Exemplo n.º 1
0
        public CommonConversion ClassifyConversion(TypeSymbol from, TypeSymbol to, ConversionKind kinds)
        {
            if (from == to)
            {
                return(IdentityConversion);
            }

            // implicit conversions handled by 'EmitConversion':
            if (to.SpecialType == SpecialType.System_Void)
            {
                return(IdentityConversion);
            }

            // object cast possible implicitly:
            if ((kinds & ConversionKind.Reference) == ConversionKind.Reference)
            {
                if (from.IsReferenceType && to.IsReferenceType && from.IsOfType(to))
                {
                    // (PHP) string, resource, array, alias -> object: NoConversion

                    if (to.SpecialType != SpecialType.System_Object || !IsSpecialReferenceType(from))
                    {
                        return(ReferenceConversion);
                    }
                }

                if (to.SpecialType == SpecialType.System_Object && (from.IsInterfaceType() || (from.IsReferenceType && from.IsTypeParameter())))
                {
                    return(ReferenceConversion);
                }
            }

            // resolve conversion operator method:
            if ((kinds & ConversionKind.Numeric) == ConversionKind.Numeric)
            {
                var conv = ClassifyNumericConversion(from, to);
                if (conv.Exists)
                {
                    return(conv);
                }
            }

            // strict:
            if ((kinds & ConversionKind.Strict) == ConversionKind.Strict)
            {
                var op = ResolveOperator(from, false, ImplicitConversionOpNames(to), new[] { _compilation.CoreTypes.StrictConvert.Symbol }, target: to);
                if (op != null)
                {
                    return(new CommonConversion(true, false, false, false, true, op));
                }
            }

            // implicit
            if ((kinds & ConversionKind.Implicit) == ConversionKind.Implicit)
            {
                var op = TryWellKnownImplicitConversion(from, to) ?? ResolveOperator(from, false, ImplicitConversionOpNames(to), new[] { to, _compilation.CoreTypes.Convert.Symbol }, target: to);
                if (op != null)
                {
                    return(new CommonConversion(true, false, false, false, true, op));
                }
            }

            // explicit:
            if ((kinds & ConversionKind.Explicit) == ConversionKind.Explicit)
            {
                var op = ResolveOperator(from, false, ExplicitConversionOpNames(to), new[] { to, _compilation.CoreTypes.Convert.Symbol }, target: to);
                if (op != null)
                {
                    return(new CommonConversion(true, false, false, false, false, op));
                }
                // explicit reference conversion (reference type -> reference type)
                else if (
                    from.IsReferenceType && to.IsReferenceType &&
                    !IsSpecialReferenceType(from) && !IsSpecialReferenceType(to) &&
                    !from.IsArray() && !to.IsArray())
                {
                    return(ExplicitReferenceConversion);
                }
            }

            //
            return(NoConversion);
        }
Exemplo n.º 2
0
        // Although III.1.8.1.3 seems to imply that verifier understands variance casts.
        // It appears that verifier/JIT gets easily confused. 
        // So to not rely on whether that should work or not we will flag potentially 
        // "complicated" casts and make them static casts to ensure we are all on 
        // the same page with what type should be tracked.
        private static bool IsVarianceCast(TypeSymbol to, TypeSymbol from)
        {
            if (to == from)
            {
                return false;
            }

            if ((object)from == null)
            {
                // from unknown type - this could be a variance conversion.
                return true;
            }

            // while technically variance casts, array conversions do not seem to be a problem
            // unless the element types are converted via variance.
            if (to.IsArray())
            {
                return IsVarianceCast(((ArrayTypeSymbol)to).ElementType, ((ArrayTypeSymbol)from).ElementType);
            }

            return (to.IsDelegateType() && to != from) ||
                   (to.IsInterfaceType() && from.IsInterfaceType() && !from.InterfacesAndTheirBaseInterfacesNoUseSiteDiagnostics.Contains((NamedTypeSymbol)to));
        }
Exemplo n.º 3
0
        private static Symbol FindExplicitlyImplementedMember(
            Symbol implementingMember,
            TypeSymbol explicitInterfaceType,
            string interfaceMemberName,
            ExplicitInterfaceSpecifierSyntax explicitInterfaceSpecifierSyntax,
            DiagnosticBag diagnostics)
        {
            if ((object)explicitInterfaceType == null)
            {
                return(null);
            }

            var memberLocation     = implementingMember.Locations[0];
            var containingType     = implementingMember.ContainingType;
            var containingTypeKind = containingType.TypeKind;

            if (containingTypeKind != TypeKind.Class && containingTypeKind != TypeKind.Struct)
            {
                diagnostics.Add(ErrorCode.ERR_ExplicitInterfaceImplementationInNonClassOrStruct, memberLocation, implementingMember);
                return(null);
            }

            if (!explicitInterfaceType.IsInterfaceType())
            {
                //we'd like to highlight just the type part of the name
                var explictInterfaceSyntax = explicitInterfaceSpecifierSyntax.Name;
                var location = new SourceLocation(explictInterfaceSyntax);

                diagnostics.Add(ErrorCode.ERR_ExplicitInterfaceImplementationNotInterface, location, explicitInterfaceType);
                return(null);
            }

            var explicitInterfaceNamedType = (NamedTypeSymbol)explicitInterfaceType;

            // 13.4.1: "For an explicit interface member implementation to be valid, the class or struct must name an
            // interface in its base class list that contains a member ..."
            if (!containingType.InterfacesAndTheirBaseInterfacesNoUseSiteDiagnostics.Contains(explicitInterfaceNamedType))
            {
                //we'd like to highlight just the type part of the name
                var explictInterfaceSyntax = explicitInterfaceSpecifierSyntax.Name;
                var location = new SourceLocation(explictInterfaceSyntax);

                diagnostics.Add(ErrorCode.ERR_ClassDoesntImplementInterface, location, implementingMember, explicitInterfaceNamedType);
                //do a lookup anyway
            }

            var hasParamsParam = implementingMember.HasParamsParameter();

            // Setting this flag to true does not imply that an interface member has been successfully implemented.
            // It just indicates that a corresponding interface member has been found (there may still be errors).
            var foundMatchingMember = false;

