public int ComputeQScore(QScoreMethod qscoreMethod) { double score; int qscore; switch (qscoreMethod) { case QScoreMethod.LogisticGermline: // Logistic model using a new selection of features. Gives ROC curve area 0.921 score = -5.0123; score += GetQScorePredictor(QScorePredictor.LogBinCount) * 4.9801; score += GetQScorePredictor(QScorePredictor.ModelDistance) * -5.5472; score += GetQScorePredictor(QScorePredictor.DistanceRatio) * -1.7914; score = Math.Exp(score); score = score / (score + 1); // Transform probability into a q-score: qscore = (int)(Math.Round(-10 * Math.Log10(1 - score))); qscore = Math.Min(40, qscore); qscore = Math.Max(2, qscore); return qscore; case QScoreMethod.Logistic: // Logistic model using a new selection of features. Gives ROC curve area 0.8289 score = -0.5143; score += GetQScorePredictor(QScorePredictor.LogBinCount) * 0.8596; score += GetQScorePredictor(QScorePredictor.ModelDistance) * -50.4366; score += GetQScorePredictor(QScorePredictor.DistanceRatio) * -0.6511; score = Math.Exp(score); score = score / (score + 1); // Transform probability into a q-score: qscore = (int)(Math.Round(-10 * Math.Log10(1 - score))); qscore = Math.Min(60, qscore); qscore = Math.Max(2, qscore); return qscore; case QScoreMethod.BinCountLinearFit: if (this.BinCount >= 100) return 61; else return (int)Math.Round(-10 * Math.Log10(1 - 1 / (1 + Math.Exp(0.5532 - this.BinCount * 0.147))), 0, MidpointRounding.AwayFromZero); case QScoreMethod.GeneralizedLinearFit: // Generalized linear fit with linear transformation to QScore double linearFit = -3.65 - 1.12 * GetQScorePredictor(QScorePredictor.LogBinCount) + 3.89 * GetQScorePredictor(QScorePredictor.ModelDistance) + 0.47 * GetQScorePredictor(QScorePredictor.MajorChromosomeCount) - 0.68 * GetQScorePredictor(QScorePredictor.MafMean) - 0.25 * GetQScorePredictor(QScorePredictor.LogMafCv); score = -11.9 - 11.4 * linearFit; // Scaling to achieve 2 <= qscore <= 61 score = Math.Max(2, score); score = Math.Min(61, score); return (int)Math.Round(score, 0, MidpointRounding.AwayFromZero); default: throw new Exception("Unhandled qscore method"); } }
/// <summary> /// Apply quality scores. /// </summary> public static void AssignQualityScores(List<CanvasSegment> segments, QScoreMethod qscoreMethod) { foreach (CanvasSegment segment in segments) { segment.QScore = segment.ComputeQScore(qscoreMethod); } }