/// <summary> /// image QualityIndex. Not affecting Alpha. /// </summary> /// <param name="src2">2nd source image</param> /// <param name="dst">Pointer to the quality index. (3 * sizeof(float))</param> public void QualityIndexA(NPPImage_32fC4 src2, CudaDeviceVariable<float> dst) { int bufferSize = QualityIndexAGetBufferHostSize(); CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize); status = NPPNativeMethods.NPPi.QualityIndex.nppiQualityIndex_32f_AC4R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, dst.DevicePointer, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiQualityIndex_32f_AC4R", status)); buffer.Dispose(); NPPException.CheckNppStatus(status, this); }
/// <summary> /// CrossCorrSame_NormLevel. Not affecting Alpha. /// </summary> /// <param name="tpl">template image.</param> /// <param name="dst">Destination image</param> /// <param name="buffer">Allocated device memory with size of at <see cref="SameNormLevelAGetBufferHostSize()"/></param> public void CrossCorrSame_NormLevelA(NPPImage_8uC4 tpl, NPPImage_32fC4 dst, CudaDeviceVariable<byte> buffer) { int bufferSize = SameNormLevelAGetBufferHostSize(); if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small."); status = NPPNativeMethods.NPPi.ImageProximity.nppiCrossCorrSame_NormLevel_8u32f_AC4R(_devPtrRoi, _pitch, _sizeRoi, tpl.DevicePointerRoi, tpl.Pitch, tpl.SizeRoi, dst.DevicePointer, dst.Pitch, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCrossCorrSame_NormLevel_8u32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image CrossCorrValid_Norm. Not affecting Alpha. /// </summary> /// <param name="tpl">template image.</param> /// <param name="dst">Destination-Image</param> public void CrossCorrValid_NormA(NPPImage_8uC4 tpl, NPPImage_32fC4 dst) { status = NPPNativeMethods.NPPi.ImageProximity.nppiCrossCorrValid_Norm_8u32f_AC4R(_devPtrRoi, _pitch, _sizeRoi, tpl.DevicePointerRoi, tpl.Pitch, tpl.SizeRoi, dst.DevicePointerRoi, dst.Pitch); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCrossCorrValid_Norm_8u32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
//New in Cuda 6.0 #region SumWindow /// <summary> /// 16-bit signed 1D (column) sum to 32f. /// Apply Column Window Summation filter over a 1D mask region around each /// source pixel for 4-channel 16 bit/pixel input images with 32-bit floating point /// output. <para/> /// Result 32-bit floating point pixel is equal to the sum of the corresponding and /// neighboring column pixel values in a mask region of the source image defined by /// nMaskSize and nAnchor. /// </summary> /// <param name="dest">Destination image</param> /// <param name="nMaskSize">Length of the linear kernel array.</param> /// <param name="nAnchor">Y offset of the kernel origin frame of reference w.r.t the source pixel.</param> public void SumWindowColumn(NPPImage_32fC4 dest, int nMaskSize, int nAnchor) { status = NPPNativeMethods.NPPi.WindowSum1D.nppiSumWindowColumn_16s32f_C4R(_devPtrRoi, _pitch, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, nMaskSize, nAnchor); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiSumWindowColumn_16s32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// 8-bit unsigned to 32-bit floating point conversion. Not affecting Alpha channel. /// </summary> /// <param name="dst">Destination image</param> public void ConvertA(NPPImage_32fC4 dst) { status = NPPNativeMethods.NPPi.BitDepthConversion.nppiConvert_8u32f_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiConvert_8u32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Divide constant to image. Unchanged Alpha. /// </summary> /// <param name="nConstant">Value</param> /// <param name="dest">Destination image</param> public void DivA(float[] nConstant, NPPImage_32fC4 dest) { status = NPPNativeMethods.NPPi.DivConst.nppiDivC_32f_AC4R(_devPtrRoi, _pitch, nConstant, dest.DevicePointerRoi, dest.Pitch, _sizeRoi); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiDivC_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Rotate images. Not affecting Alpha. /// </summary> /// <param name="dest">Destination image</param> /// <param name="nAngle">The angle of rotation in degrees.</param> /// <param name="nShiftX">Shift along horizontal axis</param> /// <param name="nShiftY">Shift along vertical axis</param> /// <param name="eInterpolation">Interpolation mode</param> public void RotateA(NPPImage_32fC4 dest, double nAngle, double nShiftX, double nShiftY, InterpolationMode eInterpolation) { status = NPPNativeMethods.NPPi.GeometricTransforms.nppiRotate_32f_AC4R(_devPtr, _sizeRoi, _pitch, new NppiRect(_pointRoi, _sizeRoi), dest.DevicePointer, dest.Pitch, new NppiRect(dest.PointRoi, dest.SizeRoi), nAngle, nShiftX, nShiftY, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiRotate_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