            Symbol implementedMember = null;

            foreach (Symbol interfaceMember in explicitInterfaceNamedType.GetMembers(interfaceMemberName))
            {
                // At this point, we know that explicitInterfaceNamedType is an interface, so candidate must be public
                // and, therefore, accessible.  So we don't need to check that.
                // However, metadata interface members can be static - we ignore them, as does Dev10.
                if (interfaceMember.Kind != implementingMember.Kind || interfaceMember.IsStatic)
                {
                    continue;
                }

                if (MemberSignatureComparer.ExplicitImplementationComparer.Equals(implementingMember, interfaceMember))
                {
                    foundMatchingMember = true;
                    // Cannot implement accessor directly unless
                    // the accessor is from an indexed property.
                    if (interfaceMember.IsAccessor() && !((MethodSymbol)interfaceMember).IsIndexedPropertyAccessor())
                    {
                        diagnostics.Add(ErrorCode.ERR_ExplicitMethodImplAccessor, memberLocation, implementingMember, interfaceMember);
                    }
                    else
                    {
                        if (interfaceMember.MustCallMethodsDirectly())
                        {
                            diagnostics.Add(ErrorCode.ERR_BogusExplicitImpl, memberLocation, implementingMember, interfaceMember);
                        }
                        else if (hasParamsParam && !interfaceMember.HasParamsParameter())
                        {
                            // Note: no error for !hasParamsParam && interfaceMethod.HasParamsParameter()
                            // Still counts as an implementation.
                            diagnostics.Add(ErrorCode.ERR_ExplicitImplParams, memberLocation, implementingMember, interfaceMember);
                        }

                        implementedMember = interfaceMember;
                        break;
                    }
                }
            }

            if (!foundMatchingMember)
            {
                // CONSIDER: we may wish to suppress this error in the event that another error
                // has been reported about the signature.
                diagnostics.Add(ErrorCode.ERR_InterfaceMemberNotFound, memberLocation, implementingMember);
            }

            // In constructed types, it is possible that two method signatures could differ by only ref/out
            // after substitution.  We look for this as part of explicit implementation because, if someone
            // tried to implement the ambiguous interface implicitly, we would separately raise an error about
            // the implicit implementation methods differing by only ref/out.
            FindExplicitImplementationCollisions(implementingMember, implementedMember, diagnostics);

            return(implementedMember);
        }
Exemplo n.º 4
0
        /// <summary>
        /// This method find the set of applicable user-defined and lifted conversion operators, u.
        /// The set consists of the user-defined and lifted implicit conversion operators declared by
        /// the classes and structs in d that convert from a type encompassing source to a type encompassed by target.
        /// However if allowAnyTarget is true, then it considers all operators that convert from a type encompassing source
        /// to any target. This flag must be set only if we are computing user defined conversions from a given source
        /// type to any target type.
        /// </summary>
        /// <remarks>
        /// Currently allowAnyTarget flag is only set to true by <see cref="AnalyzeImplicitUserDefinedConversionForV6SwitchGoverningType"/>,
        /// where we must consider user defined implicit conversions from the type of the switch expression to
        /// any of the possible switch governing types.
        /// </remarks>
        private void ComputeApplicableUserDefinedImplicitConversionSet(
            BoundExpression sourceExpression,
            TypeSymbol source,
            TypeSymbol target,
            ArrayBuilder <NamedTypeSymbol> d,
            ArrayBuilder <UserDefinedConversionAnalysis> u,
            ref HashSet <DiagnosticInfo> useSiteDiagnostics,
            bool allowAnyTarget = false)
        {
            Debug.Assert(sourceExpression != null || (object)source != null);
            Debug.Assert(((object)target != null) == !allowAnyTarget);
            Debug.Assert(d != null);
            Debug.Assert(u != null);

            // SPEC: Find the set of applicable user-defined and lifted conversion operators, U.
            // SPEC: The set consists of the user-defined and lifted implicit conversion operators
            // SPEC: declared by the classes and structs in D that convert from a type encompassing
            // SPEC: E to a type encompassed by T. If U is empty, the conversion is undefined and
            // SPEC: a compile-time error occurs.

            // SPEC: Give a user-defined conversion operator that converts from a non-nullable
            // SPEC: value type S to a non-nullable value type T, a lifted conversion operator
            // SPEC: exists that converts from S? to T?.

            // DELIBERATE SPEC VIOLATION:
            //
            // The spec here essentially says that we add an applicable "regular" conversion and
            // an applicable lifted conversion, if there is one, to the candidate set, and then
            // let them duke it out to determine which one is "best".
            //
            // This is not at all what the native compiler does, and attempting to implement
            // the specification, or slight variations on it, produces too many backwards-compatibility
            // breaking changes.
            //
            // The native compiler deviates from the specification in two major ways here.
            // First, it does not add *both* the regular and lifted forms to the candidate set.
            // Second, the way it characterizes a "lifted" form is very, very different from
            // how the specification characterizes a lifted form.
            //
            // An operation, in this case, X-->Y, is properly said to be "lifted" to X?-->Y? via
            // the rule that X?-->Y? matches the behavior of X-->Y for non-null X, and converts
            // null X to null Y otherwise.
            //
            // The native compiler, by contrast, takes the existing operator and "lifts" either
            // the operator's parameter type or the operator's return type to nullable. For
            // example, a conversion from X?-->Y would be "lifted" to X?-->Y? by making the
            // conversion from X? to Y, and then from Y to Y?.  No "lifting" semantics
            // are imposed; we do not check to see if the X? is null. This operator is not
            // actually "lifted" at all; rather, an implicit conversion is applied to the
            // output. **The native compiler considers the result type Y? of that standard implicit
            // conversion to be the result type of the "lifted" conversion**, rather than
            // properly considering Y to be the result type of the conversion for the purposes
            // of computing the best output type.
            //
            // MOREOVER: the native compiler actually *does* implement nullable lifting semantics
            // in the case where the input type of the user-defined conversion is a non-nullable
            // value type and the output type is a nullable value type **or pointer type, or
            // reference type**. This is an enormous departure from the specification; the
            // native compiler will take a user-defined conversion from X-->Y? or X-->C and "lift"
            // it to a conversion from X?-->Y? or X?-->C that has nullable semantics.
            //
            // This is quite confusing. In this code we will classify the conversion as either
            // "normal" or "lifted" on the basis of *whether or not special lifting semantics
            // are to be applied*. That is, whether or not a later rewriting pass is going to
            // need to insert a check to see if the source expression is null, and decide
            // whether or not to call the underlying unlifted conversion or produce a null
            // value without calling the unlifted conversion.

            // DELIBERATE SPEC VIOLATION (See bug 17021)
            // The specification defines a type U as "encompassing" a type V
            // if there is a standard implicit conversion from U to V, and
            // neither are interface types.
            //
            // The intention of this language is to ensure that we do not allow user-defined
            // conversions that involve interfaces. We have a reasonable expectation that a
            // conversion that involves an interface is one that preserves referential identity,
            // and user-defined conversions usually do not.
            //
            // Now, suppose we have a standard conversion from Alpha to Beta, a user-defined
            // conversion from Beta to Gamma, and a standard conversion from Gamma to Delta.
            // The specification allows the implicit conversion from Alpha to Delta only if
            // Beta encompasses Alpha and Delta encompasses Gamma.  And therefore, none of them
            // can be interface types, de jure.
            //
            // However, the dev10 compiler only checks Alpha and Delta to see if they are interfaces,
            // and allows Beta and Gamma to be interfaces.
            //
            // So what's the big deal there? It's not legal to define a user-defined conversion where
            // the input or output types are interfaces, right?
            //
            // It is not legal to define such a conversion, no, but it is legal to create one via generic
            // construction. If we have a conversion from T to C<T>, then C<I> has a conversion from I to C<I>.
            //
            // The dev10 compiler fails to check for this situation. This means that,
            // you can convert from int to C<IComparable> because int implements IComparable, but cannot
            // convert from IComparable to C<IComparable>!
            //
            // Unfortunately, we know of several real programs that rely upon this bug, so we are going
            // to reproduce it here.

