private void ExportChart(string fileName, SymbolicDiscriminantFunctionClassificationSolution solution, string formula) { FileInfo newFile = new FileInfo(fileName); if (newFile.Exists) { newFile.Delete(); newFile = new FileInfo(fileName); } var formulaParts = formula.Split(new string[] { Environment.NewLine }, StringSplitOptions.None); using (ExcelPackage package = new ExcelPackage(newFile)) { ExcelWorksheet modelWorksheet = package.Workbook.Worksheets.Add("Model"); FormatModelSheet(modelWorksheet, solution, formulaParts); ExcelWorksheet datasetWorksheet = package.Workbook.Worksheets.Add("Dataset"); WriteDatasetToExcel(datasetWorksheet, solution.ProblemData); ExcelWorksheet inputsWorksheet = package.Workbook.Worksheets.Add("Inputs"); WriteInputSheet(inputsWorksheet, datasetWorksheet, formulaParts.Skip(2), solution.ProblemData.Dataset); ExcelWorksheet estimatedWorksheet = package.Workbook.Worksheets.Add("Estimated Values"); WriteEstimatedWorksheet(estimatedWorksheet, datasetWorksheet, formulaParts, solution); ExcelWorksheet chartsWorksheet = package.Workbook.Worksheets.Add("Charts"); AddCharts(chartsWorksheet, solution); package.Workbook.Properties.Title = "Excel Export"; package.Workbook.Properties.Author = "HEAL"; package.Workbook.Properties.Comments = "Excel export of a symbolic data analysis solution from HeuristicLab"; package.Save(); } }
public static IClassificationSolution CreateLinearDiscriminantAnalysisSolution(IClassificationProblemData problemData) { var dataset = problemData.Dataset; string targetVariable = problemData.TargetVariable; IEnumerable <string> allowedInputVariables = problemData.AllowedInputVariables; IEnumerable <int> rows = problemData.TrainingIndices; int nClasses = problemData.ClassNames.Count(); double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows); if (inputMatrix.Cast <double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) { throw new NotSupportedException("Linear discriminant analysis does not support NaN or infinity values in the input dataset."); } // change class values into class index int targetVariableColumn = inputMatrix.GetLength(1) - 1; List <double> classValues = problemData.ClassValues.OrderBy(x => x).ToList(); for (int row = 0; row < inputMatrix.GetLength(0); row++) { inputMatrix[row, targetVariableColumn] = classValues.IndexOf(inputMatrix[row, targetVariableColumn]); } int info; double[] w; alglib.fisherlda(inputMatrix, inputMatrix.GetLength(0), allowedInputVariables.Count(), nClasses, out info, out w); if (info < 1) { throw new ArgumentException("Error in calculation of linear discriminant analysis solution"); } ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode()); ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode(); tree.Root.AddSubtree(startNode); ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode(); startNode.AddSubtree(addition); int col = 0; foreach (string column in allowedInputVariables) { VariableTreeNode vNode = (VariableTreeNode) new HeuristicLab.Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode(); vNode.VariableName = column; vNode.Weight = w[col]; addition.AddSubtree(vNode); col++; } var model = LinearDiscriminantAnalysis.CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData, rows); SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); return(solution); }
public static IClassificationSolution CreateLinearDiscriminantAnalysisSolution(IClassificationProblemData problemData) { var dataset = problemData.Dataset; string targetVariable = problemData.TargetVariable; IEnumerable <string> allowedInputVariables = problemData.AllowedInputVariables; IEnumerable <int> rows = problemData.TrainingIndices; int nClasses = problemData.ClassNames.Count(); var doubleVariableNames = allowedInputVariables.Where(dataset.VariableHasType <double>).ToArray(); var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType <string>).ToArray(); double[,] inputMatrix = dataset.ToArray(doubleVariableNames.Concat(new string[] { targetVariable }), rows); var factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows); var factorMatrix = dataset.ToArray(factorVariables, rows); inputMatrix = factorMatrix.HorzCat(inputMatrix); if (inputMatrix.Cast <double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) { throw new NotSupportedException("Linear discriminant analysis does not support NaN or infinity values in the input dataset."); } // change class values into class