private void regression(List <Cell> samplePoints)
        {
            // 构造输入输出数据集

            // 样本数目
            int COUNT = samplePoints.Count;

            // 构造输入和输出数据集
            double[][] inputs  = new double[COUNT][];
            bool[]     outputs = new bool[COUNT];
            for (int i = 0; i < COUNT; i++)
            {
                Cell cell = samplePoints[i];
                int  pos  = cell.row * width + cell.col;
                inputs[i] = (from buffer in driveBuffers
                             select buffer[pos]).ToArray <double>();
                outputs[i] = cell.type;
            }



            var learner = new IterativeReweightedLeastSquares <Accord.Statistics.Models.Regression.LogisticRegression>()
            {
                Tolerance             = 1e-8, // 收敛参数
                Iterations            = 20,   // 最大循环数目
                Regularization        = 0,
                ComputeStandardErrors = true
            };


            Accord.Statistics.Models.Regression.LogisticRegression regression = learner.Learn(inputs, outputs);


            // 输出 odds
            StringBuilder strb = new StringBuilder();

            for (int i = 0; i <= inputs[0].Length; i++)
            {
                strb.AppendLine(" " + i + " : " + regression.GetOddsRatio(i));
            }
            updateConsoleEvent(strb.ToString());

            // 输出 weights
            StringBuilder strw = new StringBuilder();

            strw.AppendLine("权重系数:");
            strw.AppendLine("截距: " + regression.Intercept.ToString());
            var weights = regression.Weights;

            for (int i = 0; i < weights.Length; i++)
            {
                strw.AppendLine("权重" + (i + 1) + ":" + weights[i]);
            }
            updateConsoleEvent(strw.ToString());

            double[] result  = new double[width * height];
            double   minProp = double.MaxValue;

            double[] minInput = null;
            for (int row = 0; row < height; row++)
            {
                for (int col = 0; col < width; col++)
                {
                    int pos = row * width + col;
                    if (beginBuffer[pos] < 0 || !IsValid(pos))
                    {
                        result[pos] = this.landUse.NullInfo.LandUseTypeValue;
                        continue;
                    }
                    double[] input = (from buffer in driveBuffers
                                      select buffer[pos]).ToArray <double>();
                    double prop = regression.Probability(input);
                    if (prop < minProp)
                    {
                        minProp  = prop;
                        minInput = input;
                    }
                    result[pos] = prop;
                }
            }



            // 新建 GDAL dataset
            OSGeo.GDAL.Driver  driver  = OSGeo.GDAL.Gdal.GetDriverByName("GTIFF");
            OSGeo.GDAL.Dataset dataset = driver.Create(this.ResultLayerName, width, height, 1, OSGeo.GDAL.DataType.GDT_Float64, null);

            dataset.WriteRaster(0, 0, width, height, result, width, height, 1, new int[1] {
                1
            }, 0, 0, 0);
            dataset.FlushCache();
        }
        public double[] GetResult()
        {
            // 采样
            List <Cell> samplePoints = getSample(this.NumberOfSample);

            // 样本数目
            int COUNT = samplePoints.Count;

            // 构造输入和输出数据集
            double[][] inputs  = new double[COUNT][];
            bool[]     outputs = new bool[COUNT];
            for (int i = 0; i < COUNT; i++)
            {
                Cell cell = samplePoints[i];
                int  pos  = cell.row * width + cell.col;
                inputs[i] = (from buffer in driveBuffers
                             select buffer[pos]).ToArray <double>();
                outputs[i] = cell.type;
            }



            var learner = new IterativeReweightedLeastSquares <Accord.Statistics.Models.Regression.LogisticRegression>()
            {
                Tolerance             = 1e-8, // 收敛参数
                Iterations            = 20,   // 最大循环数目
                Regularization        = 0,
                ComputeStandardErrors = true
            };


            Accord.Statistics.Models.Regression.LogisticRegression regression = learner.Learn(inputs, outputs);


            //// 输出 odds
            //StringBuilder strb = new StringBuilder();
            //for (int i = 0; i <= inputs[0].Length; i++)
            //{
            //    strb.AppendLine(" " + i + " : " + regression.GetOddsRatio(i));
            //}
            //updateConsoleEvent(strb.ToString());

            //// 输出 weights
            //StringBuilder strw = new StringBuilder();
            //strw.AppendLine("权重系数:");
            //strw.AppendLine("截距: " + regression.Intercept.ToString());
            //var weights = regression.Weights;
            //for (int i = 0; i < weights.Length; i++)
            //{
            //    strw.AppendLine("权重" + (i + 1) + ":" + weights[i]);
            //}
            //updateConsoleEvent(strw.ToString());

            double[] result  = new double[width * height];
            double   minProp = double.MaxValue;

            double[] minInput = null;
            for (int row = 0; row < height; row++)
            {
                for (int col = 0; col < width; col++)
                {
                    int pos = row * width + col;
                    if (beginBuffer[pos] < 0 || !IsValid(pos))
                    {
                        result[pos] = this.landUse.NullInfo.LandUseTypeValue;
                        continue;
                    }
                    double[] input = (from buffer in driveBuffers
                                      select buffer[pos]).ToArray <double>();
                    double prop = regression.Probability(input);
                    if (prop < minProp)
                    {
                        minProp  = prop;
                        minInput = input;
                    }
                    result[pos] = prop;
                }
            }
            return(result);
        }