public static void SimulateOneStep(MLPDll controller, IModelSimulator model, CarModelState state, out CarModelInput outInput, out CarModelState outState)
        {
            double[] inputs = new double[4];
            inputs[0] = ComMath.Normal(state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, POSITION_SCALE * MIN_NEURON_VALUE, POSITION_SCALE * MAX_NEURON_VALUE);
            inputs[1] = ComMath.Normal(state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, POSITION_SCALE * MIN_NEURON_VALUE, POSITION_SCALE * MAX_NEURON_VALUE);
            inputs[2] = ComMath.Normal(state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[3] = ComMath.Normal(state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            double[] controllerOutputs = controller.Output(inputs);

            if (INPUT_TYPE == inputType.wheelAngle)
            {
                outInput       = new CarModelInput();
                outInput.Angle = ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_ANGLE, CarModelInput.MAX_ANGLE);
            }
            else if (INPUT_TYPE == inputType.wheelSpeed)
            {
                outInput = new CarModelInput(ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED),
                                             ComMath.Normal(controllerOutputs[1], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED));
                //********
                //hatrafele tilos mennie
                if (outInput.LeftSpeed < 0)
                {
                    outInput.LeftSpeed = 0;
                }
                if (outInput.RightSpeed < 0)
                {
                    outInput.RightSpeed = 0;
                }
                //********
            }

            model.SimulateModel(state, outInput, out outState);
        }
示例#2
0
        public void Simulate(IModelSimulator modelsim, CarModelInput input, double timestep)
        {
            CarModel model = new CarModel(GetCarState());

            model.SimulateModel(input, modelsim, timestep);
            currentCarModelState = model.state;
        }
 public void Simulate(IModelSimulator modelsim, CarModelInput input, double timestep)
 {
     model.SimulateModel(input, modelsim, timestep);
     lock (obstacles)
     {
         foreach (ObstacleModel ops in obstacles)
         {
             lock (ops)
             {
                 ops.state.pp.Simulate(timestep);
             }
         }
     }
 }
 public NeuralController(IModelSimulator model, IObstaclePositionProvider obstacle, ICarPositionProvider start, IFinishPositionProvider finish)
 {
     this.model = model;
     if (INPUT_TYPE == inputType.wheelAngle)
     {
         controller = new MLPDll(new int[] { 20, 1 }, 4);//4 bemenet a state, 1 kimenet az input                        
     }
     else if (INPUT_TYPE == inputType.wheelSpeed)
     {
         controller = new MLPDll(new int[] { 75, 2 }, 4);//4 bemenet a state, 2 kimenet az input                        
     }
     obstacleProvider = obstacle;
     carStateProvider = start;
     finishStateProvider = finish;
     trainingStopped = true;
     mu = 0.005;
 }
        //public NeuralModelSimulator(String filename)
        //{
        //    mlp = new MLPDll(filename);                        
        //}     

        public void Train(IModelSimulator sourceSimulator, double treshold)
        {
            Random r = new Random();            
            double mu = 0.0001;
            long count = 0;
            double errors = 0, errors2 = double.MaxValue;
            double[] error = new double[4];
            do
            {                               
                for (int i2 = 0; i2 < EPOCH_COUNT; ++i2)
                {                    
                    double angle = r.NextDouble() * 2 * Math.PI;//veletlen szog                    
                    CarModelState carstate = new CarModelState(new PointD(ComMath.Normal(r.NextDouble(), 0, 1, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X),
                                                                          ComMath.Normal(r.NextDouble(), 0, 1, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y)),
                                                               new PointD(ComMath.Normal(Math.Cos(angle), -1, 1, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY),
                                                                          ComMath.Normal(Math.Sin(angle), -1, 1, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY)));

                    CarModelInput carinput = new CarModelInput();
                    //= new CarModelInput(ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED),
                    //                                           ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED));                        
                    carinput.Angle = ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_ANGLE, CarModelInput.MAX_ANGLE);
                                        
                    
                    CarModelState state, state2;
                    double[] output;
                    sourceSimulator.SimulateModel(carstate, carinput, out state);
                    this.SimulateModel(carstate, carinput, out state2, out output);                  


                    error = new double[4];
                    error[0] = -output[0] + ComMath.Normal(state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    error[1] = -output[1] + ComMath.Normal(state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    error[2] = -output[2] + ComMath.Normal(state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    error[3] = -output[3] + ComMath.Normal(state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    count++;
                    mlp.Train(mu, error);
                    errors += error[0] * error[0] + error[1] * error[1] + error[2] * error[2] + error[3] * error[3];
                }
                errors /= EPOCH_COUNT;
                //if (errors2 < errors) mu *= 0.75;
                errors2 = errors;                                              
                System.Console.WriteLine(errors.ToString());
            } while (errors > treshold);
           // mlp.SaveNN("neuralmodel.mlp");
            
