiltered type
        // the filtered error messages have the same value as the unfiltered, but they
        // have the 7th bit set which basically adds 128 to the value
        mostSevere = mostSevere & 127;

        // we assume that the import succeeded if the return value is true and
        // the most severe error message is not an error or an exception
        if (result != true && mostSevere < CCopasiMessage.ERROR)
        {
            System.Console.Error.WriteLine("Sorry. Model could not be imported.");
            System.Environment.Exit(1);
        }

        //
        // now we tell the model object to calculate the jacobian
        //
        CModel model = dataModel.getModel();

        Debug.Assert((model != null));

        if (model != null)
        {
            // running a task, e.g. a trajectory will automatically make sure that
            // the initial values are transferred to the current state before the calculation begins.
            // If we use low level calculation methods like the one to calculate the jacobian, we
            // have to make sure the the initial values are applied to the state
            model.applyInitialValues();
            // we need an array that stores the result
            // the size of the matrix does not really matter because
            // the calculateJacobian autoamtically resizes it to the correct
            // size
            FloatMatrix jacobian = new FloatMatrix();
            // the first parameter to the calculation function is a reference to
            // the matrix where the result is to be stored
            // the second parameter is the derivationFactor for the calculation
            // it basically represents a relative delta value for the calculation of the derivatives
            // the third parameter is a boolean indicating whether the jacobian should
            // be calculated from the reduced (true) or full (false) system
            model.getMathContainer().calculateJacobian(jacobian, 1e-12, false);
            // now we print the result
            // the jacobian stores the values in the order they are
            // given in the user order in the state template so it is not really straight
            // forward to find out which column/row corresponds to which species
            CStateTemplate stateTemplate = model.getStateTemplate();
            // and we need the user order
            SizeTVector userOrder = stateTemplate.getUserOrder();
            // from those two, we can construct an new vector that contains
            // the names of the entities in the jacobian in the order in which they appear in
            // the jacobian
            System.Collections.Generic.List <string> nameVector = new System.Collections.Generic.List <string>();
            CModelEntity entity = null;
            int          status;

            for (uint i = 0; i < userOrder.size(); ++i)
            {
                entity = stateTemplate.getEntity(userOrder.get(i));
                Debug.Assert((entity != null));
                // now we need to check if the entity is actually
                // determined by an ODE or a reaction
                status = entity.getStatus();

                if (status == CModelEntity.Status_ODE ||
                    (status == CModelEntity.Status_REACTIONS && entity.isUsed()))
                {
                    nameVector.Add(entity.getObjectName());
                }
            }

            Debug.Assert((nameVector.Count == jacobian.numRows()));
            // now we print the matrix, for this we assume that no
            // entity name is longer then 5 character which is a save bet since
            // we know the model
            System.Console.Out.NewLine = "";
            System.Console.WriteLine(System.String.Format("Jacobian Matrix:{0}", System.Environment.NewLine));
            System.Console.WriteLine(System.String.Format("size:{0}x{1}{2}", jacobian.numRows(), jacobian.numCols(), System.Environment.NewLine));
            System.Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));
            System.Console.Out.WriteLine(System.String.Format("{0,7}", " "));

            for (int i = 0; i < nameVector.Count; ++i)
            {
                System.Console.Out.WriteLine(System.String.Format("{0,7}", nameVector[i]));
            }

            System.Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));

            for (uint i = 0; i < nameVector.Count; ++i)
            {
                System.Console.Out.WriteLine(System.String.Format("{0,7}", nameVector[(int)i]));

                for (uint j = 0; j < nameVector.Count; ++j)
                {
                    System.Console.Out.WriteLine(System.String.Format("{0,7:0.###}", jacobian.get(i, j)));
                }

                System.Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));
            }

            // we can also calculate the jacobian of the reduced system
            // in a similar way
            model.getMathContainer().calculateJacobian(jacobian, 1e-12, true);
            // this time generating the output is actually simpler because the rows
            // and columns are ordered in the same way as the independent variables of the state temple
            System.Console.WriteLine(System.String.Format("{0}{0}", System.Environment.NewLine));
            System.Console.WriteLine(System.String.Format("Reduced Jacobian Matrix:{0}{0}", System.Environment.NewLine));
            System.Console.Out.WriteLine(System.String.Format("{0:6}", " "));

            uint iMax = stateTemplate.getNumIndependent();

            for (uint i = 0; i < iMax; ++i)
            {
                System.Console.Out.WriteLine(System.String.Format("\t{0:7}", stateTemplate.getIndependent(i).getObjectName()));
            }