index int targetVariableColumn = inputMatrix.GetLength(1) - 1; List <double> classValues = problemData.ClassValues.OrderBy(x => x).ToList(); for (int row = 0; row < inputMatrix.GetLength(0); row++) { inputMatrix[row, targetVariableColumn] = classValues.IndexOf(inputMatrix[row, targetVariableColumn]); } int info; double[] w; alglib.fisherlda(inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1) - 1, nClasses, out info, out w); if (info < 1) { throw new ArgumentException("Error in calculation of linear discriminant analysis solution"); } var nFactorCoeff = factorMatrix.GetLength(1); var tree = LinearModelToTreeConverter.CreateTree(factorVariables, w.Take(nFactorCoeff).ToArray(), doubleVariableNames, w.Skip(nFactorCoeff).Take(doubleVariableNames.Length).ToArray()); var model = CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), problemData, rows); SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); return(solution); }
private void FormatModelSheet(ExcelWorksheet modelWorksheet, SymbolicDiscriminantFunctionClassificationSolution solution, IEnumerable <string> formulaParts) { int row = 1; modelWorksheet.Cells[row, 1].Value = "Model"; modelWorksheet.Cells[row, 2].Value = solution.Name; foreach (var part in formulaParts) { modelWorksheet.Cells[row, 4].Value = part; row++; } row = 2; modelWorksheet.Cells[row, 1].Value = "Model Depth"; modelWorksheet.Cells[row, 2].Value = solution.Model.SymbolicExpressionTree.Depth; row++; modelWorksheet.Cells[row, 1].Value = "Model Length"; modelWorksheet.Cells[row, 2].Value = solution.Model.SymbolicExpressionTree.Length; row += 2; var thresholds = solution.Model.Thresholds.ToList(); // skip first (-inf) and last (+inf) thresholds for (int i = 0; i < thresholds.Count; ++i) { if (double.IsInfinity(thresholds[i]) || double.IsNaN(thresholds[i])) { continue; } modelWorksheet.Cells[row, 1].Value = "Threshold " + i; modelWorksheet.Cells[row, 2].Value = thresholds[i]; ++row; } row++; modelWorksheet.Cells[row, 1].Value = "Estimation Limits Lower"; modelWorksheet.Cells[row, 2].Value = Math.Max(solution.Model.LowerEstimationLimit, -9.99999999999999E+307); // minimal value supported by excel modelWorksheet.Names.Add("EstimationLimitLower", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Estimation Limits Upper"; modelWorksheet.Cells[row, 2].Value = Math.Min(solution.Model.UpperEstimationLimit, 9.99999999999999E+307); // maximal value supported by excel modelWorksheet.Names.Add("EstimationLimitUpper", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row += 2; modelWorksheet.Cells[row, 1].Value = "Trainings Partition Start"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TrainingPartition.Start; modelWorksheet.Names.Add(TRAININGSTART, modelWorksheet.Cells[row, 2]); row++; modelWorksheet.Cells[row, 1].Value = "Trainings Partition End"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TrainingPartition.End; modelWorksheet.Names.Add(TRAININGEND, modelWorksheet.Cells[row, 2]); row++; modelWorksheet.Cells[row, 1].Value = "Test Partition Start"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TestPartition.Start; modelWorksheet.Names.Add(TESTSTART, modelWorksheet.Cells[row, 2]); row++; modelWorksheet.Cells[row, 1].Value = "Test Partition End"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TestPartition.End; modelWorksheet.Names.Add(TESTEND, modelWorksheet.Cells[row, 2]); row += 2; string excelTrainingTarget = Indirect("B", true); string excelTrainingEstimated = Indirect("C", true); string excelTrainingClassValues = Indirect("D", true); string excelTrainingMeanError = Indirect("F", true); string excelTrainingMSE = Indirect("G", true); string excelTestTarget = Indirect("B", false); string excelTestEstimated = Indirect("C", false); string excelTestClassValues = Indirect("D", false); string excelTestMeanError = Indirect("F", false); string excelTestMSE = Indirect("G", false); modelWorksheet.Cells[row, 1].Value = "Accuracy (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("SUMPRODUCT(({0}={1})*1)/COUNT({0})", excelTrainingClassValues, excelTrainingTarget); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Accuracy (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("SUMPRODUCT(({0}={1})*1)/COUNT({0})", excelTestClassValues, excelTestTarget); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Pearson's