        }
示例#6
0
        //public NeuralModelSimulator(String filename)
        //{
        //    mlp = new MLPDll(filename);
        //}

        public void Train(IModelSimulator sourceSimulator, double treshold)
        {
            Random r = new Random();
            double mu = 0.0001;
            long   count = 0;
            double errors = 0, errors2 = double.MaxValue;

            double[] error = new double[4];
            do
            {
                for (int i2 = 0; i2 < EPOCH_COUNT; ++i2)
                {
                    double        angle    = r.NextDouble() * 2 * Math.PI;//veletlen szog
                    CarModelState carstate = new CarModelState(new PointD(ComMath.Normal(r.NextDouble(), 0, 1, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X),
                                                                          ComMath.Normal(r.NextDouble(), 0, 1, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y)),
                                                               new PointD(ComMath.Normal(Math.Cos(angle), -1, 1, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY),
                                                                          ComMath.Normal(Math.Sin(angle), -1, 1, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY)));

                    CarModelInput carinput = new CarModelInput();
                    //= new CarModelInput(ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED),
                    //                                           ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED));
                    carinput.Angle = ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_ANGLE, CarModelInput.MAX_ANGLE);


                    CarModelState state, state2;
                    double[]      output;
                    sourceSimulator.SimulateModel(carstate, carinput, out state);
                    this.SimulateModel(carstate, carinput, out state2, out output);


                    error    = new double[4];
                    error[0] = -output[0] + ComMath.Normal(state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    error[1] = -output[1] + ComMath.Normal(state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    error[2] = -output[2] + ComMath.Normal(state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    error[3] = -output[3] + ComMath.Normal(state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
                    count++;
                    mlp.Train(mu, error);
                    errors += error[0] * error[0] + error[1] * error[1] + error[2] * error[2] + error[3] * error[3];
                }
                errors /= EPOCH_COUNT;
                //if (errors2 < errors) mu *= 0.75;
                errors2 = errors;
                System.Console.WriteLine(errors.ToString());
            } while (errors > treshold);
            // mlp.SaveNN("neuralmodel.mlp");
        }
 public NeuralController(IModelSimulator model, IObstaclePositionProvider obstacle, ICarPositionProvider start, IFinishPositionProvider finish)
 {
     this.model = model;
     if (INPUT_TYPE == inputType.wheelAngle)
     {
         controller = new MLPDll(new int[] { 20, 1 }, 4);//4 bemenet a state, 1 kimenet az input
     }
     else if (INPUT_TYPE == inputType.wheelSpeed)
     {
         controller = new MLPDll(new int[] { 75, 2 }, 4);//4 bemenet a state, 2 kimenet az input
     }
     obstacleProvider    = obstacle;
     carStateProvider    = start;
     finishStateProvider = finish;
     trainingStopped     = true;
     mu = 0.005;
 }
 public void Simulate(IModelSimulator modelsim, CarModelInput input, double timestep)
 {
     model.SimulateModel(input, modelsim, timestep);
     lock (obstacles)
     {
         foreach (ObstacleModel ops in obstacles)
         {
             lock (ops)
             {
                 ops.state.pp.Simulate(timestep);
             }
         }
     }
 }
        public static void SimulateOneStep(MLPDll controller, IModelSimulator model, CarModelState state, out CarModelInput outInput, out CarModelState outState)
        {
            double[] inputs = new double[4];            
            inputs[0] = ComMath.Normal(state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, POSITION_SCALE * MIN_NEURON_VALUE, POSITION_SCALE * MAX_NEURON_VALUE);
            inputs[1] = ComMath.Normal(state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, POSITION_SCALE * MIN_NEURON_VALUE, POSITION_SCALE * MAX_NEURON_VALUE);
            inputs[2] = ComMath.Normal(state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[3] = ComMath.Normal(state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            double[] controllerOutputs = controller.Output(inputs);            
                        
            if (INPUT_TYPE == inputType.wheelAngle)
            {                
                outInput = new CarModelInput();
                outInput.Angle = ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_ANGLE, CarModelInput.MAX_ANGLE);
            }
            else if (INPUT_TYPE == inputType.wheelSpeed)
            {
                outInput = new CarModelInput(ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED),
                                             ComMath.Normal(controllerOutputs[1], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED));
                //********
                //hatrafele tilos mennie
                if (outInput.LeftSpeed < 0) outInput.LeftSpeed = 0;
                if (outInput.RightSpeed < 0) outInput.RightSpeed = 0;
                //********
            }

            model.SimulateModel(state, outInput, out outState);
        }
        private double TrainOneEpoch(double mu, out double SumSimCount, out List<CarModelState> innerStates)
        {

            int maxSimCount = 100;
            double sumSimCount = 0;
            double error = 0;            
            innerStates = new List<CarModelState>();
            List<double> deltaws = new List<double>();

