Esempio n. 1
0
        /// <summary>
        /// Creates perceptron architecture with specified number of neurons in input
        /// and output layer, specified transfer function
        /// </summary>
        /// <param name="inputNeuronsCount">number of neurons in input layer</param>
        /// <param name="outputNeuronsCount">number of neurons in output layer</param>
        /// <param name="transferFunctionType">neuron transfer function type</param>
        private void CreateNetwork(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.PERCEPTRON;

            // init neuron settings for input layer
            NeuronProperties inputNeuronProperties = new NeuronProperties();
            inputNeuronProperties.SetProperty("transferFunction", TransferFunctionType.LINEAR);

            // create input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, inputNeuronProperties);
            this.AddLayer(inputLayer);

            NeuronProperties outputNeuronProperties = new NeuronProperties();
            outputNeuronProperties.SetProperty("neuronType", typeof(ThresholdNeuron));
            outputNeuronProperties.SetProperty("thresh", Math.Abs(ThreadSafeRandom.NextDouble()));
            outputNeuronProperties.SetProperty("transferFunction", transferFunctionType);
            // for sigmoid and tanh transfer functions set slope propery
            outputNeuronProperties.SetProperty("transferFunction.slope", 1);

            // createLayer output layer
            Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, outputNeuronProperties);
            this.AddLayer(outputLayer);

            // create full conectivity between input and output layer
            ConnectionFactory.FullConnect(inputLayer, outputLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            this.LearningRule = new BinaryDeltaRule();
        }
Esempio n. 2
0
        /// <summary>
        /// Creates MaxNet network architecture
        /// </summary>
        /// <param name="neuronsCount">neuron number in network</param>
        private void CreateNetwork(int neuronsCount)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.MAXNET;

            // createLayer input layer in layer
            Layer inputLayer = LayerFactory.createLayer(neuronsCount,
                    new NeuronProperties());
            this.AddLayer(inputLayer);

            // createLayer properties for neurons in output layer
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("neuronType", typeof(CompetitiveNeuron));
            neuronProperties.SetProperty("transferFunction", TransferFunctionType.RAMP);

            // createLayer full connectivity in competitive layer
            CompetitiveLayer competitiveLayer = new CompetitiveLayer(neuronsCount, neuronProperties);

            // add competitive layer to network
            this.AddLayer(competitiveLayer);

            double competitiveWeight = -(1 / (double)neuronsCount);
            // createLayer full connectivity within competitive layer
            ConnectionFactory.FullConnect(competitiveLayer, competitiveWeight, 1);

            // createLayer forward connectivity from input to competitive layer
            ConnectionFactory.ForwardConnect(inputLayer, competitiveLayer, 1);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);
        }
        /// <summary>
        /// Creates an instance of Unsuervised Hebian net with specified number
        /// of neurons in input layer and output layer, and transfer function 
        /// </summary>
        /// <param name="inputNeuronsNum">number of neurons in input layer</param>
        /// <param name="outputNeuronsNum">number of neurons in output layer</param>
        /// <param name="transferFunctionType">transfer function type</param>
        private void CreateNetwork(int inputNeuronsNum, int outputNeuronsNum,
            TransferFunctionType transferFunctionType)
        {
            // init neuron properties
            NeuronProperties neuronProperties = new NeuronProperties();
            //		neuronProperties.setProperty("bias", new Double(-Math
            //				.abs(Math.random() - 0.5))); // Hebbian network cann not work
            // without bias
            neuronProperties.SetProperty("transferFunction", transferFunctionType);
            neuronProperties.SetProperty("transferFunction.slope", 1);

            // set network type code
            this.NetworkType = NeuralNetworkType.UNSUPERVISED_HEBBIAN_NET;

            // createLayer input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum,
                neuronProperties);
            this.AddLayer(inputLayer);

            // createLayer output layer
            Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum,
                neuronProperties);
            this.AddLayer(outputLayer);