            if ((object)source != null && source.IsInterfaceType() || (object)target != null && target.IsInterfaceType())
            {
                return;
            }

            foreach (NamedTypeSymbol declaringType in d)
            {
                foreach (MethodSymbol op in declaringType.GetOperators(WellKnownMemberNames.ImplicitConversionName))
                {
                    // We might have a bad operator and be in an error recovery situation. Ignore it.
                    if (op.ReturnsVoid || op.ParameterCount != 1)
                    {
                        continue;
                    }

                    TypeSymbol convertsFrom   = op.ParameterTypes[0];
                    TypeSymbol convertsTo     = op.ReturnType;
                    Conversion fromConversion = EncompassingImplicitConversion(sourceExpression, source, convertsFrom, ref useSiteDiagnostics);
                    Conversion toConversion   = allowAnyTarget ? Conversion.Identity :
                                                EncompassingImplicitConversion(null, convertsTo, target, ref useSiteDiagnostics);

                    if (fromConversion.Exists && toConversion.Exists)
                    {
                        // There is an additional spec violation in the native compiler. Suppose
                        // we have a conversion from X-->Y and are asked to do "Y? y = new X();"  Clearly
                        // the intention is to convert from X-->Y via the implicit conversion, and then
                        // stick a standard implicit conversion from Y-->Y? on the back end. **In this
                        // situation, the native compiler treats the conversion as though it were
                        // actually X-->Y? in source for the purposes of determining the best target
                        // type of an operator.
                        //
                        // We perpetuate this fiction here.

                        if ((object)target != null && target.IsNullableType() && convertsTo.IsNonNullableValueType())
                        {
                            convertsTo   = MakeNullableType(convertsTo);
                            toConversion = allowAnyTarget ? Conversion.Identity :
                                           EncompassingImplicitConversion(null, convertsTo, target, ref useSiteDiagnostics);
                        }

                        u.Add(UserDefinedConversionAnalysis.Normal(op, fromConversion, toConversion, convertsFrom, convertsTo));
                    }
                    else if ((object)source != null && source.IsNullableType() && convertsFrom.IsNonNullableValueType() &&
                             (allowAnyTarget || target.CanBeAssignedNull()))
                    {
                        // As mentioned above, here we diverge from the specification, in two ways.
                        // First, we only check for the lifted form if the normal form was inapplicable.
                        // Second, we are supposed to apply lifting semantics only if the conversion
                        // parameter and return types are *both* non-nullable value types.
                        //
                        // In fact the native compiler determines whether to check for a lifted form on
                        // the basis of:
                        //
                        // * Is the type we are ultimately converting from a nullable value type?
                        // * Is the parameter type of the conversion a non-nullable value type?
                        // * Is the type we are ultimately converting to a nullable value type,
                        //   pointer type, or reference type?
                        //
                        // If the answer to all those questions is "yes" then we lift to nullable
                        // and see if the resulting operator is applicable.
                        TypeSymbol nullableFrom         = MakeNullableType(convertsFrom);
                        TypeSymbol nullableTo           = convertsTo.IsNonNullableValueType() ? MakeNullableType(convertsTo) : convertsTo;
                        Conversion liftedFromConversion = EncompassingImplicitConversion(sourceExpression, source, nullableFrom, ref useSiteDiagnostics);
                        Conversion liftedToConversion   = !allowAnyTarget?
                                                          EncompassingImplicitConversion(null, nullableTo, target, ref useSiteDiagnostics) :
                                                              Conversion.Identity;

                        if (liftedFromConversion.Exists && liftedToConversion.Exists)
                        {
                            u.Add(UserDefinedConversionAnalysis.Lifted(op, liftedFromConversion, liftedToConversion, nullableFrom, nullableTo));
                        }
                    }
                }
            }
        }
Exemplo n.º 5
0
        private static Symbol FindExplicitlyImplementedMember(
            Symbol implementingMember,
            TypeSymbol explicitInterfaceType,
            string interfaceMemberName,
            ExplicitInterfaceSpecifierSyntax explicitInterfaceSpecifierSyntax,
            DiagnosticBag diagnostics)
        {
            if ((object)explicitInterfaceType == null)
            {
                return(null);
            }

            var memberLocation = implementingMember.Locations[0];
            var containingType = implementingMember.ContainingType;

            switch (containingType.TypeKind)
            {
            case TypeKind.Class:
            case TypeKind.Struct:
            case TypeKind.Interface:
                break;

            default:
                diagnostics.Add(ErrorCode.ERR_ExplicitInterfaceImplementationInNonClassOrStruct, memberLocation, implementingMember);
                return(null);
            }

            if (!explicitInterfaceType.IsInterfaceType())
            {
                //we'd like to highlight just the type part of the name
                var explicitInterfaceSyntax = explicitInterfaceSpecifierSyntax.Name;
                var location = new SourceLocation(explicitInterfaceSyntax);

                diagnostics.Add(ErrorCode.ERR_ExplicitInterfaceImplementationNotInterface, location, explicitInterfaceType);
                return(null);
            }

            var explicitInterfaceNamedType = (NamedTypeSymbol)explicitInterfaceType;

            // 13.4.1: "For an explicit interface member implementation to be valid, the class or struct must name an
            // interface in its base class list that contains a member ..."
            MultiDictionary <NamedTypeSymbol, NamedTypeSymbol> .ValueSet set = containingType.InterfacesAndTheirBaseInterfacesNoUseSiteDiagnostics[explicitInterfaceNamedType];
            int setCount = set.Count;

            if (setCount == 0 || !set.Contains(explicitInterfaceNamedType, Symbols.SymbolEqualityComparer.ObliviousNullableModifierMatchesAny))
            {
                //we'd like to highlight just the type part of the name
                var explicitInterfaceSyntax = explicitInterfaceSpecifierSyntax.Name;
                var location = new SourceLocation(explicitInterfaceSyntax);

                if (setCount > 0 && set.Contains(explicitInterfaceNamedType, Symbols.SymbolEqualityComparer.IgnoringNullable))
                {
                    diagnostics.Add(ErrorCode.WRN_NullabilityMismatchInExplicitlyImplementedInterface, location);
                }
                else
                {
                    diagnostics.Add(ErrorCode.ERR_ClassDoesntImplementInterface, location, implementingMember, explicitInterfaceNamedType);
                }

                //do a lookup anyway
            }

            // Do not look in itself
            if (containingType == (object)explicitInterfaceNamedType.OriginalDefinition)
            {
                // An error will be reported elsewhere.
                // Either the interface is not implemented, or it causes a cycle in the interface hierarchy.
                return(null);
            }

            var hasParamsParam = implementingMember.HasParamsParameter();