R² (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("POWER(PEARSON({0},{1}),2)", excelTrainingTarget, excelTrainingEstimated); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Pearson's R² (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("POWER(PEARSON({0},{1}),2)", excelTestTarget, excelTestEstimated); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Mean Squared Error (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTrainingMSE); modelWorksheet.Names.Add("TrainingMSE", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Mean Squared Error (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTestMSE); modelWorksheet.Names.Add("TestMSE", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Normalized Gini Coefficient (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTrainingMeanError); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Normalized Gini Coefficient (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTestMeanError); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells["A1:B" + row].AutoFitColumns(); AddModelTreePicture(modelWorksheet, solution.Model); }
private void WriteEstimatedWorksheet(ExcelWorksheet estimatedWorksheet, ExcelWorksheet datasetWorksheet, string[] formulaParts, SymbolicDiscriminantFunctionClassificationSolution solution) { string preparedFormula = PrepareFormula(formulaParts); int rows = solution.ProblemData.Dataset.Rows; estimatedWorksheet.Cells[1, 1].Value = "Id"; // A estimatedWorksheet.Cells[1, 2].Value = "Target Variable"; // B estimatedWorksheet.Cells[1, 3].Value = "Estimated Values"; // C estimatedWorksheet.Cells[1, 4].Value = "Estimated Class Values"; // D estimatedWorksheet.Cells[1, 6].Value = "Error"; // F estimatedWorksheet.Cells[1, 7].Value = "Squared Error"; // G estimatedWorksheet.Cells[1, 9].Value = "Unbounded Estimated Values"; // I estimatedWorksheet.Cells[1, 10].Value = "Bounded Estimated Values"; // J estimatedWorksheet.Cells[1, 11].Value = "Random Key"; // K var thresholds = solution.Model.Thresholds.Where(x => !double.IsInfinity(x)).ToList(); var thresholdsFormula = GenerateThresholdsFormula(thresholds); const int columnIndex = 13; // index of beginning columns for class values for (int i = 0; i <= thresholds.Count; ++i) { estimatedWorksheet.Cells[1, i + columnIndex].Value = "Class " + i; if (i < thresholds.Count) { estimatedWorksheet.Cells[1, i + columnIndex + thresholds.Count + 1].Value = "Threshold " + i; } } estimatedWorksheet.Cells[1, 1, 1, 10].AutoFitColumns(); int targetIndex = solution.ProblemData.Dataset.VariableNames.ToList().FindIndex(x => x.Equals(solution.ProblemData.TargetVariable)) + 1; for (int i = 0; i < rows; i++) { estimatedWorksheet.Cells[i + 2, 1].Value = i; estimatedWorksheet.Cells[i + 2, 2].Formula = datasetWorksheet.Cells[i + 2, targetIndex].FullAddress; // target values estimatedWorksheet.Cells[i + 2, 9].Formula = string.Format(preparedFormula, i + 2); // formula (estimated) values string condition = string.Empty; string rowRef = "C" + (i + 2); int nClasses = thresholds.Count + 1; for (int j = columnIndex; j < columnIndex + nClasses; ++j) { int idx = j - columnIndex + 5; // row index for the threshold values if (j == columnIndex) { condition = rowRef + " < Model!$B$" + idx; } else if (j > columnIndex && j < columnIndex + thresholds.Count) { condition = "AND(" + rowRef + "> Model!$B$" + (idx - 1) + ", " + rowRef + " < Model!$B$" + idx + ")"; } else if (j == columnIndex + thresholds.Count) { condition = rowRef + " > Model!$B$" + (idx - 1); } estimatedWorksheet.Cells[i + 2, j].Formula = "IF(" + condition + ", " + rowRef + ", #N/A)"; if (j < columnIndex + thresholds.Count) { estimatedWorksheet.Cells[i + 2, j + nClasses].Formula = "Model!$B$" + idx; } } } estimatedWorksheet.Cells["B2:B" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["C2:C" + (rows + 1)].Formula = "J2"; estimatedWorksheet.Cells["C2:C" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["D2:D" + (rows + 1)].Formula = thresholdsFormula; estimatedWorksheet.Cells["D2:D" + (rows + 1)].Style.Numberformat.Format = "0.0"; estimatedWorksheet.Cells["F2:F" + (rows + 1)].Formula = "B2 - C2"; estimatedWorksheet.Cells["F2:F" + (rows + 1)].Style.Numberformat.Format = "0.0"; estimatedWorksheet.Cells["G2:G" + (rows + 1)].Formula = "POWER(F2, 2)"; estimatedWorksheet.Cells["G2:G" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["I2:I" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["J2:J" + (rows + 1)].Formula = "IFERROR(IF(I2 > Model!EstimationLimitUpper, Model!EstimationLimitUpper, IF(I2 < Model!EstimationLimitLower, Model!EstimationLimitLower, I2)), AVERAGE(Model!EstimationLimitLower, Model!EstimationLimitUpper))"; estimatedWorksheet.Cells["J2:J" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["K2:K" + (rows + 1)].Formula = "RAND()"; estimatedWorksheet.Cells["K2:K" + (rows + 1)].Style.Numberformat.Format = "0.000"; }