            System.Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));

            for (uint i = 0; i < iMax; ++i)
            {
                System.Console.Out.WriteLine(System.String.Format("{0:7}", stateTemplate.getIndependent(i).getObjectName()));

                for (uint j = 0; j < iMax; ++j)
                {
                    System.Console.Out.WriteLine(System.String.Format("{0,7:0.###}", jacobian.get(i, j)));
                }

                System.Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));
            }
        }
    }
Beispiel #2
0
    static void Main()
    {
        Debug.Assert(CRootContainer.getRoot() != null);
        // create a new datamodel
        CDataModel dataModel = CRootContainer.addDatamodel();

        Debug.Assert(CRootContainer.getDatamodelList().size() == 1);
        // the only argument to the main routine should be the name of an SBML file
        try
        {
            // load the model
            dataModel.importSBMLFromString(MODEL_STRING);
        }
        catch
        {
            System.Console.Error.WriteLine("Error while importing the model from the given String.");
            System.Environment.Exit(1);
        }
        CModel model = dataModel.getModel();

        Debug.Assert(model != null);
        // create a report with the correct filename and all the species against
        // time.
        CReportDefinitionVector reports = dataModel.getReportDefinitionList();
        // create a new report definition object
        CReportDefinition report = reports.createReportDefinition("Report", "Output for timecourse");

        // set the task type for the report definition to timecourse
        report.setTaskType(CTaskEnum.Task_timeCourse);
        // we don't want a table
        report.setIsTable(false);
        // the entries in the output should be seperated by a ", "
        report.setSeparator(new CCopasiReportSeparator(", "));

        // we need a handle to the header and the body
        // the header will display the ids of the metabolites and "time" for
        // the first column
        // the body will contain the actual timecourse data
        ReportItemVector header = report.getHeaderAddr();
        ReportItemVector body   = report.getBodyAddr();

        body.Add(new CRegisteredCommonName(new CCommonName(dataModel.getModel().getCN().getString() + ",Reference=Time").getString()));
        body.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));
        header.Add(new CRegisteredCommonName(new CDataString("time").getCN().getString()));
        header.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));

        uint i, iMax = (uint)model.getMetabolites().size();

        for (i = 0; i < iMax; ++i)
        {
            CMetab metab = model.getMetabolite(i);
            Debug.Assert(metab != null);
            // we don't want output for FIXED metabolites right now
            if (metab.getStatus() != CModelEntity.Status_FIXED)
            {
                // we want the concentration oin the output
                // alternatively, we could use "Reference=Amount" to get the
                // particle number
                body.Add(new CRegisteredCommonName(metab.getObject(new CCommonName("Reference=Concentration")).getCN().getString()));
                // add the corresponding id to the header
                header.Add(new CRegisteredCommonName(new CDataString(metab.getSBMLId()).getCN().getString()));

                if (i != iMax - 1)
                {
                    // after each entry, we need a seperator
                    body.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));

                    // and a seperator
                    header.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));
                }
            }
        }

        // get the trajectory task object
        CTrajectoryTask trajectoryTask = (CTrajectoryTask)dataModel.getTask("Time-Course");

        // run a stochastic time course
        trajectoryTask.setMethodType(CTaskEnum.Method_stochastic);

        // pass a pointer of the model to the problem
        trajectoryTask.getProblem().setModel(dataModel.getModel());

        // we don't want the trajectory task to run by itself, but we want to
        // run it from a scan, so we deactivate the standalone trajectory task
        trajectoryTask.setScheduled(false);

        // get the problem for the task to set some parameters
        CTrajectoryProblem problem = (CTrajectoryProblem)trajectoryTask.getProblem();

        // simulate 100 steps
        problem.setStepNumber(100);
        // start at time 0
        dataModel.getModel().setInitialTime(0.0);
        // simulate a duration of 10 time units
        problem.setDuration(10);
        // tell the problem to actually generate time series data
        problem.setTimeSeriesRequested(true);

        // now we set up the scan
        CScanTask scanTask = (CScanTask)dataModel.getTask("Scan");

        // get the problem
        CScanProblem scanProblem = (CScanProblem)scanTask.getProblem();

        Debug.Assert(scanProblem != null);

        // set the model for the problem
        scanProblem.setModel(dataModel.getModel());

        // activate the task so that is is run
        // if the model is saved and passed to CopasiSE
        scanTask.setScheduled(true);

        // set the report for the task
        scanTask.getReport().setReportDefinition(report);

        // set the output file for the report
        scanTask.getReport().setTarget("example4.txt");
        // don't append to an existing file, but overwrite
        scanTask.getReport().setAppend(false);

        // tell the scan that we want to make a scan over a trajectory task
        scanProblem.setSubtask(CTaskEnum.Task_timeCourse);

        // we just want to run the timecourse task a number of times, so we
        // create a repeat item with 100 repeats
        scanProblem.addScanItem(CScanProblem.SCAN_REPEAT, 100);