            // createLayer full conectivity between input and output layer
            ConnectionFactory.FullConnect(inputLayer, outputLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set appropriate learning rule for this network
            this.LearningRule = new UnsupervisedHebbianLearning(this);
            //this.setLearningRule(new OjaLearning(this));
        }
Esempio n. 4
0
        /// <summary>
        /// Creates Kohonen network architecture with specified number of neurons in
        /// input and map layer 
        /// </summary>
        /// <param name="inputNeuronsCount">number of neurons in input layer</param>
        /// <param name="outputNeuronsCount">number of neurons in output layer</param>
        private void CreateNetwork(int inputNeuronsCount, int outputNeuronsCount)
        {
            // specify input neuron properties (use default: weighted sum input with
            // linear transfer)
            NeuronProperties inputNeuronProperties = new NeuronProperties();

            // specify map neuron properties
            NeuronProperties outputNeuronProperties = new NeuronProperties();
            outputNeuronProperties.SetProperty("weightsFunction", typeof(Diference));
            outputNeuronProperties.SetProperty("summingFunction", typeof(Intensity));
            outputNeuronProperties.SetProperty("transferFunction", typeof(Linear));

            // set network type
            this.NetworkType = NeuralNetworkType.KOHONEN;

            // createLayer input layer
            Layer inLayer = LayerFactory.createLayer(inputNeuronsCount,
                    inputNeuronProperties);
            this.AddLayer(inLayer);

            // createLayer map layer
            Layer mapLayer = LayerFactory.createLayer(outputNeuronsCount,
                    outputNeuronProperties);
            this.AddLayer(mapLayer);

            // createLayer full connectivity between input and output layer
            ConnectionFactory.FullConnect(inLayer, mapLayer);

            // set network input and output cells
            NeuralNetworkFactory.SetDefaultIO(this);

            this.LearningRule = new KohonenLearning(this);
        }
        /// <summary>
        /// Creates an instance of Supervised Hebbian Network with specified number
        /// of neurons in input layer, output layer and transfer function
        /// </summary>
        /// <param name="inputNeuronsNum">number of neurons in input layer</param>
        /// <param name="outputNeuronsNum">number of neurons in output layer</param>
        /// <param name="transferFunctionType">transfer function type</param>
        private void CreateNetwork(int inputNeuronsNum, int outputNeuronsNum,
            TransferFunctionType transferFunctionType)
        {
            // init neuron properties
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("transferFunction", transferFunctionType);
            neuronProperties.SetProperty("transferFunction.slope", 1);
            neuronProperties.SetProperty("transferFunction.yHigh", 1);
            neuronProperties.SetProperty("transferFunction.xHigh", 1);
            neuronProperties.SetProperty("transferFunction.yLow", -1);
            neuronProperties.SetProperty("transferFunction.xLow", -1);

            // set network type code
            this.NetworkType = NeuralNetworkType.SUPERVISED_HEBBIAN_NET;

            // createLayer input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum,
                neuronProperties);
            this.AddLayer(inputLayer);

            // createLayer output layer
            Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum,
                neuronProperties);
            this.AddLayer(outputLayer);

            // createLayer full conectivity between input and output layer
            ConnectionFactory.FullConnect(inputLayer, outputLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set appropriate learning rule for this network
            this.LearningRule = new SupervisedHebbianLearning(this);
        }
Esempio n. 6
0
 public static Layer createLayer(int neuronsCount, TransferFunctionType transferFunctionType)
 {
     NeuronProperties neuronProperties = new NeuronProperties();
     neuronProperties.SetProperty("transferFunction", transferFunctionType);
     Layer layer = createLayer(neuronsCount, neuronProperties);
     return layer;
 }
        /// <summary>
        /// Creates Competitive network architecture
        /// </summary>
        /// <param name="inputNeuronsCount">input neurons number</param>
        /// <param name="outputNeuronsCount">neuron properties</param>
        private void CreateNetwork(int inputNeuronsCount, int outputNeuronsCount)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.COMPETITIVE;

            // createLayer input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, new NeuronProperties());
            this.AddLayer(inputLayer);