            // Setting this flag to true does not imply that an interface member has been successfully implemented.
            // It just indicates that a corresponding interface member has been found (there may still be errors).
            var foundMatchingMember = false;

            Symbol implementedMember = null;

            foreach (Symbol interfaceMember in explicitInterfaceNamedType.GetMembers(interfaceMemberName))
            {
                // At this point, we know that explicitInterfaceNamedType is an interface.
                // However, metadata interface members can be static - we ignore them, as does Dev10.
                if (interfaceMember.Kind != implementingMember.Kind || !interfaceMember.IsImplementableInterfaceMember())
                {
                    continue;
                }

                if (MemberSignatureComparer.ExplicitImplementationComparer.Equals(implementingMember, interfaceMember))
                {
                    foundMatchingMember = true;
                    // Cannot implement accessor directly unless
                    // the accessor is from an indexed property.
                    if (interfaceMember.IsAccessor() && !((MethodSymbol)interfaceMember).IsIndexedPropertyAccessor())
                    {
                        diagnostics.Add(ErrorCode.ERR_ExplicitMethodImplAccessor, memberLocation, implementingMember, interfaceMember);
                    }
                    else
                    {
                        if (interfaceMember.MustCallMethodsDirectly())
                        {
                            diagnostics.Add(ErrorCode.ERR_BogusExplicitImpl, memberLocation, implementingMember, interfaceMember);
                        }
                        else if (hasParamsParam && !interfaceMember.HasParamsParameter())
                        {
                            // Note: no error for !hasParamsParam && interfaceMethod.HasParamsParameter()
                            // Still counts as an implementation.
                            diagnostics.Add(ErrorCode.ERR_ExplicitImplParams, memberLocation, implementingMember, interfaceMember);
                        }

                        implementedMember = interfaceMember;
                        break;
                    }
                }
            }

            if (!foundMatchingMember)
            {
                // CONSIDER: we may wish to suppress this error in the event that another error
                // has been reported about the signature.
                diagnostics.Add(ErrorCode.ERR_InterfaceMemberNotFound, memberLocation, implementingMember);
            }

            // Make sure implemented member is accessible
            if ((object)implementedMember != null)
            {
                HashSet <DiagnosticInfo> useSiteDiagnostics = null;

                if (!AccessCheck.IsSymbolAccessible(implementedMember, implementingMember.ContainingType, ref useSiteDiagnostics, throughTypeOpt: null))
                {
                    diagnostics.Add(ErrorCode.ERR_BadAccess, memberLocation, implementedMember);
                }
                else
                {
                    switch (implementedMember.Kind)
                    {
                    case SymbolKind.Property:
                        var propertySymbol = (PropertySymbol)implementedMember;
                        checkAccessorIsAccessibleIfImplementable(propertySymbol.GetMethod);
                        checkAccessorIsAccessibleIfImplementable(propertySymbol.SetMethod);
                        break;

                    case SymbolKind.Event:
                        var eventSymbol = (EventSymbol)implementedMember;
                        checkAccessorIsAccessibleIfImplementable(eventSymbol.AddMethod);
                        checkAccessorIsAccessibleIfImplementable(eventSymbol.RemoveMethod);
                        break;
                    }

                    void checkAccessorIsAccessibleIfImplementable(MethodSymbol accessor)
                    {
                        if (accessor.IsImplementable() &&
                            !AccessCheck.IsSymbolAccessible(accessor, implementingMember.ContainingType, ref useSiteDiagnostics, throughTypeOpt: null))
                        {
                            diagnostics.Add(ErrorCode.ERR_BadAccess, memberLocation, accessor);
                        }
                    }
                }

                diagnostics.Add(memberLocation, useSiteDiagnostics);
            }

            return(implementedMember);
        }
        private void AddUserDefinedConversionsToExplicitCandidateSet(
            BoundExpression sourceExpression,
            TypeSymbol source,
            TypeSymbol target,
            ArrayBuilder <UserDefinedConversionAnalysis> u,
            NamedTypeSymbol declaringType,
            string operatorName,
            ref HashSet <DiagnosticInfo> useSiteDiagnostics)
        {
            Debug.Assert(sourceExpression != null || (object)source != null);
            Debug.Assert((object)target != null);
            Debug.Assert(u != null);
            Debug.Assert((object)declaringType != null);
            Debug.Assert(operatorName != null);

            // SPEC: Find the set of applicable user-defined and lifted conversion operators, U.
            // SPEC: The set consists of the user-defined and lifted implicit or explicit
            // SPEC: conversion operators declared by the classes and structs in D that convert
            // SPEC: from a type encompassing E or encompassed by S (if it exists) to a type
            // SPEC: encompassing or encompassed by T.

            // DELIBERATE SPEC VIOLATION:
            //
            // The spec here essentially says that we add an applicable "regular" conversion and
            // an applicable lifted conversion, if there is one, to the candidate set, and then
            // let them duke it out to determine which one is "best".
            //
            // This is not at all what the native compiler does, and attempting to implement
            // the specification, or slight variations on it, produces too many backwards-compatibility
            // breaking changes.
            //
            // The native compiler deviates from the specification in two major ways here.
            // First, it does not add *both* the regular and lifted forms to the candidate set.
            // Second, the way it characterizes a "lifted" form is very, very different from
            // how the specification characterizes a lifted form.
            //
            // An operation, in this case, X-->Y, is properly said to be "lifted" to X?-->Y? via
            // the rule that X?-->Y? matches the behavior of X-->Y for non-null X, and converts
            // null X to null Y otherwise.
            //
            // The native compiler, by contrast, takes the existing operator and "lifts" either
            // the operator's parameter type or the operator's return type to nullable. For
            // example, a conversion from X?-->Y would be "lifted" to X?-->Y? by making the
            // conversion from X? to Y, and then from Y to Y?.  No "lifting" semantics
            // are imposed; we do not check to see if the X? is null. This operator is not
            // actually "lifted" at all; rather, an implicit conversion is applied to the
            // output. **The native compiler considers the result type Y? of that standard implicit
            // conversion to be the result type of the "lifted" conversion**, rather than
            // properly considering Y to be the result type of the conversion for the purposes
            // of computing the best output type.
            //
            // Moreover: the native compiler actually *does* implement nullable lifting semantics
            // in the case where the input type of the user-defined conversion is a non-nullable
            // value type and the output type is a nullable value type **or pointer type, or
            // reference type**. This is an enormous departure from the specification; the
            // native compiler will take a user-defined conversion from X-->Y? or X-->C and "lift"
            // it to a conversion from X?-->Y? or X?-->C that has nullable semantics.
            //
            // This is quite confusing. In this code we will classify the conversion as either
            // "normal" or "lifted" on the basis of *whether or not special lifting semantics
            // are to be applied*. That is, whether or not a later rewriting pass is going to
            // need to insert a check to see if the source expression is null, and decide
            // whether or not to call the underlying unlifted conversion or produce a null
            // value without calling the unlifted conversion.
            // DELIBERATE SPEC VIOLATION: See the comment regarding bug 17021 in
            // UserDefinedImplicitConversions.cs.