private void FormatModelSheet(ExcelWorksheet modelWorksheet, SymbolicDiscriminantFunctionClassificationSolution solution, IEnumerable<string> formulaParts) { int row = 1; modelWorksheet.Cells[row, 1].Value = "Model"; modelWorksheet.Cells[row, 2].Value = solution.Name; foreach (var part in formulaParts) { modelWorksheet.Cells[row, 4].Value = part; row++; } row = 2; modelWorksheet.Cells[row, 1].Value = "Model Depth"; modelWorksheet.Cells[row, 2].Value = solution.Model.SymbolicExpressionTree.Depth; row++; modelWorksheet.Cells[row, 1].Value = "Model Length"; modelWorksheet.Cells[row, 2].Value = solution.Model.SymbolicExpressionTree.Length; row += 2; var thresholds = solution.Model.Thresholds.ToList(); // skip first (-inf) and last (+inf) thresholds for (int i = 0; i < thresholds.Count; ++i) { if (double.IsInfinity(thresholds[i]) || double.IsNaN(thresholds[i])) continue; modelWorksheet.Cells[row, 1].Value = "Threshold " + i; modelWorksheet.Cells[row, 2].Value = thresholds[i]; ++row; } row++; modelWorksheet.Cells[row, 1].Value = "Estimation Limits Lower"; modelWorksheet.Cells[row, 2].Value = Math.Max(solution.Model.LowerEstimationLimit, -9.99999999999999E+307); // minimal value supported by excel modelWorksheet.Names.Add("EstimationLimitLower", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Estimation Limits Upper"; modelWorksheet.Cells[row, 2].Value = Math.Min(solution.Model.UpperEstimationLimit, 9.99999999999999E+307); // maximal value supported by excel modelWorksheet.Names.Add("EstimationLimitUpper", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row += 2; modelWorksheet.Cells[row, 1].Value = "Trainings Partition Start"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TrainingPartition.Start; modelWorksheet.Names.Add(TRAININGSTART, modelWorksheet.Cells[row, 2]); row++; modelWorksheet.Cells[row, 1].Value = "Trainings Partition End"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TrainingPartition.End; modelWorksheet.Names.Add(TRAININGEND, modelWorksheet.Cells[row, 2]); row++; modelWorksheet.Cells[row, 1].Value = "Test Partition Start"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TestPartition.Start; modelWorksheet.Names.Add(TESTSTART, modelWorksheet.Cells[row, 2]); row++; modelWorksheet.Cells[row, 1].Value = "Test Partition End"; modelWorksheet.Cells[row, 2].Value = solution.ProblemData.TestPartition.End; modelWorksheet.Names.Add(TESTEND, modelWorksheet.Cells[row, 2]); row += 2; string excelTrainingTarget = Indirect("B", true); string excelTrainingEstimated = Indirect("C", true); string excelTrainingClassValues = Indirect("D", true); string excelTrainingMeanError = Indirect("F", true); string excelTrainingMSE = Indirect("G", true); string excelTestTarget = Indirect("B", false); string excelTestEstimated = Indirect("C", false); string excelTestClassValues = Indirect("D", false); string excelTestMeanError = Indirect("F", false); string excelTestMSE = Indirect("G", false); modelWorksheet.Cells[row, 1].Value = "Accuracy (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("SUMPRODUCT(({0}={1})*1)/COUNT({0})", excelTrainingClassValues, excelTrainingTarget); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Accuracy (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("SUMPRODUCT(({0}={1})*1)/COUNT({0})", excelTestClassValues, excelTestTarget); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Pearson's R² (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("POWER(PEARSON({0},{1}),2)", excelTrainingTarget, excelTrainingEstimated); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Pearson's R² (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("POWER(PEARSON({0},{1}),2)", excelTestTarget, excelTestEstimated); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000"; row++; modelWorksheet.Cells[row, 1].Value = "Mean Squared Error (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTrainingMSE); modelWorksheet.Names.Add("TrainingMSE", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Mean Squared Error (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTestMSE); modelWorksheet.Names.Add("TestMSE", modelWorksheet.Cells[row, 2]); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Normalized Gini Coefficient (training)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTrainingMeanError); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells[row, 1].Value = "Normalized Gini Coefficient (test)"; modelWorksheet.Cells[row, 2].Formula = string.Format("AVERAGE({0})", excelTestMeanError); modelWorksheet.Cells[row, 2].Style.Numberformat.Format = "0.000E+00"; row++; modelWorksheet.Cells["A1:B" + row].AutoFitColumns(); AddModelTreePicture(modelWorksheet, solution.Model); }
