Пример #1
0
 /// <summary>
 /// Standard constructor.
 /// </summary>
 /// <param name="degLat">Latitude in degrees (negative south).</param>
 /// <param name="degLon">Longitude in degrees (negative west).</param>
 /// <param name="kmAlt">Altitude in kilometers.</param>
 /// <param name="model">The earth ellipsoid model.</param>
 public Site(double degLat, double degLon, double kmAlt, string name = "")
 {
     Geo = new Geo(Globals.ToRadians(degLat),
                   Globals.ToRadians(degLon),
                   kmAlt);
     Name = name;
 }
Пример #2
0
        /// <summary>
        /// Converts the given TLE field to the requested units.
        /// </summary>
        /// <param name="valNative">Value to convert (native units).</param>
        /// <param name="fld">Field ID of the value being converted.</param>
        /// <param name="units">Units to convert to.</param>
        /// <returns>The converted value.</returns>
        protected static double ConvertUnits(double valNative,
                                             Field fld,
                                             Unit units)
        {
            if (fld == Field.Inclination ||
                fld == Field.Raan ||
                fld == Field.ArgPerigee ||
                fld == Field.MeanAnomaly)
            {
                // The native TLE format is degrees
                if (units == Unit.Radians)
                {
                    return(Globals.ToRadians(valNative));
                }
            }

            // unconverted native format
            return(valNative);
        }
Пример #3
0
        /// <summary>
        /// Returns the topo-centric (azimuth, elevation, etc.) coordinates for
        /// a target object described by the given ECI coordinates.
        /// </summary>
        /// <param name="eci">The ECI coordinates of the target object.</param>
        /// <returns>The look angle to the target object.</returns>
        public TopoTime GetLookAngle(EciTime eci)
        {
            // Calculate the ECI coordinates for this Site object at the time
            // of interest.
            Julian  date      = eci.Date;
            EciTime eciSite   = PositionEci(date);
            Vector  vecRgRate = new Vector(eci.Velocity.X - eciSite.Velocity.X,
                                           eci.Velocity.Y - eciSite.Velocity.Y,
                                           eci.Velocity.Z - eciSite.Velocity.Z);

            double x = eci.Position.X - eciSite.Position.X;
            double y = eci.Position.Y - eciSite.Position.Y;
            double z = eci.Position.Z - eciSite.Position.Z;
            double w = Math.Sqrt(Globals.Sqr(x) + Globals.Sqr(y) + Globals.Sqr(z));

            Vector vecRange = new Vector(x, y, z, w);

            // The site's Local Mean Sidereal Time at the time of interest.
            double theta = date.ToLmst(LongitudeRad);

            double sin_lat   = Math.Sin(LatitudeRad);
            double cos_lat   = Math.Cos(LatitudeRad);
            double sin_theta = Math.Sin(theta);
            double cos_theta = Math.Cos(theta);

            double top_s = sin_lat * cos_theta * vecRange.X +
                           sin_lat * sin_theta * vecRange.Y -
                           cos_lat * vecRange.Z;
            double top_e = -sin_theta * vecRange.X +
                           cos_theta * vecRange.Y;
            double top_z = cos_lat * cos_theta * vecRange.X +
                           cos_lat * sin_theta * vecRange.Y +
                           sin_lat * vecRange.Z;
            double az = Math.Atan(-top_e / top_s);

            if (top_s > 0.0)
            {
                az += Globals.Pi;
            }

            if (az < 0.0)
            {
                az += 2.0 * Globals.Pi;
            }

            double el   = Math.Asin(top_z / vecRange.W);
            double rate = (vecRange.X * vecRgRate.X +
                           vecRange.Y * vecRgRate.Y +
                           vecRange.Z * vecRgRate.Z) / vecRange.W;

            TopoTime topo = new TopoTime(az,         // azimuth, radians
                                         el,         // elevation, radians
                                         vecRange.W, // range, km
                                         rate,       // rate, km / sec
                                         eci.Date);

#if WANT_ATMOSPHERIC_CORRECTION
            // Elevation correction for atmospheric refraction.
            // Reference:  Astronomical Algorithms by Jean Meeus, pp. 101-104
            // Note:  Correction is meaningless when apparent elevation is below horizon
            topo.ElevationRad += Globals.ToRadians((1.02 /
                                                    Math.Tan(Globals.ToRadians(Globals.ToDegrees(el) + 10.3 /
                                                                               (Globals.ToDegrees(el) + 5.11)))) / 60.0);
            if (topo.ElevationRad < 0.0)
            {
                topo.ElevationRad = el; // Reset to true elevation
            }

            if (topo.ElevationRad > (Math.PI / 2.0))
            {
                topo.ElevationRad = (Math.PI / 2.0);
            }
#endif
            return(topo);
        }
Пример #4
0
 /// <summary>
 /// Standard constructor.
 /// </summary>
 /// <param name="degLat">Latitude in degrees (negative south).</param>
 /// <param name="degLon">Longitude in degrees (negative west).</param>
 /// <param name="kmAlt">Altitude in kilometers.</param>
 /// <param name="model">The earth ellipsoid model.</param>
 public Site(double degLat, double degLon, double kmAlt)
 {
     Geo = new Geo(Globals.ToRadians(degLat),
                   Globals.ToRadians(degLon),
                   kmAlt);
 }