            MLPDll[] controllers = new MLPDll[maxSimCount];
            IModelSimulator[] models = new IModelSimulator[maxSimCount];

            CarModelState state = carStateProvider.GetCarState();
            CarModelInput input = new CarModelInput();


            //kimenet kiszamitasa                    
            int simCount = 0;
            List<double[]> singleErrors = new List<double[]>();
            List<double[]> regularizationErrors = new List<double[]>();                
            CarModelState laststate;
            bool earlyStop;
            do
            {
                controllers[simCount] = new MLPDll(controller);//lemasoljuk
                models[simCount] = model.Clone();//a modellt is

                laststate = state;
                NeuralController.SimulateOneStep(controllers[simCount], models[simCount], state, out input, out state);//vegigszimulaljuk a simCount darab controlleren es modellen
                innerStates.Add(state);

                //kozbulso hibak kiszamitasa, itt csak az akadalyoktol valo tavolsag "hibajat" vesszuk figyelembe, irany nem szamit -> hibaja 0                    
                regularizationErrors.Add(obstacleFieldErrorGradient(state, simCount));
               
                //minden pont celtol vett tavolsaga
                double[] desiredOutput = (double[])finishStateProvider.GetFinishState(simCount);
                singleErrors.Add(new double[] {  1*ComMath.Normal(desiredOutput[0] - state.Position.X,CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                 1*ComMath.Normal(desiredOutput[1] - state.Position.Y,CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, MIN_NEURON_VALUE, MAX_NEURON_VALUE), 
                                                 0.1*ComMath.Normal(desiredOutput[2] - state.Orientation.X,CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE), 
                                                 0.1*ComMath.Normal(desiredOutput[3] - state.Orientation.Y,CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE) }
                                );
                
                ++simCount;

                earlyStop = false;
                if (simCount > 3)
                {
                    double[] err1 = singleErrors[simCount-1];
                    double[] err2 = singleErrors[simCount-2];
                    double[] err3 = singleErrors[simCount-3];
                    double error1, error2, error3;
                    error1 = error2 = error3 = 0;
                    for (int i = 0; i < err1.Length; i++)
	                {
                        error1 += err1[i] * err1[i];
                        error2 += err2[i] * err2[i];
                        error3 += err3[i] * err3[i];
	                }
                    earlyStop = ((error1 > error2) && (error3 > error2));

                    if (earlyStop)
                    {
                        //utolso elemet toroljuk
                        singleErrors.RemoveAt(singleErrors.Count - 1);
                        regularizationErrors.RemoveAt(regularizationErrors.Count - 1);
                        innerStates.RemoveAt(innerStates.Count - 1);
                        --simCount;
                    }                        
                }
                


            }
            while ((simCount < maxSimCount) && !earlyStop);
           

            
            double[] errors = singleErrors[singleErrors.Count-1];               
            
            sumSimCount += simCount;

            //hibavisszaterjesztes
            for (int i = simCount - 1; i >= 0; --i)
            {
                double[] sensitibility;
                models[i].CalcErrorSensibility(errors, out sensitibility);

                double[] inputSensitibility;

                if (INPUT_TYPE == inputType.wheelAngle)
                {
                    inputSensitibility = new double[1];
                    inputSensitibility[0] = sensitibility[6];
                }
                else if (INPUT_TYPE == inputType.wheelSpeed)
                {
                    inputSensitibility = new double[2];
                    inputSensitibility[0] = sensitibility[4];
                    inputSensitibility[1] = sensitibility[5];
                }

                double[] sensitibility2;

                controllers[i].SetOutputError(inputSensitibility);
                controllers[i].Backpropagate();
                controllers[i].CalculateDeltaWeights();
                sensitibility2 = controllers[i].SensitibilityD();
                

                
                errors[0] = (sensitibility[0] + sensitibility2[0]);
                errors[1] = (sensitibility[1] + sensitibility2[1]);
                errors[2] = (sensitibility[2] + sensitibility2[2]);
                errors[3] = (sensitibility[3] + sensitibility2[3]);
               
