Esempio n. 1
0
 private CLCalc.Program.Variable CLCalcVertexDisplacement(float[] ObjVertex, float[] ObjDisplacement)
 {
     CLCalc.Program.Variable variable1 = new CLCalc.Program.Variable(ObjVertex);
     CLCalc.Program.Variable variable2 = new CLCalc.Program.Variable(ObjDisplacement);
     CLCalc.Program.Variable variable3 = new CLCalc.Program.Variable(ObjVertex);
     float[] numArray = new float[9];
     CLCalc.Program.Variable variable4 = new CLCalc.Program.Variable(numArray);
     int[] GlobalWorkSize = new int[1]
     {
         ObjVertex.Length
     };
     if ((double)ObjDisplacement[3] != 0.0 || (double)ObjDisplacement[4] != 0.0 || (double)ObjDisplacement[5] != 0.0)
     {
         this.CalcRotMatrix(numArray, ObjDisplacement);
         variable4.WriteToDevice(numArray);
         this.kernelCalcRotacoes.Execute((CLCalc.Program.MemoryObject[]) new CLCalc.Program.Variable[3]
         {
             variable4,
             variable1,
             variable3
         }, GlobalWorkSize);
     }
     this.kernelCalcTransl.Execute((CLCalc.Program.MemoryObject[]) new CLCalc.Program.Variable[2]
     {
         variable2,
         variable3
     }, GlobalWorkSize);
     return(variable3);
 }
Esempio n. 2
0
 private void MassaMola(CLCalc.Program.Variable x, CLCalc.Program.Variable y, CLCalc.Program.Variable dydx)
 {
     CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[3] {
         x, y, dydx
     };
     KernelDerivs.Execute(args, nMassas);
 }
Esempio n. 3
0
        /// <summary>Finds minimum E[i] in SVM and returns corresponding i (returns arg min E[i])</summary>
        /// <param name="svm">SVM to check</param>
        private static int CLFindMinError(SVM svm)
        {
            CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { svm.CLerr, svm.CLErrLen, svm.CLMaxMinErrs, svm.CLMaxMinInds };
            lock (CLResource)
            {
                //Majority of Minimums
                kernelMinErr.Execute(args, MAXMINWORKSIZE);

                //Computes values
                args = new CLCalc.Program.Variable[] { svm.CLMaxMinErrs, svm.CLMaxMinInds };
                int i = MAXMINWORKSIZE >> 1;
                while (i > 0)
                {
                    kernelComputeMin.Execute(args, i);
                    i = (i >> 1);
                }

                //Retrieves index
                args = new CLCalc.Program.Variable[] { svm.CLMaxMinInds, svm.CLResp };
                kernelGetResp.Execute(args, 1);

                svm.CLResp.ReadFromDeviceTo(svm.HostResp);
            }
            return(svm.HostResp[0]);
        }
Esempio n. 4
0
 public bool DetectCollisions(CollisionDetector.CollisionObject Obj1, CollisionDetector.CollisionObject Obj2)
 {
     if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
     {
         CLCalc.Program.Variable variable1 = this.CLCalcVertexDisplacement(Obj1.Vertex, Obj1.Displacement);
         CLCalc.Program.Variable variable2 = this.CLCalcVertexDisplacement(Obj2.Vertex, Obj2.Displacement);
         int[] Values = new int[1];
         CLCalc.Program.Variable variable3 = new CLCalc.Program.Variable(Values);
         CLCalc.Program.Variable variable4 = new CLCalc.Program.Variable(Obj1.Triangle);
         CLCalc.Program.Variable variable5 = new CLCalc.Program.Variable(Obj2.Triangle);
         int[] GlobalWorkSize = new int[2]
         {
             Obj1.Triangle.Length / 3,
             Obj2.Triangle.Length / 3
         };
         this.kernelCalcExactCollision.Execute((CLCalc.Program.MemoryObject[]) new CLCalc.Program.Variable[5]
         {
             variable1,
             variable4,
             variable2,
             variable5,
             variable3
         }, GlobalWorkSize);
         variable3.ReadFromDeviceTo(Values);
         return(Values[0] > 0);
     }
     else
     {
         float[] Obj1Vertexes  = this.CalcVertexDisplacement(Obj1.Vertex, Obj1.Displacement);
         float[] Obj2Vertexes  = this.CalcVertexDisplacement(Obj2.Vertex, Obj2.Displacement);
         int[]   numCollisions = new int[1];
         this.CalcExactCollision(Obj1Vertexes, Obj1.Triangle, Obj2Vertexes, Obj2.Triangle, numCollisions);
         return(numCollisions[0] > 0);
     }
 }
Esempio n. 5
0
        /// <summary>Computes frame difference</summary>
        private void ComputeFrameDiff()
        {
            //Needs both images to compute
            if (CLBmp == null || CLBmpPrev == null || CLBmp.Width != CLBmpPrev.Width || CLBmp.Height != CLBmpPrev.Height)
            {
                return;
            }

            if (frameDiff == null || frameDiff.Length != ((CLBmp.Height * CLBmp.Width) >> 6))
            {
                //Reduces image size by 8
                frameDiff = new byte[(CLBmp.Height * CLBmp.Width) >> 6];

                CLframeDiff = new CLCalc.Program.Variable(frameDiff);

                MovingRegionBoxes = new List <int>();
            }

            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { CLBmp, CLBmpPrev, CLframeDiff };

            kernelComputeFrameDiff.Execute(args, new int[] { CLBmp.Width >> 3, CLBmp.Height >> 3 });

            CLframeDiff.ReadFromDeviceTo(frameDiff);

            MovingRegionBoxes.Clear();
            BracketMovingRegions(frameDiff, CLBmp.Width >> 3, CLBmp.Height >> 3, MovingRegionBoxes);
        }
Esempio n. 6
0
        private static int[] ExecuteStepDpq(Polynomial x, Polynomial y)
        {
            if (x.Degree != y.Degree)
            {
                throw new InvalidOperationException("Only works for polynomials of same degree!");
            }

            var d = Math.Min(x.Degree, y.Degree);
            var n = d + 1;

            var dpq = new int[n * n];

            CLCalc.InitCL();
            CLCalc.Program.Compile(new[] { KernelCodeStepDpq });
            var kernel = new CLCalc.Program.Kernel("StepDpq");

            var nCl   = new CLCalc.Program.Variable(new[] { n });
            var xCl   = new CLCalc.Program.Variable(x.Coefficients);
            var yCl   = new CLCalc.Program.Variable(y.Coefficients);
            var dpqCl = new CLCalc.Program.Variable(dpq);

            CLCalc.Program.MemoryObject[] args = { nCl, xCl, yCl, dpqCl };

            var workers = new[] { 2 * n - 2 };

            kernel.Execute(args, workers);
            dpqCl.ReadFromDeviceTo(dpq);
            return(dpq);
        }
Esempio n. 7
0
        private void button6_Click(object sender, EventArgs e)
        {
            float[] x = new float[] { 0 };
            float[] y = new float[] { 0 };
            CLCalc.InitCL();
            if (!string.IsNullOrWhiteSpace(textBox1.Text) && !string.IsNullOrWhiteSpace(textBox2.Text))
            {
                x[0] = (float)Convert.ToDouble(textBox1.Text.Replace('.', ','));
                y[0] = (float)Convert.ToDouble(textBox2.Text.Replace('.', ','));
            }

            string s = @"
            __kernel void
            sum(global float4 *x, global float4 *y) {
                x[0] = x[0] + y[0];
            }";

            CLCalc.Program.Compile(new string[] { s });
            CLCalc.Program.Kernel sum = new CLCalc.Program.Kernel("sum");

            CLCalc.Program.Variable varx = new CLCalc.Program.Variable(x);
            CLCalc.Program.Variable vary = new CLCalc.Program.Variable(y);

            CLCalc.Program.Variable[] args = { varx, vary };
            int[] max = new int[] { 1 };

            sum.Execute(args, max);
            varx.ReadFromDeviceTo(x);
            textBox3.Text = Convert.ToString(x[0]);
        }
Esempio n. 8
0
        /// <summary>Calculates isosurface corresponding to a given isolevel</summary>
        /// <param name="isoLvl"></param>
        public void CalcIsoSurface(float isoLvl)
        {
            //Copies iso level to video memory
            if (isoLvl != isoLevel[0])
            {
                isoLevel[0] = isoLvl;
                varIsoLevel.WriteToDevice(isoLevel);
            }

            //Interpolation
            CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLFuncVals, varIsoLevel, varEdgeCoords, varInitVals, varStep };
            kernelInterpPts.Execute(args, max);

            if (ComputeNormals)
            {
                //Polygonization
                args = new CLCalc.Program.Variable[] { CLFuncVals, varIsoLevel, varEdgeCoords, varEdgePrelimNormals, varElemIndex };
                int[] GlobalWorkSize = new int[] { max[0] - 1, max[1] - 1, max[2] - 1 };
                kernelPolygonize.Execute(args, GlobalWorkSize);

                //Normal smoothing
                args = new CLCalc.Program.Variable[] { varEdgePrelimNormals, varEdgeNormals };
                kernelSmoothNormals.Execute(args, max);
            }
            else
            {
                //Polygonization
                args = new CLCalc.Program.Variable[] { CLFuncVals, varIsoLevel, varEdgeCoords, varElemIndex };
                int[] GlobalWorkSize = new int[] { max[0] - 1, max[1] - 1, max[2] - 1 };
                kernelPolygonizeNoNormals.Execute(args, GlobalWorkSize);
            }
        }
Esempio n. 9
0
        /// <summary>Computes the Discrete Fourier Transform of a double2 vector x whose length is a power of 4.
        /// x = { Re[x0] Im[x0] Re[x1] Im[x1] ... Re[xn] Im[xn] }, n = power of 4 (Length = 2*pow(4,n))</summary>
        public static CLCalc.Program.Variable FFT4(ref CLCalc.Program.Variable CLx)
        {
            if (CLy == null || CLy.OriginalVarLength != CLx.OriginalVarLength)
            {
                CLy = new CLCalc.Program.Variable(new float[CLx.OriginalVarLength]);
            }

            if (CLCalc.CLAcceleration != CLCalc.CLAccelerationType.UsingCL)
            {
                return(null);
            }

            int nn = (int)Math.Log(CLx.OriginalVarLength >> 1, 4);

            nn = 1 << ((nn << 1) + 1);
            if (nn != CLx.OriginalVarLength)
            {
                throw new Exception("Number of elements should be a power of 4 ( vector length should be 2*pow(4,n) )");
            }

            if (kernelfft_radix4 == null)
            {
                InitKernels();
            }

