Beispiel #1
0
        /// <summary>
        /// Creates an in-memory EF Core Database and loads it with airline data
        /// </summary>
        /// <param name="options"></param>
        private static void LoadAirlinesData(DbContextOptions <AirlinesContext> options)
        {
            // Load data into the DB
            using (var airlinesModel = new AirlinesContext(options))
            {
                // Key for fake Ids
                int key = 0;

                // Load the FlightCode Data from csv
                using (TextReader reader = new StreamReader(@"TrainingData\ManyFlightCodes.csv"))
                {
                    var csvReader   = new CsvReader(reader);
                    var flightCodes = csvReader.GetRecords <FlightCodeFeatures>();
                    airlinesModel.FlightCodes.AddRange(flightCodes.Select(f =>
                    {
                        var fc        = new FlightCodes();
                        fc.Id         = ++key;
                        fc.FlightCode = f.FlightCode;
                        fc.Iatacode   = f.IATACode;
                        return(fc);
                    }));
                    airlinesModel.SaveChanges();
                }
            }
        }
        public static ITransformer TrainModel(DbContextOptions <AirlinesContext> dbOptions,
                                              bool cacheData = false, int concurrency = 0, int nth = 1)
        {
            ITransformer trainedModel = null;

            // Create an ML.NET environment
            var mlContext = new MLContext(seed: 0);

            // Train from EF DBContext
            using (var airlinesModel = new AirlinesContext(dbOptions))
            {
                // Create an enumerable view of the DB training data
                var flightCodeTrainingData = airlinesModel.FlightCodes.Where(fc => fc.Id % nth == 0).AsEnumerable()
                                             .Select(f => new FlightCodeFeatures()
                {
                    FlightCode = f.FlightCode,
                    IATACode   = f.Iatacode
                });
                var trainingDataView = mlContext.Data.LoadFromEnumerable(flightCodeTrainingData);

                // Set the key column (IATACode), featurize the text FlightCode column (to a long) and add it to the features collection
                var dataProcessPipeline = mlContext.Transforms.Conversion.MapValueToKey(outputColumnName: "Label", inputColumnName: nameof(FlightCodeFeatures.IATACode))
                                          .Append(mlContext.Transforms.Text.FeaturizeText(outputColumnName: "FlightCodeFeaturized", inputColumnName: nameof(FlightCodeFeatures.FlightCode)))
                                          .Append(mlContext.Transforms.Concatenate(outputColumnName: "Features", "FlightCodeFeaturized"));

                if (cacheData)
                {
                    // Optionally cache the input (used if multiple passes required)
                    dataProcessPipeline.AppendCacheCheckpoint(mlContext);
                }

                // Define the trainer to be used
                IEstimator <ITransformer> trainer = null;
                trainer = mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy();

                // Create a training pipeline that adds the trainer to the data pipeline and maps prediction to a string in the output (default name)
                var trainingPipeline = dataProcessPipeline.Append(trainer)
                                       .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));

                // Do the actual training, reads the features and builds the model
                Console.WriteLine($"Starting training");
                var watch = System.Diagnostics.Stopwatch.StartNew();
                trainedModel = trainingPipeline.Fit(trainingDataView);
                watch.Stop();
                long elapsedMs = watch.ElapsedMilliseconds;
                Console.WriteLine($"Training took {elapsedMs / 1000f} secs");
                Console.WriteLine();
            }

            return(trainedModel);
        }