private void WriteEstimatedWorksheet(ExcelWorksheet estimatedWorksheet, ExcelWorksheet datasetWorksheet, string[] formulaParts, SymbolicDiscriminantFunctionClassificationSolution solution) { string preparedFormula = PrepareFormula(formulaParts); int rows = solution.ProblemData.Dataset.Rows; estimatedWorksheet.Cells[1, 1].Value = "Id"; // A estimatedWorksheet.Cells[1, 2].Value = "Target Variable"; // B estimatedWorksheet.Cells[1, 3].Value = "Estimated Values"; // C estimatedWorksheet.Cells[1, 4].Value = "Estimated Class Values"; // D estimatedWorksheet.Cells[1, 6].Value = "Error"; // F estimatedWorksheet.Cells[1, 7].Value = "Squared Error"; // G estimatedWorksheet.Cells[1, 9].Value = "Unbounded Estimated Values"; // I estimatedWorksheet.Cells[1, 10].Value = "Bounded Estimated Values"; // J estimatedWorksheet.Cells[1, 11].Value = "Random Key"; // K var thresholds = solution.Model.Thresholds.Where(x => !double.IsInfinity(x)).ToList(); var thresholdsFormula = GenerateThresholdsFormula(thresholds); const int columnIndex = 13; // index of beginning columns for class values for (int i = 0; i <= thresholds.Count; ++i) { estimatedWorksheet.Cells[1, i + columnIndex].Value = "Class " + i; if (i < thresholds.Count) estimatedWorksheet.Cells[1, i + columnIndex + thresholds.Count + 1].Value = "Threshold " + i; } estimatedWorksheet.Cells[1, 1, 1, 10].AutoFitColumns(); int targetIndex = solution.ProblemData.Dataset.VariableNames.ToList().FindIndex(x => x.Equals(solution.ProblemData.TargetVariable)) + 1; for (int i = 0; i < rows; i++) { estimatedWorksheet.Cells[i + 2, 1].Value = i; estimatedWorksheet.Cells[i + 2, 2].Formula = datasetWorksheet.Cells[i + 2, targetIndex].FullAddress; // target values estimatedWorksheet.Cells[i + 2, 9].Formula = string.Format(preparedFormula, i + 2); // formula (estimated) values string condition = string.Empty; string rowRef = "C" + (i + 2); int nClasses = thresholds.Count + 1; for (int j = columnIndex; j < columnIndex + nClasses; ++j) { int idx = j - columnIndex + 5; // row index for the threshold values if (j == columnIndex) { condition = rowRef + " < Model!$B$" + idx; } else if (j > columnIndex && j < columnIndex + thresholds.Count) { condition = "AND(" + rowRef + "> Model!$B$" + (idx - 1) + ", " + rowRef + " < Model!$B$" + idx + ")"; } else if (j == columnIndex + thresholds.Count) { condition = rowRef + " > Model!$B$" + (idx - 1); } estimatedWorksheet.Cells[i + 2, j].Formula = "IF(" + condition + ", " + rowRef + ", #N/A)"; if (j < columnIndex + thresholds.Count) estimatedWorksheet.Cells[i + 2, j + nClasses].Formula = "Model!$B$" + idx; } } estimatedWorksheet.Cells["B2:B" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["C2:C" + (rows + 1)].Formula = "J2"; estimatedWorksheet.Cells["C2:C" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["D2:D" + (rows + 1)].Formula = thresholdsFormula; estimatedWorksheet.Cells["D2:D" + (rows + 1)].Style.Numberformat.Format = "0.0"; estimatedWorksheet.Cells["F2:F" + (rows + 1)].Formula = "B2 - C2"; estimatedWorksheet.Cells["F2:F" + (rows + 1)].Style.Numberformat.Format = "0.0"; estimatedWorksheet.Cells["G2:G" + (rows + 1)].Formula = "POWER(F2, 2)"; estimatedWorksheet.Cells["G2:G" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["I2:I" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["J2:J" + (rows + 1)].Formula = "IFERROR(IF(I2 > Model!EstimationLimitUpper, Model!EstimationLimitUpper, IF(I2 < Model!EstimationLimitLower, Model!EstimationLimitLower, I2)), AVERAGE(Model!EstimationLimitLower, Model!EstimationLimitUpper))"; estimatedWorksheet.Cells["J2:J" + (rows + 1)].Style.Numberformat.Format = "0.000"; estimatedWorksheet.Cells["K2:K" + (rows + 1)].Formula = "RAND()"; estimatedWorksheet.Cells["K2:K" + (rows + 1)].Style.Numberformat.Format = "0.000"; }