            CLCalc.Program.Variable[] args  = new CLCalc.Program.Variable[] { CLx, CLy, CLp };
            CLCalc.Program.Variable[] args2 = new CLCalc.Program.Variable[] { CLy, CLx, CLp };
            bool usar2 = true;

            int[] p = new int[] { 1 };
            CLp.WriteToDevice(p);
            int n = CLx.OriginalVarLength >> 3;

            while (p[0] <= n)
            {
                usar2 = !usar2;
                if (usar2)
                {
                    kernelfft_radix4.Execute(args2, n);
                }
                else
                {
                    kernelfft_radix4.Execute(args, n);
                }

                p[0] = p[0] << 2;
                CLp.WriteToDevice(p);
            }

            if (usar2)
            {
                CLCalc.Program.Variable temp = CLx;
                CLx = CLy; CLy = temp;
            }

            return(CLy);
        }
Esempio n. 10
0
        /// <summary>Classifies multiple samples stored in OpenCL memory</summary>
        /// <param name="Samples">Samples data to classify</param>
        /// <param name="svm">SVM to use as classifier</param>
        public static float[] MultiClassify(SVM svm, CLCalc.Program.Image2D Samples)
        {
            float[] resp = new float[Samples.Height];

            //svm.WriteToDevice();

            if ((Samples.Width << 2) != svm.HostVLen[0])
            {
                throw new Exception("Invalid Samples width, should be the same length of training features");
            }

            if (svm.CLKernelValuesMultiClassify == null || svm.CLKernelValuesMultiClassify.OriginalVarLength != svm.alphaList.Count * Samples.Height)
            {
                svm.CLKernelValuesMultiClassify = new CLCalc.Program.Variable(new float[svm.alphaList.Count * Samples.Height]);
            }

            if (svm.CLAlphas == null || svm.CLAlphas.OriginalVarLength != svm.alphaList.Count)
            {
                svm.CLAlphas = new CLCalc.Program.Variable(svm.alphaList.ToArray());

                float[] ys = new float[svm.TrainingSet.trainingArray.Count];
                for (int i = 0; i < ys.Length; i++)
                {
                    ys[i] = svm.TrainingSet.trainingArray[i].y;
                }

                svm.CLys = new CLCalc.Program.Variable(ys);
            }
            if (svm.CLb == null)
            {
                svm.CLb            = new CLCalc.Program.Variable(new float[] { svm.b });
                svm.CLQtdSupVecs   = new CLCalc.Program.Variable(new int[] { svm.alphaList.Count });
                CLMultiClassifSums = new CLCalc.Program.Variable(new float[Samples.Height]);
            }

            if (CLMultiClassifSums.OriginalVarLength != Samples.Height)
            {
                CLMultiClassifSums = new CLCalc.Program.Variable(new float[Samples.Height]);
            }

            //svm.CLAlphas.WriteToDevice(svm.alphaList.ToArray());
            //svm.CLys.WriteToDevice(ys);
            //svm.CLb.WriteToDevice(new float[] { svm.b });
            //svm.CLQtdSupVecs.WriteToDevice(new int[] { svm.alphaList.Count });

            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { svm.CLTrainingFeatures, svm.CLQtdSupVecs, svm.CLXVecLen, Samples, svm.CLKernelValuesMultiClassify, svm.CLLambda };
            kernelComputeMultiKernelRBF.Execute(args, new int[] { svm.alphaList.Count, Samples.Height });

            CLCalc.Program.Sync();

            args = new CLCalc.Program.MemoryObject[] { svm.CLAlphas, svm.CLQtdSupVecs, svm.CLXVecLen, svm.CLys, svm.CLKernelValuesMultiClassify, svm.CLb, CLMultiClassifSums };
            kernelSumKernels.Execute(args, Samples.Height);

            CLMultiClassifSums.ReadFromDeviceTo(resp);
            return(resp);
        }
Esempio n. 11
0
        /// <summary>Compiles code and initializes kernel for this svm stance</summary>
        private void CLSVMInit()
        {
            if (CLResource == null)
            {
                CLResource = new int[0];
            }

            lock (CLResource)
            {
                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
                {
                    CLCalc.InitCL();
                }
                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    if (kernelComputeKernelRBF == null)
                    {
                        CLSVMSrc s = new CLSVMSrc();
                        CLCalc.Program.Compile(new string[] { s.srcKernels, s.srcFindMaxMinErr, s.srcMultClass });

                        //Kernel computation
                        kernelComputeKernelRBF = new CLCalc.Program.Kernel("ComputeKernelRBF");



                        kernelMaxErr     = new CLCalc.Program.Kernel("maxErr");
                        kernelComputeMax = new CLCalc.Program.Kernel("computeMax");
                        kernelMinErr     = new CLCalc.Program.Kernel("minErr");
                        kernelComputeMin = new CLCalc.Program.Kernel("computeMin");
                        kernelGetResp    = new CLCalc.Program.Kernel("getResp");

                        //Update error
                        kernelUpdateErr = new CLCalc.Program.Kernel("UpdateErr");

                        //Multiple classification
                        kernelComputeMultiKernelRBF = new CLCalc.Program.Kernel("ComputeMultiKernelRBF");
                        kernelSumKernels            = new CLCalc.Program.Kernel("SumKernels");
                    }

                    //Memory obbjects

                    //Find max/min
                    CLErrLen     = new CLCalc.Program.Variable(new int[1]);
                    HostResp     = new int[1];
                    CLResp       = new CLCalc.Program.Variable(HostResp);
                    CLMaxMinErrs = new CLCalc.Program.Variable(new float[MAXMINWORKSIZE]);
                    CLMaxMinInds = new CLCalc.Program.Variable(new int[MAXMINWORKSIZE]);
                    //Update error
                    CLUpdtErrParams = new CLCalc.Program.Variable(new float[3]);
                }
            }
        }
Esempio n. 12
0
 public int[] VertexCollision(float[] v1, float[] displacement1, float[] v2, float[] displacement2, float CollisionDistance, out float[] VertexDistances)
 {
     if ((double)CollisionDistance < 0.0)
     {
         throw new Exception("Collision distance should be positive");
     }
     int[] numArray1 = new int[v1.Length / 3];
     VertexDistances = new float[v1.Length / 3];
     for (int index = 0; index < numArray1.Length; ++index)
     {
         numArray1[index]       = -1;
         VertexDistances[index] = -1f;
     }
     float[] numArray2 = new float[1]
     {
         CollisionDistance
     };
     if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL && (long)v1.Length * (long)v2.Length > 10000000L)
     {
         CLCalc.Program.Variable variable1 = this.CLCalcVertexDisplacement(v1, displacement1);
         CLCalc.Program.Variable variable2 = this.CLCalcVertexDisplacement(v2, displacement2);
         CLCalc.Program.Variable variable3 = new CLCalc.Program.Variable(numArray2);
         CLCalc.Program.Variable variable4 = new CLCalc.Program.Variable(numArray1);
         CLCalc.Program.Variable variable5 = new CLCalc.Program.Variable(VertexDistances);
         this.kernelCalcVertexCollision.Execute((CLCalc.Program.MemoryObject[]) new CLCalc.Program.Variable[5]
         {
             variable3,
             variable1,
             variable2,
             variable4,
             variable5
         }, new int[2]
         {
             v1.Length / 3,
             v2.Length / 3
         });
         variable4.ReadFromDeviceTo(numArray1);
         variable5.ReadFromDeviceTo(VertexDistances);
     }
     else
     {
         float[] v1_1 = this.CalcVertexDisplacement(v1, displacement1);
         float[] v2_1 = this.CalcVertexDisplacement(v2, displacement2);
         this.CalcVertexCollisions(numArray2, v1_1, v2_1, numArray1, VertexDistances);
     }
     return(numArray1);
 }
Esempio n. 13
0
        /// <summary>Computes the Discrete Fourier Transform of a double2 vector x whose length is a power of 16. 
        /// x = { Re[x0] Im[x0] Re[x1] Im[x1] ... Re[xn] Im[xn] }, n = power of 16 (Length = 2*pow(16,n))</summary>
        public static double[] FFT16(double[] x)
        {
            if (CLx == null || CLx.OriginalVarLength != x.Length)
            {
                CLx = new CLCalc.Program.Variable(x);
                CLy = new CLCalc.Program.Variable(x);
            }

            //Writes original content
            CLx.WriteToDevice(x);

            CLy = FFT16(ref CLx);

            double[] y = new double[x.Length];
            CLy.ReadFromDeviceTo(y);
            return y;
        }
        public Kernels(CLCalc.Program.Image2D CLGLRenderImage)
        {
            this.CLimg = CLGLRenderImage;
            dimensions = new int[CLimg.Width * CLimg.Height];

            for (int y = 0; y < CLimg.Height; y++)
            {
                CLY.VarSize += 100;
            }

            for (int x = 0; x < CLimg.Width; x++)
            {
                CLX.VarSize += dimensions[CLimg.Height - 1 + CLimg.Height * x];
                CLZ.VarSize += dimensions[CLimg.Height * x] = 240;
            }
            CLDimensions = new CLCalc.Program.Variable(dimensions);
        }
Esempio n. 15
0
        private static void InitKernels()
        {
            string s = new CLFFTSrc().s;

            CLCalc.InitCL();
            try
            {
                CLCalc.Program.Compile(s);
            }
            catch
            {
            }
            kernelfft_radix16 = new CLCalc.Program.Kernel("fft_radix16");
            kernelfft_radix4  = new CLCalc.Program.Kernel("fft_radix4");
            kernelConjugate   = new CLCalc.Program.Kernel("Conjugate");
            CLp = new CLCalc.Program.Variable(new int[1]);
        }
Esempio n. 16
0
        /// <summary>ImageData constructor. Reads data from a bitmap</summary>
        /// <param name="bmp">Bitmap to read from</param>
        public ImageData(Bitmap bmp)
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
            {
                CLCalc.InitCL();
            }

            width  = bmp.Width;
            height = bmp.Height;

            //Allocates space for data
            Data = new byte[3 * width * height];
            //Reads bmp to local Data variable
            ReadToLocalData(bmp);

            //Transfer data to OpenCL device
            varData = new CLCalc.Program.Variable(Data);
        }
Esempio n. 17
0
        /// <summary>Computes the inverse Discrete Fourier Transform of a double2 vector x whose length is a power of 16.
        /// x = { Re[x0] Im[x0] Re[x1] Im[x1] ... Re[xn] Im[xn] }, n = power of 16 (Length = 2*pow(16,n))</summary>
        public static double[] iFFT16(double[] x)
        {
            if (CLx == null || CLx.OriginalVarLength != x.Length)
            {
                CLx = new CLCalc.Program.Variable(x);
                CLy = new CLCalc.Program.Variable(x);
            }