            if ((object)source != null && source.IsInterfaceType() || target.IsInterfaceType())
            {
                return;
            }

            foreach (MethodSymbol op in declaringType.GetOperators(operatorName))
            {
                // We might have a bad operator and be in an error recovery situation. Ignore it.
                if (op.ReturnsVoid || op.ParameterCount != 1 || op.ReturnType.TypeKind == TypeKind.Error)
                {
                    continue;
                }

                TypeSymbol convertsFrom   = op.GetParameterType(0);
                TypeSymbol convertsTo     = op.ReturnType;
                Conversion fromConversion = EncompassingExplicitConversion(sourceExpression, source, convertsFrom, ref useSiteDiagnostics);
                Conversion toConversion   = EncompassingExplicitConversion(null, convertsTo, target, ref useSiteDiagnostics);

                // We accept candidates for which the parameter type encompasses the *underlying* source type.
                if (!fromConversion.Exists &&
                    (object)source != null &&
                    source.IsNullableType() &&
                    EncompassingExplicitConversion(null, source.GetNullableUnderlyingType(), convertsFrom, ref useSiteDiagnostics).Exists)
                {
                    fromConversion = ClassifyBuiltInConversion(source, convertsFrom, ref useSiteDiagnostics);
                }

                // As in dev11 (and the revised spec), we also accept candidates for which the return type is encompassed by the *stripped* target type.
                if (!toConversion.Exists &&
                    (object)target != null &&
                    target.IsNullableType() &&
                    EncompassingExplicitConversion(null, convertsTo, target.GetNullableUnderlyingType(), ref useSiteDiagnostics).Exists)
                {
                    toConversion = ClassifyBuiltInConversion(convertsTo, target, ref useSiteDiagnostics);
                }

                // In the corresponding implicit conversion code we can get away with first
                // checking to see if standard implicit conversions exist from the source type
                // to the parameter type, and from the return type to the target type. If not,
                // then we can check for a lifted operator.
                //
                // That's not going to cut it in the explicit conversion code. Suppose we have
                // a conversion X-->Y and have source type X? and target type Y?. There *are*
                // standard explicit conversions from X?-->X and Y?-->Y, but we do not want
                // to bind this as an *unlifted* conversion from X? to Y?; we want such a thing
                // to be a *lifted* conversion from X? to Y?, that checks for null on the source
                // and decides to not call the underlying user-defined conversion if it is null.
                //
                // We therefore cannot do what we do in the implicit conversions, where we check
                // to see if the unlifted conversion works, and if it does, then don't add the lifted
                // conversion at all. Rather, we have to see if what we're building here is a
                // lifted conversion or not.
                //
                // Under what circumstances is this conversion a lifted conversion? (In the
                // "spec" sense of a lifted conversion; that is, that we check for null
                // and skip the user-defined conversion if necessary).
                //
                // * The source type must be a nullable value type.
                // * The parameter type must be a non-nullable value type.
                // * The target type must be able to take on a null value.

                if (fromConversion.Exists && toConversion.Exists)
                {
                    if ((object)source != null && source.IsNullableType() && convertsFrom.IsNonNullableValueType() && target.CanBeAssignedNull())
                    {
                        TypeSymbol nullableFrom         = MakeNullableType(convertsFrom);
                        TypeSymbol nullableTo           = convertsTo.IsNonNullableValueType() ? MakeNullableType(convertsTo) : convertsTo;
                        Conversion liftedFromConversion = EncompassingExplicitConversion(sourceExpression, source, nullableFrom, ref useSiteDiagnostics);
                        Conversion liftedToConversion   = EncompassingExplicitConversion(null, nullableTo, target, ref useSiteDiagnostics);
                        Debug.Assert(liftedFromConversion.Exists);
                        Debug.Assert(liftedToConversion.Exists);
                        u.Add(UserDefinedConversionAnalysis.Lifted(op, liftedFromConversion, liftedToConversion, nullableFrom, nullableTo));
                    }
                    else
                    {
                        // There is an additional spec violation in the native compiler. Suppose
                        // we have a conversion from X-->Y and are asked to do "Y? y = new X();"  Clearly
                        // the intention is to convert from X-->Y via the implicit conversion, and then
                        // stick a standard implicit conversion from Y-->Y? on the back end. **In this
                        // situation, the native compiler treats the conversion as though it were
                        // actually X-->Y? in source for the purposes of determining the best target
                        // type of a set of operators.
                        //
                        // Similarly, if we have a conversion from X-->Y and are asked to do
                        // an explicit conversion from X? to Y then we treat the conversion as
                        // though it really were X?-->Y for the purposes of determining the best
                        // source type of a set of operators.
                        //
                        // We perpetuate these fictions here.

                        if (target.IsNullableType() && convertsTo.IsNonNullableValueType())
                        {
                            convertsTo   = MakeNullableType(convertsTo);
                            toConversion = EncompassingExplicitConversion(null, convertsTo, target, ref useSiteDiagnostics);
                        }

                        if ((object)source != null && source.IsNullableType() && convertsFrom.IsNonNullableValueType())
                        {
                            convertsFrom   = MakeNullableType(convertsFrom);
                            fromConversion = EncompassingExplicitConversion(null, convertsFrom, source, ref useSiteDiagnostics);
                        }

                        u.Add(UserDefinedConversionAnalysis.Normal(op, fromConversion, toConversion, convertsFrom, convertsTo));
                    }
                }
            }
        }
Exemplo n.º 7
0
        public CommonConversion ClassifyConversion(TypeSymbol from, TypeSymbol to, bool checkimplicit = true, bool checkexplicit = true)
        {
            if (from == to)
            {
                return(IdentityConversion);
            }

            if (from.IsReferenceType && to.IsReferenceType && from.IsOfType(to))
            {
                // (PHP) string, resource, array, alias -> object: NoConversion

                if (to.SpecialType != SpecialType.System_Object || !IsSpecialReferenceType(from))
                {
                    return(ReferenceConversion);
                }
            }

            if (to.SpecialType == SpecialType.System_Object && (from.IsInterfaceType() || (from.IsReferenceType && from.IsTypeParameter())))
            {
                return(ReferenceConversion);
            }

            // implicit conversions handled by 'EmitConversion':

            if (to.SpecialType == SpecialType.System_Void)
            {
                return(IdentityConversion);
            }

