A HOG discriptor
Inheritance: Emgu.Util.UnmanagedObject
コード例 #1
0
ファイル: FindPedestrian.cs プロジェクト: mldasilva/FireKam
        /// <summary>
        /// Find the pedestrian in the image
        /// </summary>
        /// <param name="image">The image</param>
        /// <param name="processingTime">The pedestrian detection time in milliseconds</param>
        /// <returns>The region where pedestrians are detected</returns>
        public static Rectangle[] Find(Mat image, bool tryUseCuda, bool tryUseOpenCL, out long processingTime)
        {
            Stopwatch watch;
            Rectangle[] regions;

#if !(IOS || NETFX_CORE)
            //check if there is a compatible Cuda device to run pedestrian detection
            if (tryUseCuda && CudaInvoke.HasCuda)
            {  //this is the Cuda version
                using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8)))
                {
                    des.SetSVMDetector(des.GetDefaultPeopleDetector());

                    watch = Stopwatch.StartNew();
                    using (GpuMat cudaBgr = new GpuMat(image))
                    using (GpuMat cudaBgra = new GpuMat())
                    using (VectorOfRect vr = new VectorOfRect())
                    {
                        CudaInvoke.CvtColor(cudaBgr, cudaBgra, ColorConversion.Bgr2Bgra);
                        des.DetectMultiScale(cudaBgra, vr);
                        regions = vr.ToArray();
                    }
                }
            }
            else
#endif
            {
                //Many opencl functions require opencl compatible gpu devices. 
                //As of opencv 3.0-alpha, opencv will crash if opencl is enable and only opencv compatible cpu device is presented
                //So we need to call CvInvoke.HaveOpenCLCompatibleGpuDevice instead of CvInvoke.HaveOpenCL (which also returns true on a system that only have cpu opencl devices).
                CvInvoke.UseOpenCL = tryUseOpenCL && CvInvoke.HaveOpenCLCompatibleGpuDevice;

                //this is the CPU/OpenCL version
                using (HOGDescriptor des = new HOGDescriptor())
                {
                    des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());

                    //load the image to umat so it will automatically use opencl is available
                    UMat umat = image.ToUMat(AccessType.Read);

                    watch = Stopwatch.StartNew();

                    MCvObjectDetection[] results = des.DetectMultiScale(umat);
                    regions = new Rectangle[results.Length];
                    for (int i = 0; i < results.Length; i++)
                        regions[i] = results[i].Rect;
                    watch.Stop();
                }
            }

            processingTime = watch.ElapsedMilliseconds;

            return regions;
        }
コード例 #2
0
ファイル: Form1.cs プロジェクト: XjCrazy09/ObjectDetection
        private void objectDetection(Image<Bgr, Byte> myImage)
        {
            using (HOGDescriptor des = new HOGDescriptor())
            {
                des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
                regions = des.DetectMultiScale(myImage);

            }

            foreach (MCvObjectDetection pedestrian in regions)
            {
                myImage.Draw(pedestrian.Rect, new Bgr(Color.Red), 1);
            }
        }
コード例 #3
0
ファイル: FindPedestrian.cs プロジェクト: Delaley/emgucv
      /// <summary>
      /// Find the pedestrian in the image
      /// </summary>
      /// <param name="image">The image</param>
      /// <param name="processingTime">The pedestrian detection time in milliseconds</param>
      /// <returns>The region where pedestrians are detected</returns>
      public static Rectangle[] Find(Mat image, bool tryUseCuda, out long processingTime)
      {
         Stopwatch watch;
         Rectangle[] regions;

#if !(__IOS__ || NETFX_CORE)
         //check if there is a compatible Cuda device to run pedestrian detection
         if (tryUseCuda && CudaInvoke.HasCuda)
         {  //this is the Cuda version
            using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8,8), new Size(8,8)))
            {
               des.SetSVMDetector(des.GetDefaultPeopleDetector());

               watch = Stopwatch.StartNew();
               using (GpuMat cudaBgr = new GpuMat(image))
               using (GpuMat cudaBgra = new GpuMat() )
               using (VectorOfRect vr = new VectorOfRect())
               {
                  CudaInvoke.CvtColor(cudaBgr, cudaBgra, ColorConversion.Bgr2Bgra);
                  des.DetectMultiScale(cudaBgra, vr);
                  regions = vr.ToArray();
               }
            }
         }
         else
#endif
         {  
            //this is the CPU/OpenCL version
            using (HOGDescriptor des = new HOGDescriptor())
            {
               des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
               
