コード例 #1
0
        private const int keySize                 = 256;                // can be 192 or 128 or 256

        public static string Encrypt(string stringToEncrypt)
        {
            try
            {
                // Convert strings into byte arrays.
                // Let us assume that strings only contain ASCII codes.
                // If strings include Unicode characters, use Unicode, UTF7, or UTF8 encoding.
                Byte[] initializationVectorBytes = Encoding.ASCII.GetBytes(initializationVector);
                Byte[] saltBytes = Encoding.ASCII.GetBytes(salt);

                // Convert our plaintext into a byte array.
                // Let us assume that plaintext contains UTF8-encoded characters.
                Byte[] stringToEncryptBytes = Encoding.UTF8.GetBytes(stringToEncrypt);

                // First, we must create a password, from which the key will be derived.
                // This password will be generated from the specified passphrase and
                // salt value. The password will be created using the specified hash
                // algorithm. Password creation can be done in several iterations.
                OpenNETCF.Security.Cryptography.PasswordDeriveBytes keyGenerator = new OpenNETCF.Security.Cryptography.PasswordDeriveBytes(passwordPhrase, saltBytes, "SHA1", passwordIterations);
                //PasswordDeriveBytes keyGenerator = new PasswordDeriveBytes(passwordPhrase, saltBytes, "SHA1", passwordIterations);

                // Use the password to generate pseudo-random bytes for the encryption
                // key. Specify the size of the key in bytes (instead of bits).
                Byte[] keyBytes = keyGenerator.GetBytes(keySize / 8);

                // Create initialized Rijndael encryption object.
                RijndaelManaged symmetricKey = new RijndaelManaged();

                // It is reasonable to set encryption mode to Cipher Block Chaining
                // (CBC). Use default options for other symmetric key parameters.
                symmetricKey.Mode = CipherMode.CBC;

                // Generate encryptor from the existing key bytes and initialization
                // vector. Key size will be defined based on the number of the key bytes.
                ICryptoTransform encryptor = symmetricKey.CreateEncryptor(keyBytes, initializationVectorBytes);

                // Define memory stream which will be used to hold encrypted data.
                MemoryStream memoryStream = new MemoryStream();

                // Define cryptographic stream (always use Write mode for encryption).
                CryptoStream cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write);

                // Start encrypting.
                cryptoStream.Write(stringToEncryptBytes, 0, stringToEncryptBytes.Length);

                // Finish encrypting.
                cryptoStream.FlushFinalBlock();

                // Convert our encrypted data from a memory stream into a byte array.

                Byte[] cipherTextBytes = memoryStream.ToArray();

                // Close both streams.
                memoryStream.Close();
                cryptoStream.Close();

                // Convert encrypted data into a base64-encoded string.
                string cipherText = Convert.ToBase64String(cipherTextBytes);

                // Return encrypted string.
                return(cipherText);
            }
            catch (Exception)
            {
                //global::System.Windows.Forms.MessageBox.Show("Error on Functions.Encrypt(): " + ex.Message);
                return(null);
            }
        }
コード例 #2
0
ファイル: RijndaelSimple.cs プロジェクト: alok-y-me/eyot
        /// <summary>
        /// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
        /// </summary>
        /// <param name="cipherText">
        /// Base64-formatted ciphertext value.
        /// </param>
        /// <param name="passPhrase">
        /// Passphrase from which a pseudo-random password will be derived. The
        /// derived password will be used to generate the encryption key.
        /// Passphrase can be any string. In this example we assume that this
        /// passphrase is an ASCII string.
        /// </param>
        /// <param name="saltValue">
        /// Salt value used along with passphrase to generate password. Salt can
        /// be any string. In this example we assume that salt is an ASCII string.
        /// </param>
        /// <param name="hashAlgorithm">
        /// Hash algorithm used to generate password. Allowed values are: "MD5" and
        /// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
        /// </param>
        /// <param name="passwordIterations">
        /// Number of iterations used to generate password. One or two iterations
        /// should be enough.
        /// </param>
        /// <param name="initVector">
        /// Initialization vector (or IV). This value is required to encrypt the
        /// first block of plaintext data. For RijndaelManaged class IV must be
        /// exactly 16 ASCII characters long.
        /// </param>
        /// <param name="keySize">
        /// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
        /// Longer keys are more secure than shorter keys.
        /// </param>
        /// <returns>
        /// Decrypted string value.
        /// </returns>
        /// <remarks>
        /// Most of the logic in this function is similar to the Encrypt
        /// logic. In order for decryption to work, all parameters of this function
        /// - except cipherText value - must match the corresponding parameters of
        /// the Encrypt function which was called to generate the
        /// ciphertext.
        /// </remarks>
        public static string Decrypt(string cipherText,
            string passPhrase,
            string saltValue,
            string hashAlgorithm,
            int passwordIterations,
            string initVector,
            int keySize)
        {
            // Convert strings defining encryption key characteristics into byte
            // arrays. Let us assume that strings only contain ASCII codes.
            // If strings include Unicode characters, use Unicode, UTF7, or UTF8
            // encoding.
            byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
            byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);