            // resolve conversion operator method:

            var conv = ClassifyNumericConversion(from, to);

            if (!conv.Exists)
            {
                // TODO: cache result

                var op = checkimplicit
                    ? TryWellKnownImplicitConversion(from, to) ?? ResolveOperator(from, false, ImplicitConversionOpNames(to), new[] { to, _compilation.CoreTypes.Convert.Symbol }, target: to)
                    : null;

                if (op != null)
                {
                    conv = new CommonConversion(true, false, false, false, true, op);
                }
                else if (checkexplicit)
                {
                    op = ResolveOperator(from, false, ExplicitConversionOpNames(to), new[] { to, _compilation.CoreTypes.Convert.Symbol }, target: to);

                    if (op != null)
                    {
                        conv = new CommonConversion(true, false, false, false, false, op);
                    }
                    // explicit reference conversion (reference type -> reference type)
                    else if (
                        from.IsReferenceType && to.IsReferenceType &&
                        !IsSpecialReferenceType(from) && !IsSpecialReferenceType(to) &&
                        !from.IsArray() && !to.IsArray())
                    {
                        conv = ExplicitReferenceConversion;
                    }
                }
            }

            return(conv);
        }
        private bool GetUserDefinedOperators(UnaryOperatorKind kind, BoundExpression operand, ArrayBuilder <UnaryOperatorAnalysisResult> results, ref HashSet <DiagnosticInfo> useSiteDiagnostics)
        {
            Debug.Assert(operand != null);

            if ((object)operand.Type == null)
            {
                // If the operand has no type -- because it is a null reference or a lambda or a method group --
                // there is no way we can determine what type to search for user-defined operators.
                return(false);
            }

            // Spec 7.3.5 Candidate user-defined operators
            // SPEC: Given a type T and an operation op(A) ... the set of candidate user-defined
            // SPEC: operators provided by T for op(A) is determined as follows:

            // SPEC: If T is a nullable type then T0 is its underlying type; otherwise T0 is T.
            // SPEC: For all operator declarations in T0 and all lifted forms of such operators, if
            // SPEC: at least one operator is applicable with respect to A then the set of candidate
            // SPEC: operators consists of all such applicable operators. Otherwise, if T0 is object
            // SPEC: then the set of candidate operators is empty. Otherwise, the set of candidate
            // SPEC: operators is the set provided by the direct base class of T0, or the effective
            // SPEC: base class of T0 if T0 is a type parameter.

            // https://github.com/dotnet/roslyn/issues/34451: The spec quote should be adjusted to cover operators from interfaces as well.
            // From https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-06-27.md:
            // - We only even look for operator implementations in interfaces if one of the operands has a type that is an interface or
            // a type parameter with a non-empty effective base interface list.
            // - The applicable operators from classes / structs shadow those in interfaces.This matters for constrained type parameters:
            // the effective base class can shadow operators from effective base interfaces.
            // - If we find an applicable candidate in an interface, that candidate shadows all applicable operators in base interfaces:
            // we stop looking.

            TypeSymbol type0 = operand.Type.StrippedType();

            // Searching for user-defined operators is expensive; let's take an early out if we can.
            if (OperatorFacts.DefinitelyHasNoUserDefinedOperators(type0))
            {
                return(false);
            }

            string name      = OperatorFacts.UnaryOperatorNameFromOperatorKind(kind);
            var    operators = ArrayBuilder <UnaryOperatorSignature> .GetInstance();

            bool hadApplicableCandidates = false;

            NamedTypeSymbol current = type0 as NamedTypeSymbol;

            if ((object)current == null)
            {
                current = type0.BaseTypeWithDefinitionUseSiteDiagnostics(ref useSiteDiagnostics);
            }

            if ((object)current == null && type0.IsTypeParameter())
            {
                current = ((TypeParameterSymbol)type0).EffectiveBaseClass(ref useSiteDiagnostics);
            }

            for (; (object)current != null; current = current.BaseTypeWithDefinitionUseSiteDiagnostics(ref useSiteDiagnostics))
            {
                operators.Clear();
                GetUserDefinedUnaryOperatorsFromType(current, kind, name, operators);
                results.Clear();
                if (CandidateOperators(operators, operand, results, ref useSiteDiagnostics))
                {
                    hadApplicableCandidates = true;
                    break;
                }
            }

            // Look in base interfaces, or effective interfaces for type parameters
            if (!hadApplicableCandidates)
            {
                ImmutableArray <NamedTypeSymbol> interfaces = default;
                if (type0.IsInterfaceType())
                {
                    interfaces = type0.AllInterfacesWithDefinitionUseSiteDiagnostics(ref useSiteDiagnostics);
                }
                else if (type0.IsTypeParameter())
                {
                    interfaces = ((TypeParameterSymbol)type0).AllEffectiveInterfacesWithDefinitionUseSiteDiagnostics(ref useSiteDiagnostics);
                }

                if (!interfaces.IsDefaultOrEmpty)
                {
                    var shadowedInterfaces = PooledHashSet <NamedTypeSymbol> .GetInstance();

                    var resultsFromInterface = ArrayBuilder <UnaryOperatorAnalysisResult> .GetInstance();

                    results.Clear();

                    foreach (NamedTypeSymbol @interface in interfaces)
                    {
                        if ([email protected])
                        {
                            // this code could be reachable in error situations
                            continue;
                        }

                        if (shadowedInterfaces.Contains(@interface))
                        {
                            // this interface is "shadowed" by a derived interface
                            continue;
                        }

                        operators.Clear();
                        resultsFromInterface.Clear();
                        GetUserDefinedUnaryOperatorsFromType(@interface, kind, name, operators);
                        if (CandidateOperators(operators, operand, resultsFromInterface, ref useSiteDiagnostics))
                        {
                            hadApplicableCandidates = true;
                            results.AddRange(resultsFromInterface);

                            // this interface "shadows" all its base interfaces
                            shadowedInterfaces.AddAll(@interface.AllInterfacesWithDefinitionUseSiteDiagnostics(ref useSiteDiagnostics));
                        }
                    }

                    shadowedInterfaces.Free();
                    resultsFromInterface.Free();
                }
            }

            operators.Free();

            return(hadApplicableCandidates);
        }
Exemplo n.º 9
0
 internal static bool IsIFormatProvider(this TypeSymbol source)
 {
     return(source.IsInterfaceType() && source.Name == "IFormatProvider");
 }
Exemplo n.º 10
0
        private ConversionKind UnBoxXSharpType(ref BoundExpression rewrittenOperand, ConversionKind conversionKind, TypeSymbol rewrittenType)
        {
            var nts = rewrittenOperand?.Type as NamedTypeSymbol;

            if (_compilation.Options.HasRuntime)
            {
                var usualType = _compilation.UsualType();
                if (nts != null)
                {
                    nts = nts.ConstructedFrom;
                }
                // Ticket C575: Assign Interface to USUAL
                // Marked as Boxing in Conversions.cs
                // Implementation here
                if (nts != null && nts.IsInterface && rewrittenType == usualType)
                {
                    var members = usualType.GetMembers("op_Implicit");
                    foreach (var m in members)
                    {
                        var pt = m.GetParameterTypes()[0] as TypeSymbol;
                        if (pt == _compilation.GetSpecialType(SpecialType.System_Object))
                        {
                            rewrittenOperand = _factory.StaticCall(rewrittenType, (MethodSymbol)m, rewrittenOperand);
                            rewrittenOperand.WasCompilerGenerated = true;
                            return(ConversionKind.Identity);
                        }
                    }
                }