            //Writes original content
            CLx.WriteToDevice(x);

            CLy = iFFT16(CLx);

            double[] y = new double[x.Length];
            CLy.ReadFromDeviceTo(y);

            return(y);
        }
Esempio n. 18
0
        /// <summary>Computes the Discrete Fourier Transform of a float2 vector x whose length is a power of 16.
        /// x = { Re[x0] Im[x0] Re[x1] Im[x1] ... Re[xn] Im[xn] }, n = power of 16 (Length = 2*pow(16,n))</summary>
        public static float[] FFT16(float[] x)
        {
            if (CLx == null || CLx.OriginalVarLength != x.Length)
            {
                CLx = new CLCalc.Program.Variable(x);
                CLy = new CLCalc.Program.Variable(x);
            }

            //Writes original content
            CLx.WriteToDevice(x);

            CLy = FFT16(ref CLx);


            float[] y = new float[x.Length];
            CLy.ReadFromDeviceTo(y);
            return(y);
        }
Esempio n. 19
0
        /// <summary>Computes the Discrete Fourier Transform of a double2 vector x whose length is a power of 16. 
        /// x = { Re[x0] Im[x0] Re[x1] Im[x1] ... Re[xn] Im[xn] }, n = power of 16 (Length = 2*pow(16,n))</summary>
        public static CLCalc.Program.Variable FFT16(ref CLCalc.Program.Variable CLx)
        {
            if (CLy == null || CLy.OriginalVarLength != CLx.OriginalVarLength) CLy = new CLCalc.Program.Variable(new float[CLx.OriginalVarLength]);

            if (CLCalc.CLAcceleration != CLCalc.CLAccelerationType.UsingCL) return null;

            int nn = (int)Math.Log(CLx.OriginalVarLength >> 1, 16);
            nn = 1 << ((nn << 2) + 1);
            if (nn != CLx.OriginalVarLength) throw new Exception("Number of elements should be a power of 16 ( vector length should be 2*pow(16,n) )");

            if (kernelfft_radix16 == null)
            {
                InitKernels();
            }

            CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLx, CLy, CLp };
            CLCalc.Program.Variable[] args2 = new CLCalc.Program.Variable[] { CLy, CLx, CLp };
            bool usar2 = true;

            int[] p = new int[] { 1 };
            CLp.WriteToDevice(p);
            int n = CLx.OriginalVarLength >> 5;

            while (p[0] <= n)
            {
                usar2 = !usar2;
                if (usar2)
                    kernelfft_radix16.Execute(args2, n);
                else
                    kernelfft_radix16.Execute(args, n);

                p[0] = p[0] << 4;
                CLp.WriteToDevice(p);

            }

            if (usar2)
            {
                CLCalc.Program.Variable temp = CLx;
                CLx = CLy; CLy = temp;
            }

            return CLy;
        }
Esempio n. 20
0
        /// <summary>Initialize kernels</summary>
        private void InitKernels()
        {
            if (kernelComputeHistograms == null || CLN == null)
            {
                CLSrc src = new CLSrc();
                CLCalc.Program.Compile(src.src);
                kernelComputeHistograms    = new CLCalc.Program.Kernel("ComputeHistogram");
                kernelConsolidateHist      = new CLCalc.Program.Kernel("ConsolidateHist");
                kernelPerformNormalization = new CLCalc.Program.Kernel("PerformNormalization");
                kernelComputeHue           = new CLCalc.Program.Kernel("ComputeHue");

                CLN      = new CLCalc.Program.Variable(new int[] { NLumIntens });
                CLWidth  = new CLCalc.Program.Variable(new int[] { bmp.Width });
                CLHeight = new CLCalc.Program.Variable(new int[] { bmp.Height });

                CLbmp    = new CLCalc.Program.Image2D(bmp);
                CLNewBmp = new CLCalc.Program.Image2D(bmp);
            }
        }
        public void Initialize(BaseCameraApplication app)
        {
            try
            {
                CLCalc.Program.Compile(app.GetPrimaryDevice().GetPreprocessCode() + src);
            }
            catch (BuildProgramFailureComputeException ex)
            {
                System.Console.WriteLine(ex.Message);
                Environment.Exit(1);
            }
            int width = app.GetPrimaryDevice().GetDepthImage().Width;

            int height = app.GetPrimaryDevice().GetDepthImage().Height;
            pointBuffer = CLCalc.Program.Variable.Create(new ComputeBuffer<float>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, points = new float[width * height * 4]));
            colorBuffer = CLCalc.Program.Variable.Create(new ComputeBuffer<float>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, colors = new float[width * height * 4]));

            kernelCopyImage = new CLCalc.Program.Kernel("CopyToPoinCloud");
        }
Esempio n. 22
0
        private void button3_Click(object sender, EventArgs e)
        {
            float[] x = new float[] { 1, 2, 3, 0.123f };
            float[] y = new float[] { 1, 2, 1, 1 };

            string s = @"
                       kernel void
                       sum (global float4 * x, global float4 * y)
                       {
                           x[0] = x[0] + y[0];
                       }
";

            CLCalc.Program.Compile(new string[] { s });
            CLCalc.Program.Kernel sum = new CLCalc.Program.Kernel("sum");

            CLCalc.Program.Variable   varx = new CLCalc.Program.Variable(x);
            CLCalc.Program.Variable   vary = new CLCalc.Program.Variable(y);
            CLCalc.Program.Variable[] args = { varx, vary };

            int[] max = new int[] { 1 };

            sum.Execute(args, max);

            varx.ReadFromDeviceTo(x);

            //float[] t = new float[1] { 0 };
            //float[] pos = new float[] { 1, 2, 3, 4, 5, 6 };
            //float[] vel = new float[] { 1, 0, 0, 0, 0, 0 };
            //float[] forces = new float[] { 0, 1, 0, 0, 0, 0 };

            //float[] masses = new float[] { 1, 1 };
            //float[] colSizes = new float[] { 0.1f, 0.1f };


            //CLCalc.InitCL();

            //CLCalc.CLPrograms.floatBodyPhysics phys = new CLCalc.CLPrograms.floatBodyPhysics(10);
            //CLCalc.CLPrograms.floatBodyPhysics phys2 = new CLCalc.CLPrograms.floatBodyPhysics(20);


            //CLCalc.FinishCL();
        }
Esempio n. 23
0
        private static void GPU()
        {
            string vecSum = @"
                     __kernel void
                    floatVectorSum(__global       float * v1,
                                   __global       float * v2)
                    {
                        // Vector element index
                        int i = get_global_id(0);
                        v1[i] = v1[i] + v2[i];
                    }";

            //Initializes OpenCL Platforms and Devices and sets everything up
            CLCalc.InitCL();
            //Compiles the source codes. The source is a string array because the user may want
            //to split the source into many strings.
            CLCalc.Program.Compile(new string[] { vecSum });
            //Gets host access to the OpenCL floatVectorSum kernel
            CLCalc.Program.Kernel VectorSum = new CLCalc.Program.Kernel("floatVectorSum");
            //We want to sum 2000 numbers
            int n = 20000000;

            //Create vectors with 2000 numbers
            float[] v1 = new float[n], v2 = new float[n];
            //Creates population for v1 and v2
            for (int i = 0; i < n; i++)
            {
                v1[i] = (float)i / 10;
                v2[i] = -(float)i / 8;
            }
            //Creates vectors v1 and v2 in the device memory
            CLCalc.Program.Variable varV1 = new CLCalc.Program.Variable(v1);
            CLCalc.Program.Variable varV2 = new CLCalc.Program.Variable(v2);
            //Arguments of VectorSum kernel
            CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { varV1, varV2 };
            //How many workers will there be? We need "n", one for each element
            //int[] workers = new int[1] { n };
            //Execute the kernel
            VectorSum.Execute(args, 20000000);
            //Read device memory varV1 to host memory v1
            varV1.ReadFromDeviceTo(v1);
        }
Esempio n. 24
0
        private void button1_Click(object sender, EventArgs e)
        {
            CLCalc.InitCL();


            double[] a = new double[] { 2, 147483647, 2, 7 };
            double[] b = new double[] { 1, 2, 7, 4 };
            double[] c = new double[4];

            CLCalc.Program.Variable v1 = new CLCalc.Program.Variable(a);
            CLCalc.Program.Variable v2 = new CLCalc.Program.Variable(b);
            CLCalc.Program.Variable v3 = new CLCalc.Program.Variable(c);

            CLCalc.CLPrograms.VectorSum VecSum = new CLCalc.CLPrograms.VectorSum();
            CLCalc.CLPrograms.MinDifs   Mdifs  = new CLCalc.CLPrograms.MinDifs();

            //string[] s = new string[] { VecSum.intVectorSum, VecSum.floatVectorSum };
            string[] s = new string[] { VecSum.doubleVectorSum };


            CLCalc.Program.Compile(s);

            CLCalc.Program.Kernel k = new CLCalc.Program.Kernel("doubleVectorSum");
            //CLCalc.Program.Kernel k2 = new CLCalc.Program.Kernel("intVectorSum");
            //CLCalc.Program.Kernel k = new CLCalc.Program.Kernel("floatMinDifs");

            CLCalc.Program.Variable[] vv = new CLCalc.Program.Variable[3] {
                v1, v2, v3
            };

            int[] max = new int[1] {
                a.Length
            };

            k.Execute(vv, max);

            CLCalc.Program.Sync();

            v3.ReadFromDeviceTo(c);

            CLCalc.FinishCL();
        }
Esempio n. 25
0
        /// <summary>Constructor.</summary>
        public SparseLinalg()
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
            {
                try { CLCalc.InitCL(); }
                catch
                {
                }
            }

            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
            {
                //Creates control variables
                dprod      = new float[SparseLinalg.GLOBALWORKSIZE];
                dotProd    = new CLCalc.Program.Variable(dprod);
                dotProdSum = new CLCalc.Program.Variable(new float[1]);

                int[] i = new int[1];
                vLenBy4 = new CLCalc.Program.Variable(i);

                CLNonZeroElemsPerRow = new CLCalc.Program.Variable(new int[1]);
            }
        }
Esempio n. 26
0
        public void DoubleSumTest()
        {
            string text = File.ReadAllText("Examples/SumTest.cl");