                //regularizaciobol szarmazo hiba hozzaadasa                    
                errors[0] += regularizationErrors[i][0];
                errors[1] += regularizationErrors[i][1];                


               
            }

            controller.ClearDeltaWeights();
            //sulymodositasok osszegzese     
            for (int i2 = 0; i2 < simCount; ++i2)
            {
                controller.AddDeltaWeights(controllers[i2]);                
            }
            float maxdw = controller.MaxDeltaWeight();
            //if (maxdw < 50) maxdw = 50;

            controller.ChangeWeights(mu / maxdw);

            ////sulymodositasok osszegzese                    
            //for (int i2 = 0; i2 < simCount; ++i2) //simCount
            //{

            //    int count = 0;
            //    for (int i = 1; i < controllers[i2]; ++i)
            //    {
            //        foreach (INeuron n in controllers[i2].mlp[i])
            //        {
            //            foreach (NeuronInput ni in ((Neuron)n).inputs)
            //            {
            //                if (deltaws.Count <= count) deltaws.Add(ni.deltaw);
            //                else deltaws[count] += ni.deltaw;
            //                ++count;
            //            }
            //        }
            //    }
            //}
                
            ////legnagyobb sulymodositas ertekenek meghatarozasa, majd ezzel normalas
            //double maxdw = 1;

            //foreach (double dw in deltaws)
            //{
            //    if (Math.Abs(dw) > maxdw) maxdw = Math.Abs(dw);
            //}

            //if (maxdw < 50) maxdw = 50;

            ////sulymodositasok ervenyre juttatasa a controllerben
            //int count2 = 0;
            
            //for (int i = 1; i < controller.mlp.Count; ++i)
            //{
            //    foreach (INeuron n in controller.mlp[i])
            //    {
            //        foreach (NeuronInput ni in ((Neuron)n).inputs)
            //        {
            //            ni.w += mu * deltaws[count2] / maxdw;
                         
            //            ++count2;
            //        }
            //    }
            //}

                      
            SumSimCount = sumSimCount;
            return error;
        }
 public void Simulate(IModelSimulator modelsim, CarModelInput input, double timestep)
 {
     CarModel model = new CarModel(GetCarState());
     model.SimulateModel(input, modelsim, timestep);
     currentCarModelState = model.state;
 }
        private double TrainOneEpoch(double mu, out double SumSimCount, out List <CarModelState> innerStates)
        {
            int    maxSimCount = 100;
            double sumSimCount = 0;
            double error       = 0;

            innerStates = new List <CarModelState>();
            List <double> deltaws = new List <double>();

            MLPDll[]          controllers = new MLPDll[maxSimCount];
            IModelSimulator[] models      = new IModelSimulator[maxSimCount];

            CarModelState state = carStateProvider.GetCarState();
            CarModelInput input = new CarModelInput();


            //kimenet kiszamitasa
            int             simCount             = 0;
            List <double[]> singleErrors         = new List <double[]>();
            List <double[]> regularizationErrors = new List <double[]>();
            CarModelState   laststate;
            bool            earlyStop;

            do
            {
                controllers[simCount] = new MLPDll(controller); //lemasoljuk
                models[simCount]      = model.Clone();          //a modellt is

                laststate = state;
                NeuralController.SimulateOneStep(controllers[simCount], models[simCount], state, out input, out state);//vegigszimulaljuk a simCount darab controlleren es modellen
                innerStates.Add(state);

                //kozbulso hibak kiszamitasa, itt csak az akadalyoktol valo tavolsag "hibajat" vesszuk figyelembe, irany nem szamit -> hibaja 0
                regularizationErrors.Add(obstacleFieldErrorGradient(state, simCount));

                //minden pont celtol vett tavolsaga
                double[] desiredOutput = (double[])finishStateProvider.GetFinishState(simCount);
                singleErrors.Add(new double[] { 1 * ComMath.Normal(desiredOutput[0] - state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                1 * ComMath.Normal(desiredOutput[1] - state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                0.1 * ComMath.Normal(desiredOutput[2] - state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                0.1 * ComMath.Normal(desiredOutput[3] - state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE) }
                                 );