                if (nts == usualType)
                {
                    // USUAL -> WINBOOL, use LOGIC as intermediate type
                    if (rewrittenType == _compilation.WinBoolType())
                    {
                        MethodSymbol m = null;
                        m = getImplicitOperator(usualType, _compilation.GetSpecialType(SpecialType.System_Boolean));
                        rewrittenOperand = _factory.StaticCall(rewrittenType, m, rewrittenOperand);
                        rewrittenOperand.WasCompilerGenerated = true;
                        return(ConversionKind.Identity);
                    }

                    if (rewrittenType.IsPointerType())
                    {
                        // Pointer types are not really boxed
                        // we call the appropriate implicit operator here
                        MethodSymbol m = null;
                        m = getImplicitOperator(usualType, rewrittenType);
                        if (m == null)
                        {
                            m = getImplicitOperator(usualType, _compilation.GetSpecialType(SpecialType.System_IntPtr));
                        }
                        if (m != null)
                        {
                            rewrittenOperand = _factory.StaticCall(rewrittenType, m, rewrittenOperand);
                            rewrittenOperand.WasCompilerGenerated = true;
                            return(ConversionKind.PointerToPointer);
                        }
                    }
                    else if (rewrittenType.SpecialType == SpecialType.System_DateTime)
                    {
                        rewrittenOperand = _factory.StaticCall(usualType, ReservedNames.ToObject, rewrittenOperand);
                        return(ConversionKind.Unboxing);
                    }
                    else // System.Decimals, Objects and reference types, but not String
                    {
                        // check to see if we are casting to an interface that the usualtype supports
                        if (rewrittenType.IsInterfaceType())
                        {
                            foreach (var interf in usualType.AllInterfacesNoUseSiteDiagnostics)
                            {
                                if (interf == rewrittenType)
                                {
                                    return(ConversionKind.ImplicitReference);
                                }
                            }
                        }
                        // special case for __CastClass
                        var xnode = rewrittenOperand.Syntax.Parent?.XNode as LanguageService.CodeAnalysis.XSharp.SyntaxParser.XSharpParserRuleContext;
                        if (xnode != null && xnode.IsCastClass())
                        {
                            conversionKind = ConversionKind.Boxing;
                        }
                        else
                        {
                            rewrittenOperand = _factory.StaticCall(usualType, ReservedNames.ToObject, rewrittenOperand);
                            if (rewrittenType.IsObjectType())
                            {
                                conversionKind = ConversionKind.Identity;
                            }
                            else if (rewrittenType.IsReferenceType)
                            {
                                rewrittenOperand = MakeConversionNode(rewrittenOperand, rewrittenType, @checked: true, acceptFailingConversion: false);
                                conversionKind   = ConversionKind.ImplicitReference;
                            }
                            else
                            {
                                conversionKind = ConversionKind.Unboxing;
                            }
                        }
                    }
                }
                var floatType = _compilation.FloatType();
                if (nts == floatType && rewrittenType is NamedTypeSymbol)
                {
                    MethodSymbol m = getExplicitOperator(floatType, rewrittenType as NamedTypeSymbol);
                    if (m != null)
                    {
                        rewrittenOperand = _factory.StaticCall(rewrittenType, m, rewrittenOperand);
                        rewrittenOperand.WasCompilerGenerated = true;
                        return(ConversionKind.Identity);
                    }
                    m = getImplicitOperator(floatType, rewrittenType as NamedTypeSymbol);
                    if (m != null)
                    {
                        rewrittenOperand = _factory.StaticCall(rewrittenType, m, rewrittenOperand);
                        rewrittenOperand.WasCompilerGenerated = true;
                        return(ConversionKind.Identity);
                    }
                    if (rewrittenType == _compilation.GetSpecialType(SpecialType.System_Object) ||
                        rewrittenType == _compilation.UsualType())
                    {
                        return(ConversionKind.Boxing);
                    }
                    // what else, any other numeric type Convert to Double first and then to destination type
                    m = getImplicitOperator(floatType, _compilation.GetSpecialType(SpecialType.System_Double));
                    if (m != null)  // this should never happen. This is an implicit converter
                    {
                        rewrittenOperand = _factory.StaticCall(rewrittenType, m, rewrittenOperand);
                        rewrittenOperand.WasCompilerGenerated = true;
                        rewrittenOperand = MakeConversionNode(rewrittenOperand.Syntax,
                                                              rewrittenOperand: rewrittenOperand,
                                                              rewrittenType: rewrittenType,
                                                              conversion: Conversion.ImplicitNumeric,
                                                              @checked: true,
                                                              explicitCastInCode: false
                                                              );
                        rewrittenOperand.WasCompilerGenerated = true;
                        return(ConversionKind.Identity);
                    }
                }
            }
            return(conversionKind);
        }
        private void AddUserDefinedConversionsToExplicitCandidateSet(
            BoundExpression sourceExpression,
            TypeSymbol source,
            TypeSymbol target,
            ArrayBuilder<UserDefinedConversionAnalysis> u,
            NamedTypeSymbol declaringType,
            string operatorName,
            ref HashSet<DiagnosticInfo> useSiteDiagnostics)
        {
            Debug.Assert(sourceExpression != null || (object)source != null);
            Debug.Assert((object)target != null);
            Debug.Assert(u != null);
            Debug.Assert((object)declaringType != null);
            Debug.Assert(operatorName != null);

            // SPEC: Find the set of applicable user-defined and lifted conversion operators, U.
            // SPEC: The set consists of the user-defined and lifted implicit or explicit 
            // SPEC: conversion operators declared by the classes and structs in D that convert 
            // SPEC: from a type encompassing E or encompassed by S (if it exists) to a type
            // SPEC: encompassing or encompassed by T. 