            CLCalc.InitCL();
            CLCalc.Program.Compile(new string[] { text });

            int count = 2000;
            var a     = new double[count];
            var b     = new double[count];
            var ab    = new double[count];

            for (int i = 0; i < count; i++)
            {
                a[i] = i / 10.0;
                b[i] = -i / 9.0;
            }

            using (CLCalc.Program.Kernel Kernel = new CLCalc.Program.Kernel("doubleVectorSum"))
            {
                using (CLCalc.Program.Variable
                       varA = new CLCalc.Program.Variable(a),
                       varB = new CLCalc.Program.Variable(b))
                {
                    var args    = new CLCalc.Program.Variable[] { varA, varB };
                    var workers = new int[1] {
                        count
                    };
                    Kernel.Execute(args, workers);
                    varA.ReadFromDeviceTo(ab);
                }
            }
            for (int i = 0; i < count; i++)
            {
                Assert.AreEqual(-i / 90.0, ab[i], 1E-13);
            }
        }
Esempio n. 27
0
        /// <summary>Computes the inverse Discrete Fourier Transform of a double2 vector x whose length is a power of 16.
        /// x = { Re[x0] Im[x0] Re[x1] Im[x1] ... Re[xn] Im[xn] }, n = power of 16 (Length = 2*pow(16,n))</summary>
        public static CLCalc.Program.Variable iFFT16(CLCalc.Program.Variable CLx)
        {
            if (CLScale == null)
            {
                CLScale = new CLCalc.Program.Variable(new double[1]);
            }

            //Trick: DFT-1 (x) = DFT(x*)*/N;
            //Conjugate
            double[] vx = new double[CLx.OriginalVarLength];
            CLx.ReadFromDeviceTo(vx);

            double[] scale = new double[] { 1 };
            CLScale.WriteToDevice(scale);
            kernelConjugate.Execute(new CLCalc.Program.Variable[] { CLx, CLScale }, CLx.OriginalVarLength >> 1);
            CLx.ReadFromDeviceTo(vx);

            CLy = FFT16(ref CLx);

            scale[0] = 1 / (double)(CLx.OriginalVarLength >> 1);
            CLScale.WriteToDevice(scale);
            kernelConjugate.Execute(new CLCalc.Program.Variable[] { CLy, CLScale }, CLy.OriginalVarLength >> 1);
            return(CLy);
        }
Esempio n. 28
0
        public static Polynomial MultiplyKaratsubaOpenCl(Polynomial x, Polynomial y)
        {
            if (x.Degree != y.Degree)
            {
                throw new InvalidOperationException("Only works for polynomials of same degree!");
            }

            var d = Math.Min(x.Degree, y.Degree);
            var n = d + 1;

            var di  = ExecuteStepDi(x, y);
            var dpq = ExecuteStepDpq(x, y);
            var z   = new int[2 * n - 1];

            z[0]         = di[0];
            z[2 * n - 2] = di[n - 1];

            CLCalc.InitCL();
            CLCalc.Program.Compile(new[] { KernelCodeStepKaratsuba });
            var kernel = new CLCalc.Program.Kernel("StepKaratsuba");

            var nCl   = new CLCalc.Program.Variable(new[] { n });
            var xCl   = new CLCalc.Program.Variable(x.Coefficients);
            var yCl   = new CLCalc.Program.Variable(y.Coefficients);
            var diCl  = new CLCalc.Program.Variable(di);
            var dpqCl = new CLCalc.Program.Variable(dpq);
            var zCl   = new CLCalc.Program.Variable(z);

            CLCalc.Program.MemoryObject[] args = { nCl, xCl, yCl, diCl, dpqCl, zCl };

            var workers = new[] { 2 * n - 3 };

            kernel.Execute(args, workers);
            zCl.ReadFromDeviceTo(z);
            return(new Polynomial(z));
        }
Esempio n. 29
0
        /// <summary>Creates a new isosurface calculator. You may pass variables created from a OpenGL context to the CL variables if you are using interop or NULL
        /// if not using OpenCL/GL interop.</summary>
        /// <param name="FuncValues">Values of the evaluated 3D function f(x,y,z). FuncValues=float[maxX,maxY,maxZ]</param>
        /// <param name="CLEdgeCoords">OpenCL variable (float) to hold edge coordinates. Dimension has to be 9 * maxX * maxY * maxZ</param>
        /// <param name="CLEdgeNormals">OpenCL variable (float) to hold edge normals. Dimension has to be 9 * maxX * maxY * maxZ</param>
        /// <param name="CLElementArrayIndex">OpenCL variable (int) to hold element array index. Dimension has to be 5 * 3 * (maxX - 1) * (maxY - 1) * (maxZ - 1)</param>
        private void InitMarchingCubes(float[, ,] FuncValues, CLCalc.Program.Variable CLEdgeCoords, CLCalc.Program.Variable CLEdgeNormals, CLCalc.Program.Variable CLElementArrayIndex)
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown) CLCalc.InitCL();

            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
            {
                //Reads maximum lengths
                int maxX = FuncValues.GetLength(0);
                int maxY = FuncValues.GetLength(1);
                int maxZ = FuncValues.GetLength(2);
                max = new int[] { maxX, maxY, maxZ };

                #region Creating variables

                //Isolevel
                isoLevel = new float[1] { 1.32746E-5f };
                varIsoLevel = new CLCalc.Program.Variable(isoLevel);

                //Step size and x0,y0,z0
                varStep = new CLCalc.Program.Variable(step);
                varInitVals = new CLCalc.Program.Variable(initVals);

                //Create and copy function values
                funcVals = new float[maxX * maxY * maxZ];
                CLFuncVals = new CLCalc.Program.Variable(funcVals);
                SetFuncVals(FuncValues);

                //Edge coordinates - 3 coords * 3 possible directions * number of points
                edgeCoords = new float[9 * maxX * maxY * maxZ];
                if (CLEdgeCoords != null)
                {
                    varEdgeCoords = CLEdgeCoords;
                    varEdgeCoords.WriteToDevice(edgeCoords);
                }
                else varEdgeCoords = new CLCalc.Program.Variable(edgeCoords);

                //4 preliminary normals per edge - has to be averaged afterwards
                edgePrelimNormals = new float[36 * maxX * maxY * maxZ];
                varEdgePrelimNormals = new CLCalc.Program.Variable(edgePrelimNormals);

                //Edge normals
                edgeNormals = new float[9 * maxX * maxY * maxZ];
                if (CLEdgeNormals != null)
                {
                    varEdgeNormals = CLEdgeNormals;
                    varEdgeNormals.WriteToDevice(edgeNormals);
                }
                else varEdgeNormals = new CLCalc.Program.Variable(edgeNormals);

                //Number of cubes: (maxX-1)*(maxY-1)*(maxZ-1)
                //Marching cube algorithm: each cube can have 5 triangles drawn, 3 vertexes per triangle
                //q-th vertex of p-th triangle of the ijk-th cube: [(5*(i+(maxX-1)*j+k*(maxX-1)*(maxY-1))+p)*3+q]
                elementIndex = new int[5 * 3 * (maxX - 1) * (maxY - 1) * (maxZ - 1)];
                if (CLElementArrayIndex != null)
                {
                    varElemIndex = CLElementArrayIndex;
                    varElemIndex.WriteToDevice(elementIndex);
                }
                else varElemIndex = new CLCalc.Program.Variable(elementIndex);

                //Edge remapping to build output
                edges = new int[edgeCoords.Length / 3];
                for (int i = 0; i < edges.Length; i++) edges[i] = -1;

                #endregion

                #region Compile code and create kernels

                CLMarchingCubesSrc cmsrc = new CLMarchingCubesSrc();

                CLCalc.Program.Compile(new string[] { cmsrc.definitions, cmsrc.src });
                kernelInterpPts = new CLCalc.Program.Kernel("interpPts");
                kernelPolygonize = new CLCalc.Program.Kernel("Polygonize");
                kernelSmoothNormals = new CLCalc.Program.Kernel("SmoothNormals");
                kernelPolygonizeNoNormals = new CLCalc.Program.Kernel("PolygonizeNoNormals");
                #endregion
            }
            else throw new Exception("OpenCL not available");
        }
Esempio n. 30
0
        /// <summary>Calculates isosurface corresponding to a given isolevel</summary>
        /// <param name="isoLvl"></param>
        public void CalcIsoSurface(float isoLvl)
        {
            //Copies iso level to video memory
            if (isoLvl != isoLevel[0])
            {
                isoLevel[0] = isoLvl;
                varIsoLevel.WriteToDevice(isoLevel);
            }

            //Interpolation
            CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLFuncVals, varIsoLevel, varEdgeCoords, varInitVals, varStep };
            kernelInterpPts.Execute(args, max);

            if (ComputeNormals)
            {
                //Polygonization
                args = new CLCalc.Program.Variable[] { CLFuncVals, varIsoLevel, varEdgeCoords, varEdgePrelimNormals, varElemIndex };
                int[] GlobalWorkSize = new int[] { max[0] - 1, max[1] - 1, max[2] - 1 };
                kernelPolygonize.Execute(args, GlobalWorkSize);

                //Normal smoothing
                args = new CLCalc.Program.Variable[] { varEdgePrelimNormals, varEdgeNormals };
                kernelSmoothNormals.Execute(args, max);
            }
            else
            {
                //Polygonization
                args = new CLCalc.Program.Variable[] { CLFuncVals, varIsoLevel, varEdgeCoords, varElemIndex };
                int[] GlobalWorkSize = new int[] { max[0] - 1, max[1] - 1, max[2] - 1 };
                kernelPolygonizeNoNormals.Execute(args, GlobalWorkSize);
            }
        }
Esempio n. 31
0
        public ImageColorMixer(int xpos, int ypos, int width, int height)
        {
            this.xpos = xpos;
            this.ypos = ypos;
            this.width = width;
            this.height = height;
            this.scrollWidth = width / 2 - 40;

            this.controlXpos = xpos + scrollWidth + 40;
            hueScroll = new ImageScrollButton("Hue", xpos, ypos, scrollWidth, 20, 0, 1.0f);

            saturationScroll = new ImageScrollButton("Saturation", xpos, ypos + 30, scrollWidth, 20, 0, 1.0f);
            valueScroll = new ImageScrollButton("Brightness", xpos, ypos + 60, scrollWidth, 20, 0, 1.0f);
            hueImage = new CLCalc.Program.Image2D(hueBuffer = new float[scrollWidth * 4], scrollWidth, 1);
            saturationImage = new CLCalc.Program.Image2D(saturationBuffer = new float[scrollWidth * 4], scrollWidth, 1);
            valueImage = new CLCalc.Program.Image2D(valueBuffer = new float[scrollWidth * 4], scrollWidth, 1);
            mixedImage = new CLCalc.Program.Image2D(mixedBuffer = new float[scrollWidth * 4], scrollWidth, 1);
            controlColors = CLCalc.Program.Variable.Create(new ComputeBuffer<float>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite, controlColorsBuffer = new float[4 * NUM_CONTROL_PTS]));
            controlAmps = CLCalc.Program.Variable.Create(new ComputeBuffer<float>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite, controlAmpsBuffer = new float[NUM_CONTROL_PTS]));
            hueScroll.sliderTrack.SetDynamicImage(hueImage);
            saturationScroll.sliderTrack.SetDynamicImage(saturationImage);
            valueScroll.sliderTrack.SetDynamicImage(valueImage);
            mixedColor = new ImageButton("Mixture", false, controlXpos, ypos + 90, scrollWidth, 20);
            chosenColor = new ImageButton("Chosen", false, xpos, ypos + 90, scrollWidth, 20);
            mixedColor.SetDynamicImage(mixedImage);