        // we want the output from the trajectory task
        scanProblem.setOutputInSubtask(true);

        // we don't want to set the initial conditions of the model to the end
        // state of the last run
        scanProblem.setContinueFromCurrentState(false);

        try
        {
            // now we run the actual trajectory
            scanTask.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
        }
        catch
        {
            System.Console.Error.WriteLine("Error. Running the scan failed.");
            String lastErrors = scanTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }
    }
Beispiel #3
0
    static void Main()
    {
        // initialize the backend library
        // since we are not interested in the arguments
        // that are passed to main, we pass 0 and NULL to
        // init
        Debug.Assert(CRootContainer.getRoot() != null);
        // create a new datamodel
        CDataModel dataModel = CRootContainer.addDatamodel();

        Debug.Assert((dataModel != null));
        Debug.Assert((CRootContainer.getDatamodelList().size() == 1));
        // next we import a simple SBML model from a string

        // clear the message queue so that we only have error messages from the import in the queue
        CCopasiMessage.clearDeque();
        bool result = true;

        try
        {
            result = dataModel.importSBMLFromString(MODEL_STRING);
        }
        catch
        {
            System.Console.Error.WriteLine("An exception has occured during the import of the SBML model");
            System.Environment.Exit(1);
        }
        // check if the import was successful
        int mostSevere = CCopasiMessage.getHighestSeverity();

        // if it was a filtered error, we convert it to an unfiltered type
        // the filtered error messages have the same value as the unfiltered, but they
        // have the 7th bit set which basically adds 128 to the value
        mostSevere = mostSevere & 127;

        // we assume that the import succeeded if the return value is true and
        // the most severe error message is not an error or an exception
        if (result != true && mostSevere < CCopasiMessage.ERROR)
        {
            System.Console.Error.WriteLine("Sorry. Model could not be imported.");
            System.Environment.Exit(1);
        }

        // get the trajectory task object
        CSteadyStateTask task = (CSteadyStateTask)dataModel.getTask("Steady-State");

        CCopasiMessage.clearDeque();

        try
        {
            // now we run the actual trajectory
            task.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
        }
        catch
        {
            System.Console.Error.WriteLine("Error. Running the scan failed.");

            String lastErrors = task.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }

        // now we can get the result of the steady state calculation, e.g. the jacobian
        // matrix of the model at the steady state
        // here we can either get the jacobian as we did in example 8 as a matrix with
        // getJacobian, or we can use getJacobianAnnotated to get an annotated matrix
        // Corresponding methods for the reduced jacobian are getJacobianX and getJacobianXAnnotated
        CDataArray aj = task.getJacobianAnnotated();

        Debug.Assert((aj != null));

        if (aj != null)
        {
            // we do the output, but as in contrast to the jacobian in example 8,
            // we now have all the information for the output in one place

            // first the array annotation can tell us how many dimensions it has.
            // Since the matrix is a 2D array, it should have 2 dimensions
            Debug.Assert((aj.dimensionality() == 2));
            // since the matrix has a dimensionality of 2, the inde for the underlaying abstract array
            // object is a vector with two unsigned int elements
            // First element is the index for the outer dimension and the second element is the index
            // for the inner dimension
            SizeTStdVector index = new SizeTStdVector();
            // The constructor does not seem to interpret an integer argument
            // as the size
            // I though that in C# we might be able to achieve this using the Capacity property
            // but that didn't work. Maybe I was using it incorrectly since I don't really know C#
            // So for now, we just add two elements to the vector which seems to do the trick.
            index.Add(0);
            index.Add(0);
            // since the rows and columns have the same annotation for the jacobian, it doesn't matter
            // for which dimension we get the annotations
            StringStdVector annotations = aj.getAnnotationsString(1);
            System.Console.Out.NewLine = "";
            System.Console.WriteLine(System.String.Format("Jacobian Matrix:{0}{0}", System.Environment.NewLine));
            System.Console.Out.WriteLine(System.String.Format("{0,7}", " "));

            for (int i = 0; i < annotations.Count; ++i)
            {
                Console.Out.WriteLine(System.String.Format("{0,7}", annotations[i]));
            }

            Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));

            for (int i = 0; i < annotations.Count; ++i)
            {
                System.Console.Out.WriteLine(System.String.Format("{0,7} ", annotations[i]));
                index[0] = (uint)i;

                for (int j = 0; j < annotations.Count; ++j)
                {
                    index[1] = (uint)j;
                    System.Console.Out.WriteLine(System.String.Format("{0,7:G2} ", aj.array().get(index)));
                }
                System.Console.WriteLine(System.String.Format("{0}", System.Environment.NewLine));
            }
        }
        System.Environment.Exit(0);
    }