                ++simCount;

                earlyStop = false;
                if (simCount > 3)
                {
                    double[] err1 = singleErrors[simCount - 1];
                    double[] err2 = singleErrors[simCount - 2];
                    double[] err3 = singleErrors[simCount - 3];
                    double   error1, error2, error3;
                    error1 = error2 = error3 = 0;
                    for (int i = 0; i < err1.Length; i++)
                    {
                        error1 += err1[i] * err1[i];
                        error2 += err2[i] * err2[i];
                        error3 += err3[i] * err3[i];
                    }
                    earlyStop = ((error1 > error2) && (error3 > error2));

                    if (earlyStop)
                    {
                        //utolso elemet toroljuk
                        singleErrors.RemoveAt(singleErrors.Count - 1);
                        regularizationErrors.RemoveAt(regularizationErrors.Count - 1);
                        innerStates.RemoveAt(innerStates.Count - 1);
                        --simCount;
                    }
                }
            }while ((simCount < maxSimCount) && !earlyStop);



            double[] errors = singleErrors[singleErrors.Count - 1];

            sumSimCount += simCount;

            //hibavisszaterjesztes
            for (int i = simCount - 1; i >= 0; --i)
            {
                double[] sensitibility;
                models[i].CalcErrorSensibility(errors, out sensitibility);

                double[] inputSensitibility;

                if (INPUT_TYPE == inputType.wheelAngle)
                {
                    inputSensitibility    = new double[1];
                    inputSensitibility[0] = sensitibility[6];
                }
                else if (INPUT_TYPE == inputType.wheelSpeed)
                {
                    inputSensitibility    = new double[2];
                    inputSensitibility[0] = sensitibility[4];
                    inputSensitibility[1] = sensitibility[5];
                }

                double[] sensitibility2;

                controllers[i].SetOutputError(inputSensitibility);
                controllers[i].Backpropagate();
                controllers[i].CalculateDeltaWeights();
                sensitibility2 = controllers[i].SensitibilityD();



                errors[0] = (sensitibility[0] + sensitibility2[0]);
                errors[1] = (sensitibility[1] + sensitibility2[1]);
                errors[2] = (sensitibility[2] + sensitibility2[2]);
                errors[3] = (sensitibility[3] + sensitibility2[3]);

                //regularizaciobol szarmazo hiba hozzaadasa
                errors[0] += regularizationErrors[i][0];
                errors[1] += regularizationErrors[i][1];
            }

            controller.ClearDeltaWeights();
            //sulymodositasok osszegzese
            for (int i2 = 0; i2 < simCount; ++i2)
            {
                controller.AddDeltaWeights(controllers[i2]);
            }
            float maxdw = controller.MaxDeltaWeight();

            //if (maxdw < 50) maxdw = 50;

            controller.ChangeWeights(mu / maxdw);

            ////sulymodositasok osszegzese
            //for (int i2 = 0; i2 < simCount; ++i2) //simCount
            //{

            //    int count = 0;
            //    for (int i = 1; i < controllers[i2]; ++i)
            //    {
            //        foreach (INeuron n in controllers[i2].mlp[i])
            //        {
            //            foreach (NeuronInput ni in ((Neuron)n).inputs)
            //            {
            //                if (deltaws.Count <= count) deltaws.Add(ni.deltaw);
            //                else deltaws[count] += ni.deltaw;
            //                ++count;
            //            }
            //        }
            //    }
            //}

            ////legnagyobb sulymodositas ertekenek meghatarozasa, majd ezzel normalas
            //double maxdw = 1;

            //foreach (double dw in deltaws)
            //{
            //    if (Math.Abs(dw) > maxdw) maxdw = Math.Abs(dw);
            //}

            //if (maxdw < 50) maxdw = 50;

            ////sulymodositasok ervenyre juttatasa a controllerben
            //int count2 = 0;

            //for (int i = 1; i < controller.mlp.Count; ++i)
            //{
            //    foreach (INeuron n in controller.mlp[i])
            //    {
            //        foreach (NeuronInput ni in ((Neuron)n).inputs)
            //        {
            //            ni.w += mu * deltaws[count2] / maxdw;

            //            ++count2;
            //        }
            //    }
            //}


            SumSimCount = sumSimCount;
            return(error);
        }
示例#13
0
 public void SimulateModel(CarModelInput input, IModelSimulator simulator, double timeStep)
 {
     simulator.SimulateModel(this.state, input, timeStep, out this.state);
 }
示例#14
0
 public void SimulateModel(CarModelInput input, IModelSimulator simulator)
 {
     simulator.SimulateModel(this.state, input, out this.state);
 }
示例#15
0
 public void SimulateModel(CarModelInput input, IModelSimulator simulator, double timeStep)
 {
     simulator.SimulateModel(this.state, input, timeStep, out this.state);
 }
示例#16
0
 public void SimulateModel(CarModelInput input, IModelSimulator simulator)
 {            
     simulator.SimulateModel(this.state, input, out this.state);
 }