            controlPoints = new ImageButton[NUM_CONTROL_PTS];
            stems = new ImageButton[NUM_CONTROL_PTS];
            controlPointsBorder = new ImageButton[NUM_CONTROL_PTS];
            Bitmap bitmap = new Bitmap(20, 20);
            using (Graphics gfx = Graphics.FromImage(bitmap))
            {
                gfx.Clear(Color.FromArgb(0, 0, 0, 0));
                gfx.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.AntiAlias;
                gfx.FillEllipse(new SolidBrush(Color.White), 1, 1, 17, 17);
            }

            hueScroll.SetValue(0.1f);
            valueScroll.SetValue(0.5f);
            saturationScroll.SetValue(0.5f);
            float4 currentColor = HSVtoRGB(new float4(hueScroll.GetValue(), saturationScroll.GetValue(), valueScroll.GetValue(), 1.0f));
            colorIndex = NUM_CONTROL_PTS / 2;
            for (int i = 0; i < NUM_CONTROL_PTS; i++)
            {
                controlPoints[i] = new ImageButton("control_" + i, bitmap, true, (int)(controlXpos + (i + 0.5f) * (scrollWidth) / (float)NUM_CONTROL_PTS), ypos + ((i == colorIndex) ? 50 : 70), 20, 20);
                controlPointsBorder[i] = new ImageButton("control_" + i, new Bitmap(20, 20), false, (int)(controlXpos + i * (scrollWidth) / (float)NUM_CONTROL_PTS), ypos + 70, 20, 20);
                controlPoints[i].SetDragAndDrop(true);
                controlPoints[i].SetDragBoundingBox(controlXpos - 10, ypos, controlXpos + scrollWidth - 10, ypos + 70);
                stems[i] = new ImageButton("stem_" + i, false, (int)(controlXpos + i * (scrollWidth) / (float)NUM_CONTROL_PTS), 90, 2, 20);
                stems[i].SetBackgroundColor(Color4.White);
                controlPoints[i].SetForegroundColor(HSVtoRGB(new float4(i / (float)(NUM_CONTROL_PTS), saturationScroll.GetValue(), valueScroll.GetValue(), 1.0f)));
                UpdateControlPoint(i);
                controlPoints[i].AddObserver(this);
            }
        }
Esempio n. 32
0
        /// <summary>Specific function when SVM contains only one object, such as faces</summary>
        /// <param name="bmp">Next frame to process</param>
        public List<int> FindSingleObj(Bitmap bmp)
        {
            //System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch(), sw2 = new System.Diagnostics.Stopwatch();
            //sw.Start();

            if (SVM == null) return null;

            if (imgWidth != bmp.Width || imgHeight != bmp.Height)
            {
                imgWidth = bmp.Width;
                imgHeight = bmp.Height;
                SubFramePos = 0;

                List<int> subFrames = new List<int>();
                ComputeSubFrames(0, 0, bmp.Width, bmp.Height, subFrames);
                SubFrames = subFrames.ToArray();

                SubFeatures = new float[(SubFrames.Length / 3) * 364];

                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    CLSubFrames = new CLCalc.Program.Variable(SubFrames);
                    CLSubFeatures = new CLCalc.Program.Image2D(SubFeatures, 91, SubFrames.Length / 3);
                    CLBmp = new CLCalc.Program.Image2D(bmp);
                    //CLBmpTemp = new CLCalc.Program.Image2D(bmp);
                    CLBmpPrev = new CLCalc.Program.Image2D(bmp);
                }
            }

            //Swaps current and previous bitmap pointers
            CLCalc.Program.Image2D temp = CLBmp;
            CLBmp = CLBmpPrev;
            CLBmpPrev = temp;

            //Computes frame difference
            ComputeFrameDiff();

            //Replaces subFrames based on moving regions
            for (int k = 0; k < MovingRegionBoxes.Count >> 2; k++)
            {
                List<int> sframes = new List<int>();
                int ind = 4 * k;
                ComputeSubFrames(MovingRegionBoxes[ind] << 3, MovingRegionBoxes[ind + 2] << 3, MovingRegionBoxes[ind + 1] << 3, MovingRegionBoxes[ind + 3] << 3, sframes);

                for (int p = 0; p < sframes.Count; p += 3)
                {
                    SubFrames[SubFramePos] = sframes[p];
                    SubFrames[SubFramePos + 1] = sframes[p + 1];
                    SubFrames[SubFramePos + 2] = sframes[p + 2];

                    SubFramePos += 3; if (SubFramePos > SubFrames.Length - 1) SubFramePos = 0;
                }
            }
            CLSubFrames.WriteToDevice(SubFrames);

            CLBmp.WriteBitmap(bmp);

            ////Segments skin
            //kernelSegregateSkin.Execute(new CLCalc.Program.MemoryObject[] { CLBmpTemp, CLBmp }, new int[] { bmp.Width, bmp.Height });

            //Extract features using OpenCL
            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { CLSubFrames, CLSubFeatures, CLBmp };
            kernelExtractFeatures.Execute(args, SubFrames.Length / 3);

            #region No OpenCL
            //float[] testSubFeats = new float[364 * (SubFrames.Length / 3)];
            //CLSubFeatures.ReadFromDeviceTo(testSubFeats);

            //Extract features without OpenCL
            //ExtractFeatures(SubFrames, SubFeatures, bmp);
            //CLSubFeatures.WriteToDevice(SubFeatures);
            #endregion

            //sw2.Start();
            float[] maxvals = OpenCLTemplate.MachineLearning.SVM.MultiClassify(SVM.SVMs[0], CLSubFeatures);
            //SVM.Classify(CLSubFeatures, out maxvals);
            //sw2.Stop();

            List<int> FacesPos = new List<int>();
            List<float> MaxVals = new List<float>();

            //Goes in decreasing window size order
            for (int kk = Config.WINDOWSIZES.Length - 1; kk >= 0; kk--)
            {
                for (int i = maxvals.Length - 1; i >= 0; i--)
                {

                    if (SubFrames[3 * i + 2] == Config.WINDOWSIZES[kk] && maxvals[i] > Config.REQCERTAINTY)
                    {
                        //Checks if a face already has been found in that region
                        bool contido = false;

                        int i3 = 3 * i;
                        int kmax = FacesPos.Count / 3;
                        for (int k = 0; k < kmax; k++)
                        {
                            int k3 = 3 * k;

                            if (
                                (FacesPos[k3] <= SubFrames[i3] && SubFrames[i3] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                FacesPos[k3 + 1] <= SubFrames[i3 + 1] && SubFrames[i3 + 1] <= FacesPos[k3 + 1] + FacesPos[k3 + 2]) ||

                                (FacesPos[k3] <= SubFrames[i3] + SubFrames[i3 + 2] && SubFrames[i3] + SubFrames[i3 + 2] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                FacesPos[k3 + 1] <= SubFrames[i3 + 1] + SubFrames[i3 + 2] && SubFrames[i3 + 1] + SubFrames[i3 + 2] <= FacesPos[k3 + 1] + FacesPos[k3 + 2]) ||

                                (FacesPos[k3] <= SubFrames[i3] && SubFrames[i3] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                FacesPos[k3 + 1] <= SubFrames[i3 + 1] + SubFrames[i3 + 2] && SubFrames[i3 + 1] + SubFrames[i3 + 2] <= FacesPos[k3 + 1] + FacesPos[k3 + 2]) ||

                                (FacesPos[k3] <= SubFrames[i3] + SubFrames[i3 + 2] && SubFrames[i3] + SubFrames[i3 + 2] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                FacesPos[k3 + 1] <= SubFrames[i3 + 1] && SubFrames[i3 + 1] <= FacesPos[k3 + 1] + FacesPos[k3 + 2])

                                )
                            {
                                contido = true;

                                //Replaces if better
                                if (maxvals[i] > MaxVals[k] && SubFrames[3 * i + 2] == FacesPos[3 * k + 2])
                                {
                                    FacesPos[k3] = SubFrames[i3];
                                    FacesPos[k3 + 1] = SubFrames[i3 + 1];
                                    FacesPos[k3 + 2] = SubFrames[i3 + 2];
                                    MaxVals[k] = maxvals[i];
                                }

                                k = FacesPos.Count;
                            }
                        }

                        if (!contido)
                        {
                            FacesPos.Add(SubFrames[3 * i]);
                            FacesPos.Add(SubFrames[3 * i + 1]);
                            FacesPos.Add(SubFrames[3 * i + 2]);
                            MaxVals.Add(maxvals[i]);
                        }
                    }
                }
            }

            //sw.Stop();
            Random rnd = new Random();

            //Updates frame search region
            if (MovingRegionBoxes.Count > 0)
            {
                for (int i = 0; i < maxvals.Length; i++)
                {
                    if (maxvals[i] > Config.REFINEUNCERTAINTY)
                    {
                        int i3 = 3 * i;

                        List<int> sframes = new List<int>();
                        int cx = SubFrames[i3] + (SubFrames[i3 + 2] >> 1) + rnd.Next(7) - 3;
                        int cy = SubFrames[i3 + 1] + (SubFrames[i3 + 2] >> 1) + rnd.Next(7) - 3;

                        int bigwSize = Config.WINDOWSIZES[Config.WINDOWSIZES.Length - 1];

                        try
                        {
                            ComputeSubFrames(cx - (bigwSize >> 1), cy - (bigwSize >> 1), cx + (bigwSize >> 1), cy + (bigwSize >> 1), sframes);

                            for (int p = 0; p < sframes.Count; p += 3)
                            {
                                SubFrames[SubFramePos] = sframes[p];
                                SubFrames[SubFramePos + 1] = sframes[p + 1];
                                SubFrames[SubFramePos + 2] = sframes[p + 2];