//New in Cuda 6.0 #region Filter Median /// <summary> /// Result pixel value is the median of pixel values under the rectangular mask region. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="oMaskSize">Width and Height of the neighborhood region for the local Median operation.</param> /// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference relative to the source pixel.</param> public void FilterMedian(NPPImage_32fC4 dst, NppiSize oMaskSize, NppiPoint oAnchor) { int bufferSize = FilterMedianGetBufferHostSize(oMaskSize); CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize); status = NPPNativeMethods.NPPi.ImageMedianFilter.nppiFilterMedian_32f_C4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, oMaskSize, oAnchor, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterMedian_32f_C4R", status)); buffer.Dispose(); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Result pixel value is the median of pixel values under the rectangular mask region, ignoring alpha channel. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="oMaskSize">Width and Height of the neighborhood region for the local Median operation.</param> /// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference relative to the source pixel.</param> /// <param name="buffer">Pointer to the user-allocated scratch buffer required for the Median operation.</param> public void FilterMedianA(NPPImage_32fC4 dst, NppiSize oMaskSize, NppiPoint oAnchor, CudaDeviceVariable<byte> buffer) { int bufferSize = FilterMedianGetBufferHostSizeA(oMaskSize); if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small."); status = NPPNativeMethods.NPPi.ImageMedianFilter.nppiFilterMedian_32f_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, oMaskSize, oAnchor, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterMedian_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image NormRel_L1. Not affecting Alpha. /// </summary> /// <param name="tpl">template image.</param> /// <param name="pNormRel">Pointer to the computed relative error for the infinity norm of two images. (3 * sizeof(double))</param> /// <param name="buffer">Allocated device memory with size of at <see cref="NormRelL1AGetBufferHostSize()"/></param> public void NormRel_L1A(NPPImage_32fC4 tpl, CudaDeviceVariable<double> pNormRel, CudaDeviceVariable<byte> buffer) { int bufferSize = NormRelL1AGetBufferHostSize(); if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small."); status = NPPNativeMethods.NPPi.NormRel.nppiNormRel_L1_32f_AC4R(_devPtrRoi, _pitch, tpl.DevicePointerRoi, tpl.Pitch, _sizeRoi, pNormRel.DevicePointer, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiNormRel_L1_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image NormRel_L2. Buffer is internally allocated and freed. Not affecting Alpha. /// </summary> /// <param name="tpl">template image.</param> /// <param name="pNormRel">Pointer to the computed relative error for the infinity norm of two images. (3 * sizeof(double))</param> public void NormRel_L2A(NPPImage_32fC4 tpl, CudaDeviceVariable<double> pNormRel) { int bufferSize = NormRelL2AGetBufferHostSize(); CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize); status = NPPNativeMethods.NPPi.NormRel.nppiNormRel_L2_32f_AC4R(_devPtrRoi, _pitch, tpl.DevicePointerRoi, tpl.Pitch, _sizeRoi, pNormRel.DevicePointer, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiNormRel_L2_32f_AC4R", status)); buffer.Dispose(); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Resizes images. Not affecting Alpha. /// </summary> /// <param name="dest">Destination image</param> /// <param name="xFactor">X scaling factor</param> /// <param name="yFactor">Y scaling factor</param> /// <param name="eInterpolation">Interpolation mode</param> public void ResizeA(NPPImage_32fC4 dest, double xFactor, double yFactor, InterpolationMode eInterpolation) { status = NPPNativeMethods.NPPi.GeometricTransforms.nppiResize_32f_AC4R(_devPtr, _sizeOriginal, _pitch, new NppiRect(_pointRoi, _sizeRoi), dest.DevicePointerRoi, dest.Pitch, dest.SizeRoi, xFactor, yFactor, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiResize_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image remap. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="pXMap">Device memory pointer to 2D image array of X coordinate values to be used when sampling source image. </param> /// <param name="pYMap">Device memory pointer to 2D image array of Y coordinate values to be used when sampling source image. </param> /// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param> public void RemapA(NPPImage_32fC4 dst, NPPImage_32fC1 pXMap, NPPImage_32fC1 pYMap, InterpolationMode eInterpolation) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.Remap.nppiRemap_32f_AC4R(_devPtr, _sizeRoi, _pitch, srcRect, pXMap.DevicePointerRoi, pXMap.Pitch, pYMap.DevicePointerRoi, pYMap.Pitch, dst.DevicePointerRoi, dst.Pitch, dst.SizeRoi, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiRemap_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image resize. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="nXFactor">Factor by which x dimension is changed. </param> /// <param name="nYFactor">Factor by which y dimension is changed. </param> /// <param name="nXShift">Source pixel shift in x-direction.</param> /// <param name="nYShift">Source pixel shift in y-direction.</param> /// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param> public void ResizeSqrPixelA(NPPImage_32fC4 dst, double nXFactor, double nYFactor, double nXShift, double nYShift, InterpolationMode eInterpolation) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); NppiRect dstRect = new NppiRect(dst.PointRoi, dst.SizeRoi); status = NPPNativeMethods.NPPi.ResizeSqrPixel.nppiResizeSqrPixel_32f_AC4R(_devPtr, _sizeRoi, _pitch, srcRect, dst.DevicePointer, dst.Pitch, dstRect, nXFactor, nYFactor, nXShift, nYShift, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiResizeSqrPixel_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// In place image division. Unchanged Alpha. /// </summary> /// <param name="src2">2nd source image</param> public void DivA(NPPImage_32fC4 src2) { status = NPPNativeMethods.NPPi.Div.nppiDiv_32f_AC4IR(src2.DevicePointerRoi, src2.Pitch, _devPtrRoi, _pitch, _sizeRoi); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiDiv_32f_AC4IR", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image maximum relative error. User buffer is internally allocated and freed. /// </summary> /// <param name="src2">2nd source image</param> /// <param name="pError">Pointer to the computed error.</param> public void MaximumRelativeError(NPPImage_32fC4 src2, CudaDeviceVariable<double> pError) { int bufferSize = MaximumRelativeErrorGetBufferHostSize(); CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize); status = NPPNativeMethods.NPPi.MaximumRelativeError.nppiMaximumRelativeError_32f_C4R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMaximumRelativeError_32f_C4R", status)); buffer.Dispose(); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Filters the image using a separable Gaussian filter kernel with user supplied floating point coefficients /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="Kernel">Pointer to an array of nFilterTaps kernel coefficients which sum to 1.0F, where nFilterTaps = 2 * ((int)((float)ceil(radius) + 0.5F) ) + 1.</param> /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param> public void FilterGaussBorderA(NPPImage_32fC4 dst, CudaDeviceVariable<float> Kernel, NppiBorderType eBorderType) { status = NPPNativeMethods.NPPi.FilterGaussBorder.nppiFilterGaussAdvancedBorder_32f_AC4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, Kernel.Size, Kernel.DevicePointer, eBorderType); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterGaussAdvancedBorder_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image average relative error. /// </summary> /// <param name="src2">2nd source image</param> /// <param name="pError">Pointer to the computed error.</param> /// <param name="buffer">Pointer to the user-allocated scratch buffer required for the AverageRelativeError operation.</param> public void AverageRelativeError(NPPImage_32fC4 src2, CudaDeviceVariable<double> pError, CudaDeviceVariable<byte> buffer) { int bufferSize = AverageRelativeErrorGetBufferHostSize(); if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small."); status = NPPNativeMethods.NPPi.AverageRelativeError.nppiAverageRelativeError_32f_C4R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiAverageRelativeError_32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Image square root. /// </summary> /// <param name="dest">Destination image</param> public void Sqrt(NPPImage_32fC4 dest) { status = NPPNativeMethods.NPPi.Sqrt.nppiSqrt_32f_C4R(_devPtrRoi, _pitch, dest.DevicePointerRoi, dest.Pitch, _sizeRoi); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiSqrt_32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