            // createLayer properties for neurons in output layer
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("neuronType", typeof(CompetitiveNeuron));
            neuronProperties.SetProperty("weightsFunction", typeof(WeightedInput));
            neuronProperties.SetProperty("summingFunction", typeof(Sum));
            neuronProperties.SetProperty("transferFunction", TransferFunctionType.RAMP);

            // createLayer full connectivity in competitive layer
            CompetitiveLayer competitiveLayer = new CompetitiveLayer(outputNeuronsCount, neuronProperties);

            // add competitive layer to network
            this.AddLayer(competitiveLayer);

            double competitiveWeight = -(1 / (double)outputNeuronsCount);
            // createLayer full connectivity within competitive layer
            ConnectionFactory.FullConnect(competitiveLayer, competitiveWeight, 1);

            // createLayer full connectivity from input to competitive layer
            ConnectionFactory.FullConnect(inputLayer, competitiveLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            this.LearningRule = new CompetitiveLearning(this);
        }
Esempio n. 8
0
        /// <summary>
        /// Creates RbfNetwork architecture with specified number of neurons in input
        /// layer, output layer and transfer function 
        /// </summary>
        /// <param name="inputNeuronsCount">number of neurons in input layer</param>
        /// <param name="rbfNeuronsCount">number of neurons in rbf layer</param>
        /// <param name="outputNeuronsCount">number of neurons in output layer</param>
        private void CreateNetwork(int inputNeuronsCount, int rbfNeuronsCount,
            int outputNeuronsCount)
        {
            // init neuron settings for this network
            NeuronProperties rbfNeuronProperties = new NeuronProperties();
            rbfNeuronProperties.SetProperty("weightsFunction", typeof(Diference));
            rbfNeuronProperties.SetProperty("summingFunction", typeof(Intensity));
            rbfNeuronProperties.SetProperty("transferFunction", typeof(Gaussian));

            // set network type code
            this.NetworkType = NeuralNetworkType.RBF_NETWORK;

            // create input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, TransferFunctionType.LINEAR);
            this.AddLayer(inputLayer);

            // create rbf layer
            Layer rbfLayer = LayerFactory.createLayer(rbfNeuronsCount, rbfNeuronProperties);
            this.AddLayer(rbfLayer);

            // create output layer
            Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, TransferFunctionType.LINEAR);
            this.AddLayer(outputLayer);

            // create full conectivity between input and rbf layer
            ConnectionFactory.FullConnect(inputLayer, rbfLayer);
            // create full conectivity between rbf and output layer
            ConnectionFactory.FullConnect(rbfLayer, outputLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set appropriate learning rule for this network
            this.LearningRule = new LMS(this);
        }
Esempio n. 9
0
        /// <summary>
        /// Creates adaline network architecture with specified number of input neurons 
        /// </summary>
        /// <param name="inputNeuronsCount">number of neurons in input layer</param>
        private void CreateNetwork(int inputNeuronsCount)
        {
            // createLayer neuron settings for this network
            NeuronProperties neuronProperties = new NeuronProperties();

            // set network type code
            this.NetworkType = NeuralNetworkType.ADALINE;

            // createLayer input layer with specified number of neurons
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties);
            this.AddLayer(inputLayer);

            // createLayer output layer (only one neuron)
            Layer outputLayer = LayerFactory.createLayer(1, neuronProperties);
            this.AddLayer(outputLayer);

            // createLayer full conectivity between input and output layer
            ConnectionFactory.FullConnect(inputLayer, outputLayer);

            // set input and output cells for network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set LMS learning rule for this network
            this.LearningRule = new LMS(this);
        }
Esempio n. 10
0
        /// <summary>
        /// Creates BAM network architecture 
        /// </summary>
        /// <param name="inputNeuronsCount">number of neurons in input layer</param>
        /// <param name="outputNeuronsCount">number of neurons in output layer</param>
        /// <param name="neuronProperties">neuron properties</param>
        private void CreateNetwork(int inputNeuronsCount, int outputNeuronsCount, NeuronProperties neuronProperties)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.BAM;