                                SubFramePos += 3; if (SubFramePos > SubFrames.Length - 1) SubFramePos = 0;
                            }
                        }
                        catch
                        {
                        }
                    }
                }
            }

            return FacesPos;
        }
Esempio n. 33
0
        public void Initialize(BaseCameraApplication capture)
        {
            DepthCameraFrame depthImage = capture.GetPrimaryDevice().GetDepthImage();
            this.width = depthImage.Width;
            this.height = depthImage.Height;
            this.filter = ((AdaptiveTemporalFilter)capture.GetImageFilter());
            CvSize sz = new CvSize(depthImage.Width, depthImage.Height);
            gray = new IplImage(sz, BitDepth.U8, 1);
            erode = new IplImage(sz, BitDepth.U8, 1);
            dilate = new IplImage(sz, BitDepth.U8, 1);
            tmp = new IplImage(sz, BitDepth.U8, 1);
            mask = new IplImage(sz, BitDepth.U8, 1);
            imgLabel = new IplImage(sz, BitDepth.F32, 1);
            faceDetectionBuffer = CLCalc.Program.Variable.Create(new ComputeBuffer<FaceLandmarks>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite, 1));
            try
            {
                CLCalc.Program.Compile(capture.GetPrimaryDevice().GetPreprocessCode() + src);

            }
            catch (BuildProgramFailureComputeException ex)
            {
                System.Console.WriteLine(ex.Message);
                Environment.Exit(1);
            }
            irImageBuffer = CLCalc.Program.Variable.Create(new ComputeBuffer<byte>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite | ComputeMemoryFlags.CopyHostPointer, ir = new byte[width * height]));
            kernelCopyIRImage = new CLCalc.Program.Kernel("CopyIRImage");
            kernelFindFaceLandmarks = new CLCalc.Program.Kernel("FindFaceLandmarks");
        }
Esempio n. 34
0
 /// <summary>Creates the diagonal matrix D(v) with elements associated to those of vector v. Uses the same objects.</summary>
 /// <param name="v">Reference vector</param>
 public floatDiag(floatVector v)
 {
     nRows = v.Length;
     nCols = v.Length;
     this.Values = v.Values;
     this.CLValues = v.CLValues;
 }
Esempio n. 35
0
        /// <summary>Compiles code and initializes kernel for this svm stance</summary>
        private void CLSVMInit()
        {
            if (CLResource == null) CLResource = new int[0];

            lock (CLResource)
            {
                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown) CLCalc.InitCL();
                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    if (kernelComputeKernelRBF == null)
                    {
                        CLSVMSrc s = new CLSVMSrc();
                        CLCalc.Program.Compile(new string[] { s.srcKernels, s.srcFindMaxMinErr, s.srcMultClass });

                        //Kernel computation
                        kernelComputeKernelRBF = new CLCalc.Program.Kernel("ComputeKernelRBF");

                        kernelMaxErr = new CLCalc.Program.Kernel("maxErr");
                        kernelComputeMax = new CLCalc.Program.Kernel("computeMax");
                        kernelMinErr = new CLCalc.Program.Kernel("minErr");
                        kernelComputeMin = new CLCalc.Program.Kernel("computeMin");
                        kernelGetResp = new CLCalc.Program.Kernel("getResp");

                        //Update error
                        kernelUpdateErr = new CLCalc.Program.Kernel("UpdateErr");

                        //Multiple classification
                        kernelComputeMultiKernelRBF = new CLCalc.Program.Kernel("ComputeMultiKernelRBF");
                        kernelSumKernels=new CLCalc.Program.Kernel("SumKernels");
                    }

                    //Memory obbjects

                    //Find max/min
                    CLErrLen = new CLCalc.Program.Variable(new int[1]);
                    HostResp = new int[1];
                    CLResp = new CLCalc.Program.Variable(HostResp);
                    CLMaxMinErrs = new CLCalc.Program.Variable(new float[MAXMINWORKSIZE]);
                    CLMaxMinInds = new CLCalc.Program.Variable(new int[MAXMINWORKSIZE]);
                    //Update error
                    CLUpdtErrParams = new CLCalc.Program.Variable(new float[3]);
                }
            }
        }
Esempio n. 36
0
            /// <summary>Creates vector from M elements sequentially</summary>
            /// <param name="symM">Symmetric matrix to use</param>
            public floatVector(floatSymPosDefMatrix symM)
            {
                this.CLValues = symM.CLValues;
                this.Values = symM.Values;

                //Since I'm probably going to modify the matrix, I want a new Cholesky factorization
                //if I ever call a LinearSolve
                symM.IsCholeskyFactorized = false;

                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    CLCoef = new CLCalc.Program.Variable(new float[1]);
                }
            }
Esempio n. 37
0
            private void LocalInitCL()
            {
                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown) CLCalc.InitCL();

                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    CLoffSet = new CLCalc.Program.Variable(new int[1]);
                    CLValues = new CLCalc.Program.Variable(this.Values);

                    invL11 = new float[(SUBMATRIXSIZE * (SUBMATRIXSIZE + 1)) >> 1];
                    CLinvl11 = new CLCalc.Program.Variable(invL11);

                    int NMultiple = N;
                    if (N % SUBMATRIXSIZE != 0)
                    {
                        NMultiple = N / SUBMATRIXSIZE;
                        NMultiple = SUBMATRIXSIZE * (NMultiple + 1);
                        cholDec = new float[(NMultiple * (NMultiple + 1)) >> 1];
                        for (int i = 0; i < Values.Length; i++) cholDec[i] = Values[i];
                    }
                    else
                    {
                        cholDec = (float[])this.Values.Clone();
                    }

                    CLcholDec = new CLCalc.Program.Variable(cholDec);
                    CLprevVals = new CLCalc.Program.Variable(new float[N]);

                    CLb = new CLCalc.Program.Variable(new float[N]);
                    CLy = new CLCalc.Program.Variable(new float[N]);
                    CLn = new CLCalc.Program.Variable(new int[] { N });
                }
            }
Esempio n. 38
0
            private void linsolveCL(floatVector CLbb, ref floatVector resp)
            {
                if (CLCalc.CLAcceleration != CLCalc.CLAccelerationType.UsingCL)
                {
                    linsolve(CLbb.Values, ref resp);
                    return;
                }

                //int NMultiple = N;
                ////float[] bAugm;
                //if (N % SUBMATRIXSIZE != 0)
                //{
                //    NMultiple = N / SUBMATRIXSIZE;
                //    NMultiple = SUBMATRIXSIZE * (NMultiple + 1);
                //}
                ////bAugm = new float[NMultiple];
                ////for (int i = 0; i < bb.Length; i++) bAugm[i] = bb[i];

                if (resp == null) resp = new floatVector(new float[N]);

                //Copy elements to CLb
                if (CLb == null || CLb.OriginalVarLength < CLbb.Length) CLb = new CLCalc.Program.Variable(CLbb.Values);
                kernelCopyBuffer.Execute(new CLCalc.Program.MemoryObject[] { CLbb.CLValues, CLb }, CLbb.Length);

                CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLcholDec, CLy, CLb, CLoffSet, CLn };
                int[] offset = new int[1];

                //float[] yDebug = new float[N];
                //float[] bDebug = new float[N];

                //Forward substitution
                int i;
                for (i = 0; i < N; i += SUBMATRIXSIZE)
                {
                    offset[0] = i;
                    CLoffSet.WriteToDevice(offset);

                    int size = Math.Min(SUBMATRIXSIZE, N - i);
                    kernelFwdUpperBackSubs.Execute(args, new int[] { size }, new int[] { size });

                    ////DEBUG
                    //CLy.ReadFromDeviceTo(yDebug);
                    //CLb.ReadFromDeviceTo(bDebug);

                    //propagation
                    if (i + SUBMATRIXSIZE < N)
                    {
                        kernelFwdPropag.Execute(args, N - i - SUBMATRIXSIZE);
                    }

                    ////DEBUG
                    //CLy.ReadFromDeviceTo(yDebug);
                    //CLb.ReadFromDeviceTo(bDebug);
                    //CLcholDec.ReadFromDeviceTo(cholDec);
                }

                //Backward subst. Stores answer in CLb
                args = new CLCalc.Program.Variable[] { CLcholDec, CLb, CLy, CLoffSet, CLn };
                //Backward substitution
                for (i = N - SUBMATRIXSIZE; i >= 0; i -= SUBMATRIXSIZE)
                {
                    offset[0] = i;
                    CLoffSet.WriteToDevice(offset);

                    int size = SUBMATRIXSIZE;
                    kernelBkLowerBackSubs.Execute(args, new int[] { size }, new int[] { size });

                    ////DEBUG
                    //CLy.ReadFromDeviceTo(yDebug);
                    //CLb.ReadFromDeviceTo(bDebug);

                    if (i > 0)
                    {
                        kernelBackPropag.Execute(args, i);
                    }

                    //CLy.ReadFromDeviceTo(yDebug);
                    //CLb.ReadFromDeviceTo(bDebug);
                }
                if (SUBMATRIXSIZE + i > 0)
                {
                    offset[0] = 0; CLoffSet.WriteToDevice(offset);
                    kernelBkLowerBackSubs.Execute(args, new int[] { SUBMATRIXSIZE + i }, new int[] { SUBMATRIXSIZE + i });
                }
                //CLy.ReadFromDeviceTo(yDebug);
                //CLb.ReadFromDeviceTo(bDebug);

                kernelCopyBuffer.Execute(new CLCalc.Program.Variable[] { CLb, resp.CLValues }, N);
            }
Esempio n. 39
0
        /// <summary>Classifies multiple samples stored in OpenCL memory</summary>
        /// <param name="Samples">Samples data to classify</param>
        /// <param name="svm">SVM to use as classifier</param>
        public static float[] MultiClassify(SVM svm, CLCalc.Program.Image2D Samples)
        {
            float[] resp = new float[Samples.Height];

            //svm.WriteToDevice();

            if ((Samples.Width << 2) != svm.HostVLen[0]) throw new Exception("Invalid Samples width, should be the same length of training features");

            if (svm.CLKernelValuesMultiClassify == null || svm.CLKernelValuesMultiClassify.OriginalVarLength != svm.alphaList.Count * Samples.Height)
            {
                svm.CLKernelValuesMultiClassify = new CLCalc.Program.Variable(new float[svm.alphaList.Count * Samples.Height]);
            }

            if (svm.CLAlphas == null || svm.CLAlphas.OriginalVarLength != svm.alphaList.Count)
            {
                svm.CLAlphas = new CLCalc.Program.Variable(svm.alphaList.ToArray());

                float[] ys = new float[svm.TrainingSet.trainingArray.Count];
                for (int i = 0; i < ys.Length; i++) ys[i] = svm.TrainingSet.trainingArray[i].y;

                svm.CLys = new CLCalc.Program.Variable(ys);
            }
            if (svm.CLb==null)
            {
                svm.CLb = new CLCalc.Program.Variable(new float[] { svm.b });
                svm.CLQtdSupVecs = new CLCalc.Program.Variable(new int[] { svm.alphaList.Count });
                CLMultiClassifSums = new CLCalc.Program.Variable(new float[Samples.Height]);
            }

            if (CLMultiClassifSums.OriginalVarLength != Samples.Height)
            {
                CLMultiClassifSums = new CLCalc.Program.Variable(new float[Samples.Height]);
            }