//New in Cuda 7.0 #region FilterColumnBorder /// <summary> /// General purpose 1D convolution column filter with border control.<para/> /// Pixels under the mask are multiplied by the respective weights in the mask /// and the results are summed. If any portion of the mask overlaps the source /// image boundary the requested border type operation is applied to all mask pixels /// which fall outside of the source image. /// </summary> /// <param name="dest">Destination image</param> /// <param name="Kernel">Pointer to the start address of the kernel coefficient array. Coeffcients are expected to be stored in reverse order.</param> /// <param name="nAnchor">X offset of the kernel origin frame of reference w.r.t the source pixel.</param> /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param> public void FilterColumnBorder(NPPImage_32fC4 dest, CudaDeviceVariable<float> Kernel, int nAnchor, NppiBorderType eBorderType) { status = NPPNativeMethods.NPPi.LinearFilter1D.nppiFilterColumnBorder_32f_C4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dest.DevicePointerRoi, dest.Pitch, dest.SizeRoi, Kernel.DevicePointer, Kernel.Size, nAnchor, eBorderType); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterColumnBorder_32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Image copy. /// </summary> /// <param name="dst">Destination image</param> /// <param name="channel">Channel number. This number is added to the dst pointer</param> public void Copy(NPPImage_32fC4 dst, int channel) { if (channel < 0 | channel >= dst.Channels) throw new ArgumentOutOfRangeException("channel", "channel must be in range [0..3]."); status = NPPNativeMethods.NPPi.MemCopy.nppiCopy_32f_C1C4R(_devPtrRoi, _pitch, dst.DevicePointerRoi + channel * _typeSize, dst.Pitch, _sizeRoi); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCopy_32f_C1C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Result pixel value is the maximum of pixel values under the rectangular mask region. /// </summary> /// <param name="dest">Destination image</param> /// <param name="oMaskSize">Width and Height of the neighborhood region for the local Avg operation.</param> /// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference w.r.t the source pixel.</param> /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param> public void FilterMaxBorder(NPPImage_32fC4 dest, NppiSize oMaskSize, NppiPoint oAnchor, NppiBorderType eBorderType) { status = NPPNativeMethods.NPPi.RankFilters.nppiFilterMaxBorder_32f_C4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, oMaskSize, oAnchor, eBorderType); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterMaxBorder_32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Swap color channels /// </summary> /// <param name="dest">Destination image</param> /// <param name="aDstOrder">Integer array describing how channel values are permutated. <para/>The n-th entry of the array /// contains the number of the channel that is stored in the n-th channel of the output image. <para/>E.g. /// Given an RGB image, aDstOrder = [3,2,1,0] converts this to VBGR channel order.</param> /// <param name="nValue">(V) Single channel constant value that can be replicated in one or more of the 4 destination channels.<para/> /// nValue is either written or not written to a particular channel depending on the aDstOrder entry for that destination /// channel. <para/>An aDstOrder value of 3 will output nValue to that channel, an aDstOrder value greater than 3 will leave that /// particular destination channel value unmodified.</param> public void SwapChannels(NPPImage_32fC4 dest, int[] aDstOrder, byte nValue) { status = NPPNativeMethods.NPPi.SwapChannel.nppiSwapChannels_32f_C3C4R(_devPtrRoi, _pitch, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, aDstOrder, nValue); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiSwapChannels_32f_C3C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Sharpen filter. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param> public void FilterSharpenBorderA(NPPImage_32fC4 dst, NppiBorderType eBorderType) { status = NPPNativeMethods.NPPi.FixedFilters.nppiFilterSharpenBorder_32f_AC4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, eBorderType); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterSharpenBorder_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// image conversion. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="nMin">specifies the minimum saturation value to which every output value will be clamped.</param> /// <param name="nMax">specifies the maximum saturation value to which every output value will be clamped.</param> public void ScaleA(NPPImage_32fC4 dst, float nMin, float nMax) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.Scale.nppiScale_8u32f_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, nMin, nMax); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiScale_8u32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Filters the image using a unsharp-mask sharpening filter kernel with border control.<para/> /// The algorithm involves the following steps:<para/> /// Smooth the original image with a Gaussian filter, with the width controlled by the nRadius.<para/> /// Subtract the smoothed image from the original to create a high-pass filtered image.<para/> /// Apply any clipping needed on the high-pass image, as controlled by the nThreshold.