            // create input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties);
            // add input layer to network
            this.AddLayer(inputLayer);

            // create output layer
            Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, neuronProperties);
            // add output layer to network
            this.AddLayer(outputLayer);

            // create full connectivity from in to out layer
            ConnectionFactory.FullConnect(inputLayer, outputLayer);
            // create full connectivity from out to in layer
            ConnectionFactory.FullConnect(outputLayer, inputLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set Hebbian learning rule for this network
            this.LearningRule = new BinaryHebbianLearning(this);
        }
Esempio n. 11
0
        /// <summary>
        /// Creates Instar architecture with specified number of input neurons
        /// </summary>
        /// <param name="inputNeuronsCount">number of neurons in input layer</param>
        private void CreateNetwork(int inputNeuronsCount)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.INSTAR;

            // init neuron settings for this type of network
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("transferFunction", TransferFunctionType.STEP);

            // create input layer
            Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, neuronProperties);
            this.AddLayer(inputLayer);

            // createLayer output layer
            neuronProperties.SetProperty("transferFunction", TransferFunctionType.STEP);
            Layer outputLayer = LayerFactory.createLayer(1, neuronProperties);
            this.AddLayer(outputLayer);

            // create full conectivity between input and output layer
            ConnectionFactory.FullConnect(inputLayer, outputLayer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set appropriate learning rule for this network
            this.LearningRule = new InstarLearning(this);
        }
Esempio n. 12
0
 /// <summary>
 /// Creates an instance of Layer with the specified number of neurons with
 /// specified neuron properties
 /// </summary>
 /// <param name="neuronsCount">number of neurons in layer</param>
 /// <param name="neuronProperties">properties of neurons in layer</param>
 public Layer(int neuronsCount, NeuronProperties neuronProperties)
     : this()
 {
     for (int i = 0; i < neuronsCount; i++)
     {
         Neuron neuron = NeuronFactory.CreateNeuron(neuronProperties);
         this.AddNeuron(neuron);
     }
 }
        /// <summary>
        /// Creates new MultiLayerPerceptron with specified number of neurons in layers 
        /// </summary>
        /// <param name="neuronsInLayers">collection of neuron number in layers</param>
        public MultiLayerPerceptron(IList<int> neuronsInLayers)
        {
            // init neuron settings
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("useBias", true);
            neuronProperties.SetProperty("transferFunction", TransferFunctionType.SIGMOID);

            this.CreateNetwork(neuronsInLayers, neuronProperties);
        }
Esempio n. 14
0
        /// <summary>
        /// Creates and returns neuron instance according to the given specification in neuronProperties.
        /// </summary>
        /// <param name="neuronProperties">specification of neuron properties</param>
        /// <returns>returns instance of neuron with specified properties</returns>
        public static Neuron CreateNeuron(NeuronProperties neuronProperties)
        {
            InputFunction inputFunction = null;
            Type inputFunctionClass = neuronProperties.InputFunction;

            if (!inputFunctionClass.Equals(" "))
            {
                inputFunction = CreateInputFunction(inputFunctionClass);
            }
            else
            {
                WeightsFunction weightsFunction = CreateWeightsFunction(neuronProperties.WeightsFunction);
                SummingFunction summingFunction = CreateSummingFunction(neuronProperties.SummingFunction);

                inputFunction = new InputFunction(weightsFunction, summingFunction);
            }

            TransferFunction transferFunction = CreateTransferFunction(neuronProperties.GetTransferFunctionProperties());

            Neuron neuron = null;
            Type neuronClass = neuronProperties.NeuronType;

            // use two param constructor to create neuron
            Type[] paramTypes = {
                typeof(InputFunction),
                typeof(TransferFunction) };