            //svm.CLAlphas.WriteToDevice(svm.alphaList.ToArray());
            //svm.CLys.WriteToDevice(ys);
            //svm.CLb.WriteToDevice(new float[] { svm.b });
            //svm.CLQtdSupVecs.WriteToDevice(new int[] { svm.alphaList.Count });

            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { svm.CLTrainingFeatures, svm.CLQtdSupVecs, svm.CLXVecLen, Samples, svm.CLKernelValuesMultiClassify, svm.CLLambda };
            kernelComputeMultiKernelRBF.Execute(args, new int[] { svm.alphaList.Count, Samples.Height });

            CLCalc.Program.Sync();

            args = new CLCalc.Program.MemoryObject[] { svm.CLAlphas, svm.CLQtdSupVecs, svm.CLXVecLen, svm.CLys, svm.CLKernelValuesMultiClassify, svm.CLb, CLMultiClassifSums };
            kernelSumKernels.Execute(args, Samples.Height);

            CLMultiClassifSums.ReadFromDeviceTo(resp);
            return resp;
        }
Esempio n. 40
0
        /// <summary>Writes Training Set into device memory</summary>
        private void WriteToDevice()
        {
            //Vector length
            if (HostVLen == null)
            {
                HostVLen = new int[1];
                HostVLen[0] = (1 + ((TrainingSet.trainingArray[0].xVector.Length - 1) >> 2)) << 2;
            }

            //Populates OpenCL buffer
            if (TrainingFeatures == null) // || TrainingFeatures.Length != TrainingSet.getN * HostVLen[0])
            {
                TrainingFeatures = new float[TrainingSet.getN * HostVLen[0]];
            }

            for (int i = 0; i < TrainingSet.getN; i++)
            {
                for (int j = 0; j < TrainingSet.trainingArray[0].xVector.Length; j++)
                {
                    TrainingFeatures[j + i * HostVLen[0]] = TrainingSet.trainingArray[i].xVector[j];
                }
            }

            if (CLCalc.CLAcceleration != CLCalc.CLAccelerationType.UsingCL) return;
            lock (CLResource)
            {
                //Writes to OpenCL memory
                //if (CLTrainingFeatures != null) CLTrainingFeatures.Dispose();
                if (CLTrainingFeatures == null || CLTrainingFeatures.OriginalVarLength != TrainingFeatures.Length)
                {
                    if (CLTrainingFeatures != null)
                        CLTrainingFeatures.Dispose();
                    CLTrainingFeatures = new CLCalc.Program.Variable(TrainingFeatures);
                }
                else CLTrainingFeatures.WriteToDevice(TrainingFeatures);

                //if (CLXVecLen != null) CLXVecLen.Dispose();
                if (CLXVecLen == null) CLXVecLen = new CLCalc.Program.Variable(HostVLen);
                else CLXVecLen.WriteToDevice(HostVLen);

                HostSample = new float[HostVLen[0]];
                //if (CLSample != null) CLSample.Dispose();
                if (CLSample == null) CLSample = new CLCalc.Program.Image2D(HostSample, HostVLen[0] >> 2, 1);
                else CLSample.WriteToDevice(HostSample);

                //if (CLKernelValues != null) CLKernelValues.Dispose();
                if (CLKernelValues == null || CLKernelValues.OriginalVarLength != TrainingSet.getN) CLKernelValues = new CLCalc.Program.Variable(new float[TrainingSet.getN]);
                else CLKernelValues.WriteToDevice(new float[TrainingSet.getN]);

                //if (CLLambda != null) CLLambda.Dispose();
                if (CLLambda == null)
                    CLLambda = new CLCalc.Program.Variable(new float[] { this.ProblemCfg.lambda });
                else CLLambda.WriteToDevice(new float[] { this.ProblemCfg.lambda });
            }
        }
Esempio n. 41
0
        /// <summary>Constructor.</summary>
        /// <param name="InitialState">Initial state of system</param>
        /// <param name="StepSize">Desired step per integration pass</param>
        /// <param name="InitialIndepVarValue">Initial independent variable value</param>
        /// <param name="DerivativeCalculator">Function to calculate derivatives vector</param>
        public doubleODE46(double InitialIndepVarValue, double StepSize, double[] InitialState, DerivCalcDeleg DerivativeCalculator)
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
            {
                CLCalc.InitCL();
            }

            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.NotUsingCL)
                throw new Exception("OpenCL not available");

            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
            {
                ODE46Source Source = new ODE46Source();
                string[] s = new string[] { @"
                            #pragma OPENCL EXTENSION cl_khr_fp64 : enable
                            ", Source.doubleStep2, Source.doubleStep3, Source.doubleStep4, Source.doubleStep5, Source.doubleStep6, Source.doubleFinalizeCalc };
                CLCalc.Program.Compile(s);

                //Calculador de derivada
                Derivs = DerivativeCalculator;

                //Scalars
                double[] xx = new double[1] { InitialIndepVarValue };
                x = new CLCalc.Program.Variable(xx);
                xsav = new CLCalc.Program.Variable(xx);

                //Sets initial values to Device and local variables
                hdid = new CLCalc.Program.Variable(xx);
                currentX = InitialIndepVarValue;
                SetStep(StepSize);

                //Vectors
                yy = new double[InitialState.Length];
                for (int i = 0; i < InitialState.Length; i++) yy[i] = InitialState[i];

                ysav = new CLCalc.Program.Variable(yy);
                k1 = new CLCalc.Program.Variable(InitialState);
                k2 = new CLCalc.Program.Variable(InitialState);
                k3 = new CLCalc.Program.Variable(InitialState);
                k4 = new CLCalc.Program.Variable(InitialState);
                k5 = new CLCalc.Program.Variable(InitialState);
                k6 = new CLCalc.Program.Variable(InitialState);
                absError = new CLCalc.Program.Variable(new double[InitialState.Length]);

                y = new CLCalc.Program.Variable(yy);

                //Kernels
                KernelFinalizeCalc = new CLCalc.Program.Kernel("doubleFinalizeCalc");
                KernelUpdateX = new CLCalc.Program.Kernel("doubleUpdateX");
                KernelRK46YStep2 = new CLCalc.Program.Kernel("doubleYStep2");
                KernelRK46XStep2 = new CLCalc.Program.Kernel("doubleXStep2");
                KernelRK46YStep3 = new CLCalc.Program.Kernel("doubleYStep3");
                KernelRK46XStep3 = new CLCalc.Program.Kernel("doubleXStep3");
                KernelRK46YStep4 = new CLCalc.Program.Kernel("doubleYStep4");
                KernelRK46XStep4 = new CLCalc.Program.Kernel("doubleXStep4");
                KernelRK46YStep5 = new CLCalc.Program.Kernel("doubleYStep5");
                KernelRK46XStep5 = new CLCalc.Program.Kernel("doubleXStep5");
                KernelRK46YStep6 = new CLCalc.Program.Kernel("doubleYStep6");
                KernelRK46XStep6 = new CLCalc.Program.Kernel("doubleXStep6");

                //Kernel arguments
                ArgsFinalize = new CLCalc.Program.Variable[] { x, hdid, y, ysav, absError, k1, k2, k3, k4, k5, k6 };
                ArgsRK46Y = new CLCalc.Program.Variable[] { x, hdid, y, ysav, k1, k2, k3, k4, k5, k6 };
                ArgsRK46X = new CLCalc.Program.Variable[] { x, hdid, xsav };
                NStates = new int[1] { InitialState.Length };
                NScalar = new int[1] { 1 };

                //Data retrieving
                yerr = new double[NStates[0]];
                xRet = new double[NScalar[0]];

            }
        }
Esempio n. 42
0
            /// <summary>Computes transpose(A)*A and transpose(A)*b weighted by W using OpenCL. Lambda is regularization term</summary>
            private static floatSymPosDefMatrix AuxLSAtACL(floatMatrix A, floatDiag W, floatVector lambda, ref floatSymPosDefMatrix AtA)
            {
                if (AtA == null || AtA.CLValues.OriginalVarLength != (A.Cols * (A.Cols + 1)) >> 1)
                {
                    AtA = new floatSymPosDefMatrix(new float[(A.Cols * (A.Cols + 1)) >> 1]);
                }

                CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { A.CLValues, A.CLDim, W.CLValues, AtA.CLValues, lambda.CLValues };
                kernelComputeAtWA.Execute(args, AtA.CLValues.OriginalVarLength);

                //Just modified values in CL memory, matrix is no longer Cholesky factorized
                AtA.IsCholeskyFactorized = false;

                return AtA;
            }
Esempio n. 43
0
        /// <summary>Solves linear system Mx = b using conjugate gradient method. Doesn't try to improve the solution obtained.</summary>
        /// <param name="M">Matrix M</param>
        /// <param name="b">Vector b</param>
        /// <param name="tol">Error tolerance</param>
        public void LinSolveCLStep(CLImgSparseMatrix M, CLImgVector b, float tol)
        {
            int n    = b.Length;
            int nBy4 = 1 + ((n - 1) >> 2);

            if (lambda == null)
            {
                lambda   = new float[1];
                CLlambda = new CLCalc.Program.Variable(lambda);
            }

            if (r == null || r.Length != n)
            {
                r    = new CLImgVector(n);
                p    = new CLImgVector(n);
                x    = new CLImgVector(n);
                Ap   = new CLImgVector(n);
                temp = new CLImgVector(n);
            }
            if (temp == null)
            {
                temp = new CLImgVector(n);
            }

            float alpha, beta, RDotROld, RDotR;

            //Initialization
            Multiply(M, x, Ap);

            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { b.CLVector, Ap.CLVector, r.CLVector, p.CLVector };
            kernelInitRP.Execute(args, nBy4);

            //Loop
            int count = 0;

            RDotR = DotProduct(r, r);

            while ((RDotR > tol) && (count < n * MAXITER))
            {
                RDotROld = RDotR;

                //if ((count & 0x0080) == 0)
                //{
                //    Multiply(M, x, Ap);

                //    args = new CLCalc.Program.MemoryObject[] { b.CLVector, Ap.CLVector, r.CLVector, p.CLVector };
                //    kernelInitRP.Execute(args, nBy4);
                //}

                Multiply(M, p, Ap);

                alpha = RDotROld / DotProduct(Ap, p);

                //Update x
                kernelCopyToTemp.Execute(new CLCalc.Program.MemoryObject[] { x.CLVector, temp.CLVector }, nBy4);
                lambda[0] = alpha; CLlambda.WriteToDevice(lambda);
                kernelMultiplyAdd.Execute(new CLCalc.Program.MemoryObject[] { CLlambda, p.CLVector, temp.CLVector, x.CLVector }, nBy4);