            // DELIBERATE SPEC VIOLATION:
            //
            // The spec here essentially says that we add an applicable "regular" conversion and 
            // an applicable lifted conversion, if there is one, to the candidate set, and then
            // let them duke it out to determine which one is "best".
            //
            // This is not at all what the native compiler does, and attempting to implement
            // the specification, or slight variations on it, produces too many backwards-compatibility
            // breaking changes.
            //
            // The native compiler deviates from the specification in two major ways here.
            // First, it does not add *both* the regular and lifted forms to the candidate set.
            // Second, the way it characterizes a "lifted" form is very, very different from
            // how the specification characterizes a lifted form. 
            //
            // An operation, in this case, X-->Y, is properly said to be "lifted" to X?-->Y? via
            // the rule that X?-->Y? matches the behavior of X-->Y for non-null X, and converts
            // null X to null Y otherwise.
            //
            // The native compiler, by contrast, takes the existing operator and "lifts" either
            // the operator's parameter type or the operator's return type to nullable. For
            // example, a conversion from X?-->Y would be "lifted" to X?-->Y? by making the
            // conversion from X? to Y, and then from Y to Y?.  No "lifting" semantics
            // are imposed; we do not check to see if the X? is null. This operator is not
            // actually "lifted" at all; rather, an implicit conversion is applied to the 
            // output. **The native compiler considers the result type Y? of that standard implicit
            // conversion to be the result type of the "lifted" conversion**, rather than
            // properly considering Y to be the result type of the conversion for the purposes 
            // of computing the best output type.
            //
            // Moreover: the native compiler actually *does* implement nullable lifting semantics
            // in the case where the input type of the user-defined conversion is a non-nullable
            // value type and the output type is a nullable value type **or pointer type, or 
            // reference type**. This is an enormous departure from the specification; the
            // native compiler will take a user-defined conversion from X-->Y? or X-->C and "lift"
            // it to a conversion from X?-->Y? or X?-->C that has nullable semantics.
            // 
            // This is quite confusing. In this code we will classify the conversion as either
            // "normal" or "lifted" on the basis of *whether or not special lifting semantics
            // are to be applied*. That is, whether or not a later rewriting pass is going to
            // need to insert a check to see if the source expression is null, and decide
            // whether or not to call the underlying unlifted conversion or produce a null
            // value without calling the unlifted conversion.
            // DELIBERATE SPEC VIOLATION: See the comment regarding bug 17021 in 
            // UserDefinedImplicitConversions.cs.

            if ((object)source != null && source.IsInterfaceType() || target.IsInterfaceType())
            {
                return;
            }

            foreach (MethodSymbol op in declaringType.GetOperators(operatorName))
            {
                // We might have a bad operator and be in an error recovery situation. Ignore it.
                if (op.ReturnsVoid || op.ParameterCount != 1 || op.ReturnType.TypeKind == TypeKind.Error)
                {
                    continue;
                }

                TypeSymbol convertsFrom = op.ParameterTypes[0];
                TypeSymbol convertsTo = op.ReturnType;
                Conversion fromConversion = EncompassingExplicitConversion(sourceExpression, source, convertsFrom, ref useSiteDiagnostics);
                Conversion toConversion = EncompassingExplicitConversion(null, convertsTo, target, ref useSiteDiagnostics);

                // We accept candidates for which the parameter type encompasses the *underlying* source type.
                if (!fromConversion.Exists &&
                    (object)source != null &&
                    source.IsNullableType() &&
                    EncompassingExplicitConversion(null, source.GetNullableUnderlyingType(), convertsFrom, ref useSiteDiagnostics).Exists)
                {
                    fromConversion = ClassifyConversion(source, convertsFrom, ref useSiteDiagnostics, builtinOnly: true);
                }

                // As in dev11 (and the revised spec), we also accept candidates for which the return type is encompassed by the *stripped* target type.
                if (!toConversion.Exists &&
                    (object)target != null &&
                    target.IsNullableType() &&
                    EncompassingExplicitConversion(null, convertsTo, target.GetNullableUnderlyingType(), ref useSiteDiagnostics).Exists)
                {
                    toConversion = ClassifyConversion(convertsTo, target, ref useSiteDiagnostics, builtinOnly: true);
                }

                // In the corresponding implicit conversion code we can get away with first 
                // checking to see if standard implicit conversions exist from the source type
                // to the parameter type, and from the return type to the target type. If not,
                // then we can check for a lifted operator.
                //
                // That's not going to cut it in the explicit conversion code. Suppose we have
                // a conversion X-->Y and have source type X? and target type Y?. There *are*
                // standard explicit conversions from X?-->X and Y?-->Y, but we do not want
                // to bind this as an *unlifted* conversion from X? to Y?; we want such a thing
                // to be a *lifted* conversion from X? to Y?, that checks for null on the source
                // and decides to not call the underlying user-defined conversion if it is null.
                //
                // We therefore cannot do what we do in the implicit conversions, where we check
                // to see if the unlifted conversion works, and if it does, then don't add the lifted
                // conversion at all. Rather, we have to see if what we're building here is a 
                // lifted conversion or not.
                //
                // Under what circumstances is this conversion a lifted conversion? (In the 
                // "spec" sense of a lifted conversion; that is, that we check for null
                // and skip the user-defined conversion if necessary).
                //
                // * The source type must be a nullable value type.
                // * The parameter type must be a non-nullable value type.
                // * The target type must be able to take on a null value.

                if (fromConversion.Exists && toConversion.Exists)
                {
                    if ((object)source != null && source.IsNullableType() && convertsFrom.IsNonNullableValueType() && target.CanBeAssignedNull())
                    {
                        TypeSymbol nullableFrom = MakeNullableType(convertsFrom);
                        TypeSymbol nullableTo = convertsTo.IsNonNullableValueType() ? MakeNullableType(convertsTo) : convertsTo;
                        Conversion liftedFromConversion = EncompassingExplicitConversion(sourceExpression, source, nullableFrom, ref useSiteDiagnostics);
                        Conversion liftedToConversion = EncompassingExplicitConversion(null, nullableTo, target, ref useSiteDiagnostics);
                        Debug.Assert(liftedFromConversion.Exists);
                        Debug.Assert(liftedToConversion.Exists);
                        u.Add(UserDefinedConversionAnalysis.Lifted(op, liftedFromConversion, liftedToConversion, nullableFrom, nullableTo));
                    }
                    else
                    {

                        // There is an additional spec violation in the native compiler. Suppose
                        // we have a conversion from X-->Y and are asked to do "Y? y = new X();"  Clearly
                        // the intention is to convert from X-->Y via the implicit conversion, and then
                        // stick a standard implicit conversion from Y-->Y? on the back end. **In this 
                        // situation, the native compiler treats the conversion as though it were
                        // actually X-->Y? in source for the purposes of determining the best target
                        // type of a set of operators.
                        //
                        // Similarly, if we have a conversion from X-->Y and are asked to do 
                        // an explicit conversion from X? to Y then we treat the conversion as
                        // though it really were X?-->Y for the purposes of determining the best
                        // source type of a set of operators.
                        //
                        // We perpetuate these fictions here.

                        if (target.IsNullableType() && convertsTo.IsNonNullableValueType())
                        {
                            convertsTo = MakeNullableType(convertsTo);
                            toConversion = EncompassingExplicitConversion(null, convertsTo, target, ref useSiteDiagnostics);
                        }

                        if ((object)source != null && source.IsNullableType() && convertsFrom.IsNonNullableValueType())
                        {
                            convertsFrom = MakeNullableType(convertsFrom);
                            fromConversion = EncompassingExplicitConversion(null, convertsFrom, source, ref useSiteDiagnostics);
                        }

                        u.Add(UserDefinedConversionAnalysis.Normal(op, fromConversion, toConversion, convertsFrom, convertsTo));
                    }
                }
            }
        }