            ConstructorInfo con = neuronClass.GetConstructor(paramTypes);

            if (con != null)
            {
                Object[] paramList = new Object[2];
                paramList[0] = inputFunction;
                paramList[1] = transferFunction;

                object o = con.Invoke(paramList);
                neuron = (Neuron)o;
            }

            if (neuron == null)
            {
                neuron = (Neuron)Activator.CreateInstance(neuronClass);
            }

            if (neuronProperties.HasProperty("thresh"))
            {
                ((ThresholdNeuron)neuron).Thresh = ((Double)neuronProperties.GetProperty("thresh"));
            }
            else if (neuronProperties.HasProperty("bias"))
            {
                ((InputOutputNeuron)neuron).Bias = ((Double)neuronProperties.GetProperty("bias"));
            }

            return neuron;
        }
Esempio n. 15
0
        /// <summary>
        /// Creates new Hopfield network with specified neuron number 
        /// </summary>
        /// <param name="neuronsCount">neurons number in Hopfied network</param>
        public Hopfield(int neuronsCount)
        {
            // init neuron settings for hopfield network
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("neuronType", typeof(InputOutputNeuron));
            neuronProperties.SetProperty("bias", 0);
            neuronProperties.SetProperty("transferFunction", TransferFunctionType.STEP);
            neuronProperties.SetProperty("transferFunction.yHigh", 1);
            neuronProperties.SetProperty("transferFunction.yLow", 0);

            this.CreateNetwork(neuronsCount, neuronProperties);
        }
        public MultiLayerPerceptron(TransferFunctionType transferFunctionType, params int[] neuronsInLayers)
        {
            // init neuron settings
            NeuronProperties neuronProperties = new NeuronProperties();
            neuronProperties.SetProperty("useBias", true);
            neuronProperties.SetProperty("transferFunction", transferFunctionType);
            neuronProperties.SetProperty("inputFunction", typeof(WeightedSum));

            IList<int> neuronsInLayersVector = new List<int>();
            for (int i = 0; i < neuronsInLayers.Length; i++)
                neuronsInLayersVector.Add(neuronsInLayers[i]);

            this.CreateNetwork(neuronsInLayersVector, neuronProperties);
        }
Esempio n. 17
0
        /// <summary>
        /// Creates Hopfield network architecture
        /// </summary>
        /// <param name="neuronsCount">neurons number in Hopfied network</param>
        /// <param name="neuronProperties">neuron properties</param>
        private void CreateNetwork(int neuronsCount, NeuronProperties neuronProperties)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.HOPFIELD;

            // createLayer neurons in layer
            Layer layer = LayerFactory.createLayer(neuronsCount, neuronProperties);

            // createLayer full connectivity in layer
            ConnectionFactory.FullConnect(layer, 0.1);

            // add layer to network
            this.AddLayer(layer);

            // set input and output cells for this network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set Hopfield learning rule for this network
            //this.setLearningRule(new HopfieldLearning(this));
            this.LearningRule = new BinaryHebbianLearning(this);
        }
Esempio n. 18
0
 public static Layer createLayer(int neuronsCount, NeuronProperties neuronProperties)
 {
     Layer layer = new Layer(neuronsCount, neuronProperties);
     return layer;
 }
 /// <summary>
 /// Creates new MultiLayerPerceptron net with specified number neurons in
 /// getLayersIterator
 /// </summary>
 /// <param name="neuronsInLayers">collection of neuron numbers in layers</param>
 /// <param name="neuronProperties">neuron propreties</param>
 public MultiLayerPerceptron(IList<int> neuronsInLayers, NeuronProperties neuronProperties)
 {
     this.CreateNetwork(neuronsInLayers, neuronProperties);
 }
Esempio n. 20
0
 /// <summary>
 /// Creates new Hopfield network with specified neuron number and neuron
 /// properties
 /// </summary>
 /// <param name="neuronsCount">neurons number in Hopfied network</param>
 /// <param name="neuronProperties">neuron properties</param>
 public Hopfield(int neuronsCount, NeuronProperties neuronProperties)
 {
     this.CreateNetwork(neuronsCount, neuronProperties);
 }
        /// <summary>
        /// Creates MultiLayerPerceptron Network architecture - fully connected
        /// feedforward with specified number of neurons in each layer
        /// </summary>
        /// <param name="neuronsInLayers">collection of neuron numbers in getLayersIterator</param>
        /// <param name="neuronProperties">neuron propreties</param>
        protected void CreateNetwork(IList<int> neuronsInLayers, NeuronProperties neuronProperties)
        {
            // set network type
            this.NetworkType = NeuralNetworkType.MULTI_LAYER_PERCEPTRON;