            // Convert our ciphertext into a byte array.
            byte[] cipherTextBytes = Convert.FromBase64String(cipherText);

            // First, we must create a password, from which the key will be
            // derived. This password will be generated from the specified
            // passphrase and salt value. The password will be created using
            // the specified hash algorithm. Password creation can be done in
            // several iterations.
            OpenNETCF.Security.Cryptography.PasswordDeriveBytes password = new OpenNETCF.Security.Cryptography.PasswordDeriveBytes(
                                                            passPhrase,
                                                            saltValueBytes,
                                                            hashAlgorithm,
                                                            passwordIterations);

            // Use the password to generate pseudo-random bytes for the encryption
            // key. Specify the size of the key in bytes (instead of bits).
            byte[] keyBytes = password.GetBytes(keySize / 8);

            // Create uninitialized Rijndael encryption object.
            RijndaelManaged symmetricKey = new RijndaelManaged();

            // It is reasonable to set encryption mode to Cipher Block Chaining
            // (CBC). Use default options for other symmetric key parameters.
            symmetricKey.Mode = CipherMode.CBC;

            // Generate decryptor from the existing key bytes and initialization
            // vector. Key size will be defined based on the number of the key
            // bytes.
            ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
                                                             keyBytes,
                                                             initVectorBytes);

            // Define memory stream which will be used to hold encrypted data.
            MemoryStream memoryStream = new MemoryStream(cipherTextBytes);

            // Define cryptographic stream (always use Read mode for encryption).
            CryptoStream cryptoStream = new CryptoStream(memoryStream,
                                                          decryptor,
                                                          CryptoStreamMode.Read);

            // Since at this point we don't know what the size of decrypted data
            // will be, allocate the buffer long enough to hold ciphertext;
            // plaintext is never longer than ciphertext.
            byte[] plainTextBytes = new byte[cipherTextBytes.Length];

            // Start decrypting.
            int decryptedByteCount = cryptoStream.Read(plainTextBytes,
                                                       0,
                                                       plainTextBytes.Length);

            // Close both streams.
            memoryStream.Close();
            cryptoStream.Close();

            // Convert decrypted data into a string.
            // Let us assume that the original plaintext string was UTF8-encoded.
            string plainText = Encoding.UTF8.GetString(plainTextBytes,
                                                       0,
                                                       decryptedByteCount);

            // Return decrypted string.
            return plainText;
        }
コード例 #3
0
        public static string Decrypt(string stringToDecrypt)
        {
            try
            {
                // Convert strings defining encryption key characteristics into byte
                // arrays. Let us assume that strings only contain ASCII codes.
                // If strings include Unicode characters, use Unicode, UTF7, or UTF8 encoding.
                Byte[] initializationVectorBytes = Encoding.ASCII.GetBytes(initializationVector);
                Byte[] saltBytes = Encoding.ASCII.GetBytes(salt);

                // Convert our ciphertext into a byte array.
                Byte[] cipherTextBytes = Convert.FromBase64String(stringToDecrypt);

                // First, we must create a password, from which the key will be
                // derived. This password will be generated from the specified
                // passphrase and salt value. The password will be created using
                // the specified hash algorithm. Password creation can be done in several iterations.
                OpenNETCF.Security.Cryptography.PasswordDeriveBytes keyGenerator = new OpenNETCF.Security.Cryptography.PasswordDeriveBytes(passwordPhrase, saltBytes, "SHA1", passwordIterations);
                //PasswordDeriveBytes keyGenerator = new PasswordDeriveBytes(passwordPhrase, saltBytes, "SHA1", passwordIterations);

                // Use the password to generate pseudo-random bytes for the encryption
                // key. Specify the size of the key in bytes (instead of bits).
                Byte[] keyBytes = keyGenerator.GetBytes(keySize / 8);

                // Create initialized Rijndael encryption object.
                RijndaelManaged symmetricKey = new RijndaelManaged();

                // It is reasonable to set encryption mode to Cipher Block Chaining
                // (CBC). Use default options for other symmetric key parameters.
                symmetricKey.Mode = CipherMode.CBC;

                // Generate decryptor from the existing key bytes and initialization
                // vector. Key size will be defined based on the number of the key bytes.
                ICryptoTransform decryptor = symmetricKey.CreateDecryptor(keyBytes, initializationVectorBytes);

                // Define memory stream which will be used to hold encrypted data.
                MemoryStream memoryStream = new MemoryStream(cipherTextBytes);

                // Define memory stream which will be used to hold encrypted data.
                CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);

                // Since at this point we don't know what the size of decrypted data
                // will be, allocate the buffer long enough to hold ciphertext;
                // plaintext is never longer than ciphertext.
                Byte[] plainTextBytes = new Byte[cipherTextBytes.Length];

                // Start decrypting.
                int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);

                // Close both streams.
                memoryStream.Close();
                cryptoStream.Close();

                // Convert decrypted data into a string.
                // Let us assume that the original plaintext string was UTF8-encoded.
                string plainText = Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);

                // Return decrypted string.
                return(plainText);
            }
            catch (Exception)
            {
                //System.Windows.Forms.MessageBox.Show("Error on Functions.Decrypt(): " + ex.Message);
                return(null);
            }
        }
コード例 #4
0
ファイル: RijndaelSimple.cs プロジェクト: alok-y-me/eyot
        /// <summary>
        /// Encrypts specified plaintext using Rijndael symmetric key algorithm
        /// and returns a base64-encoded result.
        /// </summary>
        /// <param name="plainText">
        /// Plaintext value to be encrypted.
        /// </param>
        /// <param name="passPhrase">
        /// Passphrase from which a pseudo-random password will be derived. The
        /// derived password will be used to generate the encryption key.
        /// Passphrase can be any string. In this example we assume that this
        /// passphrase is an ASCII string.
        /// </param>
        /// <param name="saltValue">
        /// Salt value used along with passphrase to generate password. Salt can
        /// be any string. In this example we assume that salt is an ASCII string.
        /// </param>
        /// <param name="hashAlgorithm">
        /// Hash algorithm used to generate password. Allowed values are: "MD5" and
        /// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
        /// </param>
        /// <param name="passwordIterations">
        /// Number of iterations used to generate password. One or two iterations
        /// should be enough.
        /// </param>
        /// <param name="initVector">
        /// Initialization vector (or IV). This value is required to encrypt the
        /// first block of plaintext data. For RijndaelManaged class IV must be 
        /// exactly 16 ASCII characters long.
        /// </param>
        /// <param name="keySize">
        /// Size of encryption key in bits. Allowed values are: 128, 192, and 256. 
        /// Longer keys are more secure than shorter keys.
        /// </param>
        /// <returns>
        /// Encrypted value formatted as a base64-encoded string.
        /// </returns>
        public static string Encrypt(string plainText,
            string passPhrase,
            string saltValue,
            string hashAlgorithm,
            int passwordIterations,
            string initVector,
            int keySize)
        {
            // Convert strings into byte arrays.
            // Let us assume that strings only contain ASCII codes.
            // If strings include Unicode characters, use Unicode, UTF7, or UTF8
            // encoding.
            byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
            byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);

            // Convert our plaintext into a byte array.
            // Let us assume that plaintext contains UTF8-encoded characters.
            byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);

            // First, we must create a password, from which the key will be derived.
            // This password will be generated from the specified passphrase and
            // salt value. The password will be created using the specified hash
            // algorithm. Password creation can be done in several iterations.

            OpenNETCF.Security.Cryptography.PasswordDeriveBytes password = new OpenNETCF.Security.Cryptography.PasswordDeriveBytes(
                                                            passPhrase,
                                                            saltValueBytes,
                                                            hashAlgorithm,
                                                            passwordIterations);

            // Use the password to generate pseudo-random bytes for the encryption
            // key. Specify the size of the key in bytes (instead of bits).
            byte[] keyBytes = password.GetBytes(keySize / 8);
            //string skey = Convert.ToBase64String(keyBytes);

            //MessageBox.Show("key : " + skey);
            // Create uninitialized Rijndael encryption object.
            RijndaelManaged symmetricKey = new RijndaelManaged();

            // It is reasonable to set encryption mode to Cipher Block Chaining
            // (CBC). Use default options for other symmetric key parameters.
            symmetricKey.Mode = CipherMode.CBC;

            // Generate encryptor from the existing key bytes and initialization
            // vector. Key size will be defined based on the number of the key
            // bytes.
            ICryptoTransform encryptor = symmetricKey.CreateEncryptor(
                                                             keyBytes,
                                                             initVectorBytes);

            // Define memory stream which will be used to hold encrypted data.
            MemoryStream memoryStream = new MemoryStream();

            // Define cryptographic stream (always use Write mode for encryption).
            CryptoStream cryptoStream = new CryptoStream(memoryStream,
                                                         encryptor,
                                                         CryptoStreamMode.Write);
            // Start encrypting.
            cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);

            // Finish encrypting.
            cryptoStream.FlushFinalBlock();

            // Convert our encrypted data from a memory stream into a byte array.
            byte[] cipherTextBytes = memoryStream.ToArray();

            // Close both streams.
            memoryStream.Close();
            cryptoStream.Close();

            // Convert encrypted data into a base64-encoded string.
            string cipherText = Convert.ToBase64String(cipherTextBytes);

            // Return encrypted string.
            //return cipherTextBytes;
            return cipherText;
        }