public void Run() { // Init Parameters.crossoverRate = 0.6; Parameters.mutationsRate = 0.1; Parameters.mutationAddRate = 0.2; Parameters.mutationDeleteRate = 0.1; Parameters.minFitness = 0; //La fitness minimale visée est nulle, c’est-à-dire que l’on arrive sur la case de sortie. EvolutionaryProcess geneticAlgoMaze = new EvolutionaryProcess(this, "Maze"); // Lancement geneticAlgoMaze.Run(); //Init Parameters.crossoverRate = 0.0; Parameters.mutationsRate = 0.3; Parameters.mutationAddRate = 0.0; Parameters.mutationDeleteRate = 0.0; Parameters.minFitness = 2579; EvolutionaryProcess geneticAlgoTSP = new EvolutionaryProcess(this, "TSP"); // Lancement geneticAlgoTSP.Run(); while (true) { ; } }
public void Run() { // Init Parameters.crossoverRate = 0.5; Parameters.mutationsRate = 0.4; Parameters.mutationAddRate = 0.3; Parameters.mutationDeleteRate = 0.1; Parameters.minFitness = 0; Parameters.generationsMaxNb = 1000; Parameters.initialGenesNb = 2; Parameters.individualsNb = 100; GeneticAlgoRicochet = new EvolutionaryProcess(this, "Ricochet"); GeneticAlgoRicochet.Run(); }
static void Main(string[] args) { Parameters.CrossoverRate = 0.0; Parameters.MutationRate = 0.3; Parameters.MutationAddRate = 0.0; Parameters.MutationDeleteRate = 0.0; Parameters.MinimumFitness = 0; Parameters.GenerationsMaxNumber = 1000; var tspIndividualFactory = new TSPIndividualFactory(); var evolutionaryProcessTSP = new EvolutionaryProcess <TSPIndividual>(tspIndividualFactory); evolutionaryProcessTSP.OnGenerationDone += EvolutionaryProcessTSP_OnGenerationDone; evolutionaryProcessTSP.Run(); }
public void Run() { // Init Parameters.CrossoverRate = 0.0; Parameters.MutationsRate = 0.6; Parameters.MutationAddRate = 0.0; Parameters.MutationDeleteRate = 0.0; Parameters.MinFitness = 0; Parameters.GenerationMaxNb = 15; // Lancement while (true) { EvolutionaryProcess geneticAlgoTSP = new EvolutionaryProcess(this, "TSP"); geneticAlgoTSP.Run(); Console.ReadKey(); Console.WriteLine(); } }
public void Run() { // Init Parameters.crossoverRate = 0.5; Parameters.mutationsRate = 0.4; Parameters.mutationAddRate = 0.3; Parameters.minFitness = 0; Parameters.generationsMaxNb = 1000; Parameters.initialGenesNb = 2; Parameters.individualsNb = 100; EvolutionaryProcess geneticAlgoRicochet = new EvolutionaryProcess(this, "Ricochet"); PrintProblem(); Console.ReadLine(); // Lancement geneticAlgoRicochet.Run(); Console.ReadLine(); }