            // create input layer
            NeuronProperties inputNeuronProperties = new NeuronProperties(TransferFunctionType.LINEAR);
            Layer layer = LayerFactory.createLayer(neuronsInLayers[0], inputNeuronProperties);

            bool useBias = true; // use bias neurons by default
            if (neuronProperties.HasProperty("useBias"))
            {
                useBias = (Boolean)neuronProperties.GetProperty("useBias");
            }

            if (useBias)
            {
                layer.AddNeuron(new BiasNeuron());
            }

            this.AddLayer(layer);

            // create layers
            Layer prevLayer = layer;

            //for(Integer neuronsNum : neuronsInLayers)
            for (int layerIdx = 1; layerIdx < neuronsInLayers.Count; layerIdx++)
            {
                int neuronsNum = neuronsInLayers[layerIdx];
                // createLayer layer
                layer = LayerFactory.createLayer(neuronsNum, neuronProperties);

                if (useBias && (layerIdx < (neuronsInLayers.Count - 1)))
                {
                    layer.AddNeuron(new BiasNeuron());
                }

                // add created layer to network
                this.AddLayer(layer);
                // createLayer full connectivity between previous and this layer
                if (prevLayer != null)
                    ConnectionFactory.FullConnect(prevLayer, layer);

                prevLayer = layer;
            }

            // set input and output cells for network
            NeuralNetworkFactory.SetDefaultIO(this);

            // set learnng rule
            //this.setLearningRule(new BackPropagation(this));
            this.LearningRule = new MomentumBackpropagation();
            // this.setLearningRule(new DynamicBackPropagation());
        }
        /// <summary>
        /// Creates and returns a new instance of Multi Layer Perceptron
        /// </summary>
        /// <param name="layersStr">space separated number of neurons in layers</param>
        /// <param name="transferFunctionType">transfer function type for neurons</param>
        /// <param name="learningRule">instance of Multi Layer Perceptron</param>
        /// <param name="useBias"></param>
        /// <param name="connectIO"></param>
        /// <returns></returns>
        public static MultiLayerPerceptron CreateMLPerceptron(String layersStr, TransferFunctionType transferFunctionType, Type learningRule, bool useBias, bool connectIO)
        {
            IList<int> layerSizes = VectorParser.ParseInteger(layersStr);
            NeuronProperties neuronProperties = new NeuronProperties(transferFunctionType, useBias);
            MultiLayerPerceptron nnet = new MultiLayerPerceptron(layerSizes, neuronProperties);

            // set learning rule
            if (learningRule.Name.Equals(typeof(BackPropagation).Name))
            {
                nnet.LearningRule = new BackPropagation();
            }
            else if (learningRule.Name.Equals(typeof(MomentumBackpropagation).Name))
            {
                nnet.LearningRule = new MomentumBackpropagation();
            }
            else if (learningRule.Name.Equals(typeof(DynamicBackPropagation).Name))
            {
                nnet.LearningRule = new DynamicBackPropagation();
            }

            // connect io
            if (connectIO)
            {
                nnet.ConnectInputsToOutputs();
            }

            return nnet;
        }
Esempio n. 23
0
 /// <summary>
 /// Create an instance of CompetitiveLayer with the specified number of
 /// neurons with neuron properties 
 /// </summary>
 /// <param name="neuronNum">neuron number in this layer</param>
 /// <param name="neuronProperties">properties for the nurons in this layer</param>
 public CompetitiveLayer(int neuronNum, NeuronProperties neuronProperties)
     : base(neuronNum, neuronProperties)
 {
     MaxIterations = 100;
 }