               //load the image to umat so it will automatically use opencl is available
               UMat umat = image.ToUMat(AccessType.Read);

               watch = Stopwatch.StartNew();
               
               MCvObjectDetection[] results = des.DetectMultiScale(umat);
               regions = new Rectangle[results.Length];
               for (int i = 0; i < results.Length; i++)
                  regions[i] = results[i].Rect;
               watch.Stop();
            }
         }
        
         processingTime = watch.ElapsedMilliseconds;

         return regions;
      }
コード例 #4
0
ファイル: FindPedestrian.cs プロジェクト: neutmute/emgucv
      /// <summary>
      /// Find the pedestrian in the image
      /// </summary>
      /// <param name="image">The image</param>
      /// <param name="processingTime">The processing time in milliseconds</param>
      /// <returns>The region where pedestrians are detected</returns>
      public static Rectangle[] Find(IInputArray image, out long processingTime)
      {
         Stopwatch watch;
         Rectangle[] regions;

         using (InputArray iaImage = image.GetInputArray())
         {
#if !(__IOS__ || NETFX_CORE)
            //if the input array is a GpuMat
            //check if there is a compatible Cuda device to run pedestrian detection
            if (iaImage.Kind == InputArray.Type.CudaGpuMat)
            {
               //this is the Cuda version
               using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8)))
               {
                  des.SetSVMDetector(des.GetDefaultPeopleDetector());

                  watch = Stopwatch.StartNew();
                  using (GpuMat cudaBgra = new GpuMat())
                  using (VectorOfRect vr = new VectorOfRect())
                  {
                     CudaInvoke.CvtColor(image, cudaBgra, ColorConversion.Bgr2Bgra);
                     des.DetectMultiScale(cudaBgra, vr);
                     regions = vr.ToArray();
                  }
               }
            }
            else
#endif
            {
               //this is the CPU/OpenCL version
               using (HOGDescriptor des = new HOGDescriptor())
               {
                  des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
                  watch = Stopwatch.StartNew();

                  MCvObjectDetection[] results = des.DetectMultiScale(image);
                  regions = new Rectangle[results.Length];
                  for (int i = 0; i < results.Length; i++)
                     regions[i] = results[i].Rect;
                  watch.Stop();
               }
            }

            processingTime = watch.ElapsedMilliseconds;

            return regions;
         }
      }
コード例 #5
0
        /// <summary>
        /// Find the pedestrian in the image
        /// </summary>
        /// <param name="image">The image</param>
        /// <param name="processingTime">The pedestrian detection time in milliseconds</param>
        /// <returns>The image with pedestrian highlighted.</returns>
        public static Image<Bgr, Byte> Find(Image<Bgr, Byte> image, out long processingTime)
        {
            Stopwatch watch;
            Rectangle[] regions;

            //check if there is a compatible GPU to run pedestrian detection
            if (CudaInvoke.HasCuda)
            {  //this is the GPU version
                using (CudaHOG des = new CudaHOG(new Size(64, 128), new Size(16, 16), new Size(8, 8), new Size(8, 8)))
                {
                    des.SetSVMDetector(des.GetDefaultPeopleDetector());

                    watch = Stopwatch.StartNew();
                    using (CudaImage<Bgr, Byte> gpuImg = new CudaImage<Bgr, byte>(image))
                    using (CudaImage<Bgra, Byte> gpuBgra = gpuImg.Convert<Bgra, Byte>())
                    using (VectorOfRect vr = new VectorOfRect())
                    {
                        CudaInvoke.CvtColor(gpuBgra, gpuBgra, ColorConversion.Bgr2Bgra);
                        des.DetectMultiScale(gpuBgra,vr);
                        regions = vr.ToArray();
                    }
                }
            }
            else
            {  //this is the CPU version
                using (HOGDescriptor des = new HOGDescriptor())
                {
                    des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
                    //load the image to umat so it will automatically use opencl is available
                    UMat umat = image.ToUMat();

                    watch = Stopwatch.StartNew();
                    //regions = des.DetectMultiScale(image);
                    MCvObjectDetection[] results = des.DetectMultiScale(umat);
                    regions = new Rectangle[results.Length];
                    for (int i = 0; i < results.Length; i++)
                        regions[i] = results[i].Rect;
                }
            }
            watch.Stop();

            processingTime = watch.ElapsedMilliseconds;

            foreach (Rectangle pedestrain in regions)
            {
                image.Draw(pedestrain, new Bgr(Color.Red), 1);
            }
            return image;
        }
コード例 #6
0
        public static Image<Bgr, Byte> Find(Image<Bgr, Byte> image, out long processingTime)
        {
            Stopwatch watch;
            Rectangle[] regions;

            if (GpuInvoke.HasCuda)
            {
                using (GpuHOGDescriptor des = new GpuHOGDescriptor())
                {
                    des.SetSVMDetector(GpuHOGDescriptor.GetDefaultPeopleDetector());

                    watch = Stopwatch.StartNew();

                    using (GpuImage<Bgr, Byte> gpuImage = new GpuImage<Bgr, byte>(image))
                    {
                        using (GpuImage<Bgra, Byte> gpuGpraImage = gpuImage.Convert<Bgra, Byte>())
                        {
                            regions = des.DetectMultiScale(gpuGpraImage);
                        }

                    }

                }

            }
            else
            {
                using (HOGDescriptor des = new HOGDescriptor())
                {

                    des.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());
                    watch = Stopwatch.StartNew();
                    regions = des.DetectMultiScale(image);
                }
            }
            watch.Stop();

            processingTime = watch.ElapsedMilliseconds;

            foreach (Rectangle rect in regions)
            {
                image.Draw(rect, new Bgr(Color.Red),1 );
            }

            return image;
        }
コード例 #7
0
ファイル: HOG.cs プロジェクト: sviatsviatsviat/Butterflies
        public float[] GetVector(Image<Bgr, Byte> im)
        {
            HOGDescriptor hog = new HOGDescriptor();    // with defaults values
            Image<Bgr, Byte> imageOfInterest = Resize(im);
            Point[] p = new Point[imageOfInterest.Width * imageOfInterest.Height];
            int k = 0;
            for (int i = 0; i < imageOfInterest.Width; i++)
            {
                for (int j = 0; j < imageOfInterest.Height; j++)
                {
                    Point p1 = new Point(i, j);
                    p[k++] = p1;
                }
            }

            return hog.Compute(imageOfInterest, new Size(8, 8), new Size(0, 0), p);
        }
コード例 #8
0
        public static Image<Bgr, Byte> Find(Image<Bgr, Byte> image, out long processingTime)
        {
            Stopwatch watch;
            Rectangle[] regions;
            float[] result;

            using (HOGDescriptor des = new HOGDescriptor())
            {
                watch = Stopwatch.StartNew();
                result = des.Compute(image, new Size(16, 16), Size.Empty, null);
                watch.Stop();
                result = result.Where(x => x != 0).ToArray();
                //regions = des.DetectMultiScale(image);
            }

            processingTime = watch.ElapsedMilliseconds;

            return image;
        }
コード例 #9
0
ファイル: FindHuman.cs プロジェクト: lumenrobot/HOG_Object
        //=================================================== Feature Descriptor (HOG) Data Training Kursi ===========================================
        public static Rectangle[] FindObject(Image<Bgr, Byte> image, out long processingTime, Size winSizeObject, string dataFile)
        {
            Stopwatch watch;
            Rectangle[] regions;
            //check if there is a compatible GPU to run pedestrian detection
            if (GpuInvoke.HasCuda)
            {  //this is the GPU version
                using (GpuHOGDescriptor des = new GpuHOGDescriptor())
                {
                    des.SetSVMDetector(GpuHOGDescriptor.GetDefaultPeopleDetector());

                    watch = Stopwatch.StartNew();
                    using (GpuImage<Bgr, Byte> gpuImg = new GpuImage<Bgr, byte>(image))
                    using (GpuImage<Bgra, Byte> gpuBgra = gpuImg.Convert<Bgra, Byte>())
                    {
                        regions = des.DetectMultiScale(gpuBgra);
                    }
                }
            }
            else
            {  //this is the CPU version
                using (HOGDescriptor des = new HOGDescriptor(winSizeObject, blockSize, blockStride, cellSize, nbins, 1, -1, 0.2, true))
                {
                    des.SetSVMDetector(GetDataObjects(dataFile));
                    //des.SetSVMDetector(GetData2());

                    watch = Stopwatch.StartNew();
                    regions = des.DetectMultiScale(image);

                }
            }
            watch.Stop();

            processingTime = watch.ElapsedMilliseconds;

            return regions;
        }
コード例 #10
0
        public void classify(BitmapSource frame)
        {
            Console.WriteLine(relativeURI);

            //byte[] classifiedImage = frame;
            //WriteableBitmap frameImage = new WriteableBitmap(frameWidth, frameHeight, 96, 96, PixelFormats.Bgr32, null);

            //BitmapSource frameImage = BitmapSource.Create(frameWidth, frameHeight, 96, 96, PixelFormats.Bgr32, null, frame, stride);

            /*
            resultsPtr = CvInvoke.cvHaarDetectObjects(
                Marshal.GetIUnknownForObject(frame),
                classifier,
                resultsPtr,
                1.1,
                3,
                Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
                new System.Drawing.Size(0,0),
                new System.Drawing.Size(0,0)
            );

            Console.WriteLine("Classified?!? Pointer below: ");
            Console.WriteLine(resultsPtr.ToString());
            */
            //return classifiedImage;
            Console.WriteLine(" - - - Converting Bitmap...");
            System.Drawing.Bitmap bitmapFrame;
            using (MemoryStream outStream = new MemoryStream())
            {
                BitmapEncoder enc = new BmpBitmapEncoder();
                enc.Frames.Add(BitmapFrame.Create(frame));
                enc.Save(outStream);
                bitmapFrame = new System.Drawing.Bitmap(outStream);
            }
            Console.WriteLine(" - - - Bitmap converted!");

            Image<Bgr, Byte> image = new Image<Bgr, Byte>(bitmapFrame);

            Console.WriteLine(" - - - Image set");
            Console.WriteLine(" - - - Check CUDA...");

            if (GpuInvoke.HasCuda)
            {
                Console.WriteLine(" - - - Has CUDA!");
                using (GpuCascadeClassifier target = new GpuCascadeClassifier(classifierURI))
                {
                    using (GpuImage<Bgr, Byte> gpuImage = new GpuImage<Bgr, byte>(image))
                    using (GpuImage<Gray, Byte> gpuGray = gpuImage.Convert<Gray, Byte>())
                    {
                        Console.WriteLine(" - - - Detecting!");
                        Rectangle[] targetSet = target.DetectMultiScale(gpuGray, 1.1, 10, System.Drawing.Size.Empty);
                        Console.WriteLine(" - - - Detected :D :D :D Printing rectangle set: ");
                        foreach (Rectangle f in targetSet)
                        {
                            Console.WriteLine("Rectangle found at: " + f.ToString());
                            //draw the face detected in the 0th (gray) channel with blue color
                            image.Draw(f, new Bgr(System.Drawing.Color.Blue), 2);
                        }
                        Console.WriteLine(" - - - DONE");
                    }
                }

            }
            else
            {

                using (HOGDescriptor des = new HOGDescriptor())
                {
                    //des.SetSVMDetector
                }

                Console.WriteLine(" - - - No CUDA  :( ");
                Console.WriteLine(" - - - Devices available: " + GpuInvoke.GetCudaEnabledDeviceCount());
            }
        }
コード例 #11
0
ファイル: AutoTestVarious.cs プロジェクト: samuto/UnityOpenCV
        public void TestHOG2()
        {
            using (HOGDescriptor hog = new HOGDescriptor())
             using (Image<Bgr, Byte> image = new Image<Bgr, byte>("lena.jpg"))
             {
            float[] pedestrianDescriptor = HOGDescriptor.GetDefaultPeopleDetector();
            hog.SetSVMDetector(pedestrianDescriptor);

            Stopwatch watch = Stopwatch.StartNew();
            Rectangle[] rects = hog.DetectMultiScale(image);
            watch.Stop();

            Assert.AreEqual(0, rects.Length);
            foreach (Rectangle rect in rects)
               image.Draw(rect, new Bgr(Color.Red), 1);
            Trace.WriteLine(String.Format("HOG detection time: {0} ms", watch.ElapsedMilliseconds));

            //ImageViewer.Show(image, String.Format("Detection Time: {0}ms", watch.ElapsedMilliseconds));
             }
        }
コード例 #12
0
ファイル: AutoTestVarious.cs プロジェクト: samuto/UnityOpenCV
        public void TestGrabCut2()
        {
            Image<Bgr, Byte> img = new Image<Bgr, byte>("pedestrian.png");
             HOGDescriptor desc = new HOGDescriptor();
             desc.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());

             Rectangle[] humanRegions = desc.DetectMultiScale(img);

             Image<Gray, byte> pedestrianMask = new Image<Gray, byte>(img.Size);
             foreach (Rectangle rect in humanRegions)
             {
            //generate the mask where 3 indicates forground and 2 indicates background
            using (Image<Gray, byte> mask = img.GrabCut(rect, 2))
            {
               //get the mask of the forground
               CvInvoke.cvCmpS(mask, 3, mask, Emgu.CV.CvEnum.CMP_TYPE.CV_CMP_EQ);

               pedestrianMask._Or(mask);
            }
             }
        }
コード例 #13
0
ファイル: AutoTestVarious.cs プロジェクト: Delaley/emgucv
      public void TestGrabCut2()
      {
         Image<Bgr, Byte> img = EmguAssert.LoadImage<Bgr, Byte>("pedestrian.png");
         HOGDescriptor desc = new HOGDescriptor();
         desc.SetSVMDetector(HOGDescriptor.GetDefaultPeopleDetector());

         MCvObjectDetection[] humanRegions = desc.DetectMultiScale(img);

         Image<Gray, byte> pedestrianMask = new Image<Gray, byte>(img.Size);
         foreach (MCvObjectDetection rect in humanRegions)
         {
            //generate the mask where 3 indicates foreground and 2 indicates background 
            using (Image<Gray, byte> mask = img.GrabCut(rect.Rect, 2))
            {
               //get the mask of the foreground
               using (ScalarArray ia = new ScalarArray(3))
                  CvInvoke.Compare(mask, ia, mask, Emgu.CV.CvEnum.CmpType.Equal);

               pedestrianMask._Or(mask);
            }
         }
      }
コード例 #14
0
ファイル: AutoTestVarious.cs プロジェクト: Delaley/emgucv
      public void TestHOGTrainAnySize()
      {
         using (Image<Bgr, byte> image = EmguAssert.LoadImage<Bgr, Byte>("lena.jpg"))
         using (HOGDescriptor hog = new HOGDescriptor(image))
         {

            Stopwatch watch = Stopwatch.StartNew();
            MCvObjectDetection[] rects = hog.DetectMultiScale(image);
            watch.Stop();
            foreach (MCvObjectDetection rect in rects)
               image.Draw(rect.Rect, new Bgr(0, 0, 255), 1);

            EmguAssert.WriteLine(String.Format("Detection Time: {0}ms", watch.ElapsedMilliseconds));
            //ImageViewer.Show(image, String.Format("Detection Time: {0}ms", watch.ElapsedMilliseconds));
         }
      }
コード例 #15
0
ファイル: AutoTestVarious.cs プロジェクト: Delaley/emgucv
      public void TestHOG1()
      {
         using (HOGDescriptor hog = new HOGDescriptor())
         using (Image<Bgr, Byte> image = EmguAssert.LoadImage<Bgr, Byte>("pedestrian.png"))
         {
            float[] pedestrianDescriptor = HOGDescriptor.GetDefaultPeopleDetector();
            hog.SetSVMDetector(pedestrianDescriptor);

            Stopwatch watch = Stopwatch.StartNew();
            MCvObjectDetection[] rects = hog.DetectMultiScale(image);
            watch.Stop();

            EmguAssert.AreEqual(1, rects.Length);

            foreach (MCvObjectDetection rect in rects)
               image.Draw(rect.Rect, new Bgr(0, 0, 255), 1);
            EmguAssert.WriteLine(String.Format("HOG detection time: {0} ms", watch.ElapsedMilliseconds));

            //Emgu.CV.UI.ImageViewer.Show(image, String.Format("Detection Time: {0}ms", watch.ElapsedMilliseconds));
         }
      }