<para/> /// Add a certain percentage of the high-pass filtered image to the original image, /// with the percentage controlled by the nWeight. /// In pseudocode this algorithm can be written as:<para/> /// HighPass = Image - Gaussian(Image)<para/> /// Result = Image + nWeight * HighPass * ( |HighPass| >= nThreshold ) <para/> /// where nWeight is the amount, nThreshold is the threshold, and >= indicates a Boolean operation, 1 if true, or 0 otherwise. /// <para/> /// If any portion of the mask overlaps the source image boundary, the requested border type /// operation is applied to all mask pixels which fall outside of the source image. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="nRadius">The radius of the Gaussian filter, in pixles, not counting the center pixel.</param> /// <param name="nSigma">The standard deviation of the Gaussian filter, in pixel.</param> /// <param name="nWeight">The percentage of the difference between the original and the high pass image that is added back into the original.</param> /// <param name="nThreshold">The threshold needed to apply the difference amount.</param> /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param> /// <param name="buffer">Pointer to the user-allocated device scratch buffer required for the unsharp operation.</param> public void FilterUnsharpBorderA(NPPImage_32fC4 dst, float nRadius, float nSigma, float nWeight, float nThreshold, NppiBorderType eBorderType, CudaDeviceVariable<byte> buffer) { if (buffer.Size < FilterUnsharpGetBufferSizeA(nRadius, nSigma)) throw new NPPException("Provided buffer is too small."); status = NPPNativeMethods.NPPi.FixedFilters.nppiFilterUnsharpBorder_32f_AC4R(_devPtr, _pitch, _pointRoi, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, nRadius, nSigma, nWeight, nThreshold, eBorderType, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterUnsharpBorder_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// CrossCorrValid_NormLevel. Buffer is internally allocated and freed. Not affecting Alpha. /// </summary> /// <param name="tpl">template image.</param> /// <param name="dst">Destination image</param> public void CrossCorrValid_NormLevelA(NPPImage_8uC4 tpl, NPPImage_32fC4 dst) { int bufferSize = ValidNormLevelAGetBufferHostSize(); CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize); status = NPPNativeMethods.NPPi.ImageProximity.nppiCrossCorrValid_NormLevel_8u32f_AC4R(_devPtrRoi, _pitch, _sizeRoi, tpl.DevicePointerRoi, tpl.Pitch, tpl.SizeRoi, dst.DevicePointer, dst.Pitch, buffer.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCrossCorrValid_NormLevel_8u32f_AC4R", status)); buffer.Dispose(); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Filters the image using a separable Gaussian filter kernel with user supplied floating point coefficients /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="Kernel">Pointer to an array of nFilterTaps kernel coefficients which sum to 1.0F, where nFilterTaps = 2 * ((int)((float)ceil(radius) + 0.5F) ) + 1.</param> public void FilterGauss(NPPImage_32fC4 dst, CudaDeviceVariable<float> Kernel) { status = NPPNativeMethods.NPPi.FixedFilters.nppiFilterGaussAdvanced_32f_C4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, Kernel.Size, Kernel.DevicePointer); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterGaussAdvanced_32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Apply Row Window Summation filter over a 1D mask region around each source /// pixel for 3-channel 8-bit pixel input images with 32-bit floating point output. /// Result 32-bit floating point pixel is equal to the sum of the corresponding and /// neighboring row pixel values in a mask region of the source image defined /// by nKernelDim and nAnchorX. /// </summary> /// <param name="dest">Destination image</param> /// <param name="nMaskSize">Length of the linear kernel array.</param> /// <param name="nAnchor">X offset of the kernel origin frame of reference w.r.t the source pixel.</param> /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param> public void SumWindowRowBorder(NPPImage_32fC4 dest, int nMaskSize, int nAnchor, NppiBorderType eBorderType) { status = NPPNativeMethods.NPPi.WindowSum1D.nppiSumWindowRowBorder_8u32f_C4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, nMaskSize, nAnchor, eBorderType); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiSumWindowRowBorder_8u32f_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Low pass filter. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="eMaskSize">Enumeration value specifying the mask size.</param> public void FilterLowPassA(NPPImage_32fC4 dst, MaskSize eMaskSize) { status = NPPNativeMethods.NPPi.FixedFilters.nppiFilterLowPass_32f_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, eMaskSize); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterLowPass_32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }