コード例 #1
0
        public static double[] ActivePremium(timeSeries portfolio, timeSeries benchmark, int scale = 252)
        {
            Initialize();
            var expr = Engine.CallFunction("ActivePremium", portfolio.Expression, benchmark.Expression, Engine.RNumeric(scale));

            return(expr.AsNumeric().ToArray());
        }
コード例 #2
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="asset"></param>
        /// <param name="riskfree"></param>
        /// <returns></returns>
        public static double[] RiskPremium(timeSeries asset, double riskfree)
        {
            Initialize();
            var expr = Engine.CallFunction("CAPM.RiskPremium", asset.Expression, Engine.RNumeric(riskfree));

            return(expr.AsNumeric().ToArray());
        }
コード例 #3
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="portfolio"></param>
        /// <returns></returns>
        public static double[] AnnualisedStdDev(timeSeries portfolio)
        {
            Initialize();
            var expr = Engine.CallFunction("sd.annualized", portfolio.Expression);

            return(expr.AsNumeric().ToArray());
        }
コード例 #4
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="portfolio"></param>
        /// <param name="benchmark"></param>
        /// <param name="riskfree"></param>
        /// <returns></returns>
        public static double[] Alpha(timeSeries portfolio, timeSeries benchmark, double riskfree)
        {
            Initialize();
            var expr = Engine.CallFunction("CAPM.alpha", portfolio.Expression, benchmark.Expression, Engine.RNumeric(riskfree));

            return(expr.AsNumeric().ToArray());
        }
コード例 #5
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="benchmark"></param>
        /// <param name="riskfree"></param>
        /// <returns></returns>
        public static double[] CMLSlope(timeSeries benchmark, double riskfree)
        {
            Initialize();
            var expr = Engine.CallFunction("CAPM.CML.slope", benchmark.Expression, Engine.RNumeric(riskfree));

            return(expr.AsNumeric().ToArray());
        }
コード例 #6
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="portfolio"></param>
        /// <param name="minreturn"></param>
        /// <returns></returns>
        public static double[] SortinoRatio(timeSeries portfolio, timeSeries minreturn)
        {
            Initialize();
            var expr = Engine.CallFunction("SortinoRatio", portfolio.Expression, minreturn.Expression);

            return(expr.AsNumeric().ToArray());
        }
コード例 #7
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="portfolio"></param>
        /// <param name="benchmark"></param>
        /// <param name="riskfree"></param>
        /// <returns></returns>
        public static double[] InformationRatio(timeSeries portfolio, timeSeries benchmark)
        {
            Initialize();
            var expr = Engine.CallFunction("InformationRatio", portfolio.Expression, benchmark.Expression);

            return(expr.AsNumeric().ToArray());
        }
コード例 #8
0
        public static double[] AnnualisedReturn(timeSeries portfolio, bool geometric = false)
        {
            Initialize();
            var expr = Engine.CallFunction("Return.annualized", new Tuple <string, SymbolicExpression>("R", portfolio.Expression),
                                           new Tuple <string, SymbolicExpression>("geometric", Engine.RBool(geometric)));

            return(expr.AsNumeric().ToArray());
        }
コード例 #9
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="portfolio"></param>
        /// <param name="p"></param>
        /// <returns></returns>
        public static double[] HistoricalVaR(timeSeries portfolio, double p)
        {
            Initialize();
            var expr = Engine.CallFunction("VaR", new Tuple <string, SymbolicExpression>("R", portfolio.Expression),
                                           new Tuple <string, SymbolicExpression>("p", Engine.RNumeric(p)),
                                           new Tuple <string, SymbolicExpression>("method", Engine.RString("historical")));

            return(expr.AsNumeric().ToArray());
        }
コード例 #10
0
        public void CreateFromTimeSeriesTest()
        {
            timeSeries ts = null;

            /*
             * Assert.DoesNotThrow(() =>
             *  {
             *      ts = timeSeries.Create(TimeSeriesFactory<double>.SampleData.Gaussian.Create(0.01, 0.02, numseries: 10, freq: DataFrequency.Monthly));
             *  });
             */
            Engine.Print(ts.Expression);
        }
コード例 #11
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="portfolio"></param>
 /// <param name="p"></param>
 /// <returns></returns>
 public static double[] ConditionalVaR(timeSeries portfolio, double p)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #12
0
 public static timeSeries ResidualRisk(timeSeries asset, timeSeries benchmark, double riskfree)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #13
0
 public static double[] Kurtosis(timeSeries portfolio)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #14
0
 public static double[] SemiVariance(timeSeries portfolio)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #15
0
 public static double[] TrackingError(timeSeries portfolio, timeSeries benchmark)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #16
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="portfolio"></param>
 /// <param name="minreturn"></param>
 /// <param name="method"></param>
 /// <returns></returns>
 public static double[] UpsidePotentialRatio(timeSeries portfolio, timeSeries minreturn, string method)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #17
0
        private List<double> createInputVector(int counter, timeSeries _ts, forecastSettings _fs, double _maxValue, double _minValue, int _multiplier, double _maxValueT, double _meanValueT, bool replaceOutliers)
        {
            var lowerBound = counter - (_fs.energyLags.Max() * _multiplier);
            if (lowerBound < 0)
            {
                return null;
            }

            List<double> InputVector = new List<double>();

            InputVector.Add(1.0);

            //добавляем все что только можно

            //InputVector.Add(Convert.ToDouble(_ts.timestamps[counter].DayOfWeek) / 7);

            //InputVector.Add(Convert.ToDouble(_ts.timestamps[counter].Month) / 12);

            //cvPair.InputVector.Add(Convert.ToDouble(_ts.timestamps[i].Hour) / 24);

            //add status input
            for (int j = 0; j < _fs.statusLags.Count; j++)
            {
                InputVector.Add((Double)_ts.status[counter - _fs.statusLags[j]]);
            }

            //add energy inputs
            double? correctValue = null;
            if (replaceOutliers)
            {
                for (int j = 0; j < _fs.energyLags.Count; j++)
                {
                    //if (_ts.outlierLabel[counter - (_fs.energyLags[j]*_multiplier)] == 0)
                    {
                        correctValue = _ts.timeseries[counter - (_fs.energyLags[j] * _multiplier)];
                        break;
                    }
                }

                if (correctValue == null) return null;
            }

            for (int j = 0; j < _fs.energyLags.Count; j++)
            {
                double energyValue;
                if (replaceOutliers /*&& _ts.outlierLabel[counter - (_fs.energyLags[j]*_multiplier)] != 0*/)
                {
                    energyValue = correctValue.Value;
                }
                else
                {
                    energyValue = _ts.timeseries[counter - (_fs.energyLags[j] * _multiplier)];
                }
                InputVector.Add((energyValue - _minValue) / (_maxValue - _minValue));
            }

            //int k = 0;
            //for (int j = 0; j < _fs.energyLags.Count; j++)
            //{
            //    if (_ts.status[counter] == _ts.status[counter - (_fs.energyLags[j] * _multiplier)])
            //    {
            //        InputVector.Add(_ts.timeseries[counter - (_fs.energyLags[j] * _multiplier)] / _maxValue - _minValue);
            //        k++;
            //    }
            //}

            //if (k == 0)
            //{
            //    Console.WriteLine("SHIT!!!");
            //    InputVector = null;
            //}
            //else
            //{

            //    if (k < _fs.energyLags.Count)
            //    {
            //        int dif = Math.Abs(k - _fs.energyLags.Count);

            //        for (int m = 0; m < dif; m++)
            //        {
            //            InputVector.Add(InputVector[_fs.statusLags.Count  + 1]);
            //        }

            //    }

            //}
            //add temperature inputs
            for (int j = 0; j < _fs.temparatureLags.Count; j++)
            {
                InputVector.Add(_ts.timeseries[counter - (_fs.energyLags[j] * _multiplier)] / _maxValueT - _meanValueT);
            }

            //bool ender = false;
            //int cx = 0;
            //while (!ender)
            //{
            //    if (_ts.status[counter] == _ts.status[counter - (cx + 1) *  7 * _multiplier])
            //    {
            //        InputVector.Add(_ts.timeseries[counter - ((cx + 1) * 7 * _multiplier)] / _maxValue - _minValue);
            //        cx++;
            //    }

            //    if (cx == _fs.energyLags.Count)
            //    {
            //        ender = true;
            //    }

            //}

            return InputVector;
        }
コード例 #18
0
        private List<double> createOutputVector(int counter, timeSeries _ts, forecastSettings _fs, double _maxValue, double _minValue)
        {
            List<double> OutputVector = new List<double>();

            OutputVector.Add((_ts.timeseries[counter] - _minValue) / (_maxValue - _minValue));
            return OutputVector;
        }
コード例 #19
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="portfolio"></param>
 /// <returns></returns>
 public static double CalmarRatio(timeSeries portfolio)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #20
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="portfolio"></param>
 /// <param name="benchmark"></param>
 /// <param name="riskfree"></param>
 /// <param name="riskaversion"></param>
 /// <returns></returns>
 public static double ValueAdded(timeSeries portfolio, timeSeries benchmark, double riskfree, double riskaversion)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #21
0
        public timeSeries forecast(timeSeries _ts, int _horizon, forecastSettings _fs)
        {
            timeSeries f = _ts;
            _horizon = 0;

            //формируем входной вектор
            List<double> InputVector = new List<double>();
            int i = _ts.timeseries.Count - 1;
            InputVector = createInputVector(i, _ts, _fs, maxValue[counter], minValue[counter], n_timestamps, maxValueT[counter], meanValueT[counter], false);
            if (InputVector != null)
            {
                if (mlnset.Count > counter)
                {
                    mlnset[counter].propagate(InputVector);

                    foreach (var output in mlnset[counter].Outputs)
                    {
                        f.timestamps[i] = _ts.timestamps[i];
                        f.timeseries[i] = (output * (maxValue[counter] - minValue[counter]) + minValue[counter]);

                    }
                    counter++;
                    if (counter == n_timestamps)
                    {
                        counter = 0;
                    }
                }
            }

            //if (_ts.timeseries.Count == trainingSize)
            //{
            //    //extract training set;

            //    timeSeries trainingTS = _ts.getSample(0, _ts.timeseries.Count);

            //    int _hour = 0;
            //    int _minutes = 0;
            //    for (int i = 0; i < n_timestamps; i++)
            //    {

            //        tslocal.Add(trainingTS.getSample(_hour, _minutes, true));

            //        _minutes = _minutes + 15;
            //        if (_minutes == 60)
            //        {
            //            _hour++;
            //            _minutes = 0;
            //        }
            //    }

            //    //traing
            //    Console.WriteLine("train");
            //    trainingEnsemble(tslocal, _fs);
            //}
            //else
            //{
            //    if (_ts.timeseries.Count > trainingSize)
            //    {
            //        //формируем входной вектор
            //        List<double> InputVector = new List<double>();
            //        int i = _ts.timeseries.Count - 1;
            //        InputVector = createInputVector(i, _ts, _fs, maxValue[counter], minValue[counter], n_timestamps, maxValueT[counter], meanValueT[counter]);
            //        mlnset[counter].propagate(InputVector);

            //        foreach (var output in mlnset[counter].Outputs)
            //        {
            //            f.timestamps[i] = _ts.timestamps[i];
            //            f.timeseries[i] = (output + minValue[counter]) * maxValue[counter];

            //        }
            //        counter++;
            //        if (counter == n_timestamps)
            //        {
            //            counter = 0;
            //        }
            //    }
            //}

            return f;
        }
コード例 #22
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="portfolio"></param>
 /// <param name="excess"></param>
 /// <returns></returns>
 public static double SterlingRatio(timeSeries portfolio, double excess = 0.1)
 {
     Initialize();
     throw new NotImplementedException();
 }
コード例 #23
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="portfolio"></param>
 /// <param name="riskfree"></param>
 /// <returns></returns>
 public static double[] TreynorRatio(timeSeries portfolio, double riskfree)
 {
     Initialize();
     throw new NotImplementedException();
 }