                //Update r
                kernelCopyToTemp.Execute(new CLCalc.Program.MemoryObject[] { r.CLVector, temp.CLVector }, nBy4);
                lambda[0] = -alpha; CLlambda.WriteToDevice(lambda);
                kernelMultiplyAdd.Execute(new CLCalc.Program.MemoryObject[] { CLlambda, Ap.CLVector, temp.CLVector, r.CLVector }, nBy4);

                RDotR = DotProduct(r, r);
                beta  = RDotR / RDotROld;

                //Update p
                kernelCopyToTemp.Execute(new CLCalc.Program.MemoryObject[] { p.CLVector, temp.CLVector }, nBy4);
                lambda[0] = beta; CLlambda.WriteToDevice(lambda);
                kernelMultiplyAdd.Execute(new CLCalc.Program.MemoryObject[] { CLlambda, temp.CLVector, r.CLVector, p.CLVector }, nBy4);

                count++;
            }
        }
Esempio n. 44
0
        /// <summary>Finds minimum E[i] in SVM and returns corresponding i (returns arg min E[i])</summary>
        /// <param name="svm">SVM to check</param>
        private static int CLFindMinError(SVM svm)
        {
            CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { svm.CLerr, svm.CLErrLen, svm.CLMaxMinErrs, svm.CLMaxMinInds };
            lock (CLResource)
            {
                //Majority of Minimums
                kernelMinErr.Execute(args, MAXMINWORKSIZE);

                //Computes values
                args = new CLCalc.Program.Variable[] { svm.CLMaxMinErrs, svm.CLMaxMinInds };
                int i = MAXMINWORKSIZE >> 1;
                while (i > 0)
                {
                    kernelComputeMin.Execute(args, i);
                    i = (i >> 1);
                }

                //Retrieves index
                args = new CLCalc.Program.Variable[] { svm.CLMaxMinInds, svm.CLResp };
                kernelGetResp.Execute(args, 1);

                svm.CLResp.ReadFromDeviceTo(svm.HostResp);
            }
            return svm.HostResp[0];
        }
Esempio n. 45
0
            /// <summary>Cholesky decomposition using OpenCL with Blocks</summary>
            public void CLBlockCholesky()
            {
                //If matrix dimension is not a multiple of SUBMATRIXSIZE
                //pad with zeros.

                int NMultiple = N;
                if (N % SUBMATRIXSIZE != 0)
                {
                    NMultiple = N / SUBMATRIXSIZE;
                    NMultiple = SUBMATRIXSIZE * (NMultiple + 1);
                }

                if (!IsMatrixInClMemoryUpdated)
                {
                    for (int i = 0; i < Values.Length; i++) cholDec[i] = Values[i];
                    CLcholDec.WriteToDevice(cholDec);
                }
                else
                {
                    kernelCopyBuffer.Execute(new CLCalc.Program.MemoryObject[] { CLValues, CLcholDec }, CLValues.OriginalVarLength);
                }

                int SubMatrixSize = SUBMATRIXSIZE;
                int GlobalSize;

                //Important. Set offset to zero
                CLoffSet.WriteToDevice(new int[] { 0 });
                CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLcholDec, CLoffSet, CLinvl11 };

                GlobalSize = (SubMatrixSize * (SubMatrixSize + 1)) >> 1;
                for (int i = 0; i < NMultiple; i += SubMatrixSize)
                {
                    //Computes Cholesky factor L11 and its inverse
                    kernelCholeskyDiagBlock.Execute(args, new int[] { GlobalSize }, new int[] { GlobalSize });

                    //CLcholDec.ReadFromDeviceTo(cholDec);

                    //Computes column panel L21
                    //Note: offSet has been updated, kernel should use its value-1

                    //Number of submatrices to update: (N-i)/SubMatrixSize
                    int nSubMatrices = (NMultiple - i) / SubMatrixSize - 1;

                    if (nSubMatrices > 0)
                    {
                        //Computes panels and updates main diagonals
                        kernelCholeskyComputePanel.Execute(args, new int[] { nSubMatrices * SubMatrixSize, SubMatrixSize }, new int[] { SubMatrixSize, SubMatrixSize });

                        //CLcholDec.ReadFromDeviceTo(cholDec);

                        //Still need to update nSubMatrices*(nSubMatrices-1)/2 full matrices in the Cholesky decomposition
                        //They start at indexes [i+SubMatrixSize i], and they are the offdiagonal block matrices

                        int totalSubMatricesToUpdate = ((nSubMatrices - 1) * nSubMatrices) >> 1;
                        if (totalSubMatricesToUpdate > 0)
                        {
                            kernelCholeskyForwardProp.Execute(args, new int[] { totalSubMatricesToUpdate * SubMatrixSize, SubMatrixSize }, new int[] { SubMatrixSize, SubMatrixSize });
                        }
                    }

                    //CLcholDec.ReadFromDeviceTo(cholDec);
                }

                //CLcholDec.ReadFromDeviceTo(cholDec);
                this.IsCholeskyFactorized = true;
            }
        public void Initialize(BaseCameraApplication capture)
        {
            DepthCameraFrame frame = capture.GetDevices()[0].GetDepthImage();
            try
            {
                StreamReader reader = new StreamReader(new MemoryStream(Perceptual.Foundation.Properties.Resources.AdaptiveTemporalFilter));
                string text = reader.ReadToEnd();
                CLCalc.Program.Compile(capture.GetPrimaryDevice().GetPreprocessCode() + "\n#define HISTORY_SIZE " + historySize + "\n" + text);
                reader.Close();

            }
            catch (Exception ex)
            {
                System.Console.WriteLine(ex.Message);
                System.Console.WriteLine("Could not find AdaptiveTemporalFilter.cl");
                Environment.Exit(1);
            }
            historyIndex = new CLCalc.Program.Value<int>(historySize - 1);
            updateBuffer = new CLCalc.Program.Kernel("UpdateFilter");
            copyToTemporalBuffer = new CLCalc.Program.Kernel("CopyToTemporalBuffer");
            depthBuffer = CLCalc.Program.Variable.Create(new ComputeBuffer<float>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite, 4 * frame.Width * frame.Height));
            depthCopyBuffer = new CLCalc.Program.Variable(new float[4 * frame.Width * frame.Height]);
            depthTemporalBuffer = CLCalc.Program.Variable.Create(new ComputeBuffer<float>(CLCalc.Program.Context, ComputeMemoryFlags.ReadWrite, historySize * 4 * frame.Width * frame.Height));

            depthImage = new CLCalc.Program.Image2D(new float[frame.Height * frame.Width * 4], frame.Width, frame.Height);
            uvImage = new CLCalc.Program.Image2D(new float[frame.Height * frame.Width * 4], frame.Width, frame.Height);

            kernelErodeFilter = new CLCalc.Program.Kernel("ErodeFilter");
            kernelDilateFilter = new CLCalc.Program.Kernel("DilateFilter");
            kernelCopyImage = new CLCalc.Program.Kernel("CopyImage");

            kernelCopyBuffer = new CLCalc.Program.Kernel("CopyDepth");
            kernelMedianFilter1 = new CLCalc.Program.Kernel("SmallFilter");
            kernelMedianFilter2 = new CLCalc.Program.Kernel("LargeFilter");
        }
Esempio n. 47
0
            /// <summary>Backsubstitutes to solve a linear system with a matrix right hand size</summary>
            private void LinsolveCLMatrix(floatMatrix M, ref floatMatrix resp)
            {
                //System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
                //System.Diagnostics.Stopwatch sw1 = new System.Diagnostics.Stopwatch();
                //sw.Start();

                //number of RHS as multiple of SUBMATRIXSIZE
                int nRHSMult = M.Rows / SUBMATRIXSIZE;
                int nRHSleftOver = M.Rows - SUBMATRIXSIZE*nRHSMult;

                if (CLCalc.CLAcceleration != CLCalc.CLAccelerationType.UsingCL)
                {
                    linsolveMatrix(M, ref resp);
                    return;
                }

                //Copy elements to CLb
                if (CLb == null || CLb.OriginalVarLength < M.Values.Length)
                {
                    CLb = new CLCalc.Program.Variable(M.Values);
                    CLy = new CLCalc.Program.Variable(M.Values);
                }

                kernelCopyBuffer.Execute(new CLCalc.Program.MemoryObject[] { M.CLValues, CLb }, M.Values.Length);
                int nEqs = M.Rows;

                CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLcholDec, CLy, CLb, CLoffSet, CLn };
                int[] offset = new int[1];

                //DEBUG
                //float[] yDebug = new float[M.Values.Length];
                //float[] bDebug = new float[M.Values.Length];
                //this.CLcholDec.ReadFromDeviceTo(cholDec);

                //Forward substitution
                int i;
                for (i = 0; i < N; i += SUBMATRIXSIZE)
                {
                    offset[0] = i;
                    CLoffSet.WriteToDevice(offset);

                    int size = Math.Min(SUBMATRIXSIZE, N - i);
                    kernelFwdUpperBackSubs.Execute(args, new int[] { size, nEqs }, new int[] { size, 1 });

                    ////DEBUG
                    //CLy.ReadFromDeviceTo(yDebug);
                    //CLb.ReadFromDeviceTo(bDebug);

                    //sw1.Start();
                    //propagation
                    if (i + SUBMATRIXSIZE < N)
                    {
                        if (nRHSMult > 0) kernelFwdPropag.Execute(args, new int[] { N - i - SUBMATRIXSIZE, nRHSMult * SUBMATRIXSIZE }, new int[] { 1, SUBMATRIXSIZE });
                        if (nRHSleftOver > 0)
                            kernelFwdPropag2.Execute(args, new int[] { N - i - SUBMATRIXSIZE, nRHSleftOver }, new int[] { 1, nRHSleftOver }, new int[] { 0, nRHSMult * SUBMATRIXSIZE });
                    }
                    //OpenCLTemplate.CLCalc.Program.CommQueues[OpenCLTemplate.CLCalc.Program.DefaultCQ].Finish();
                    //sw1.Stop();

                    ////DEBUG
                    //CLy.ReadFromDeviceTo(yDebug);
                    //CLb.ReadFromDeviceTo(bDebug);
                }

                //Backward subst. Stores answer in CLb
                args = new CLCalc.Program.Variable[] { CLcholDec, CLb, CLy, CLoffSet, CLn };
                //Backward substitution
                for (i = N - SUBMATRIXSIZE; i >= 0; i -= SUBMATRIXSIZE)
                {
                    offset[0] = i;
                    CLoffSet.WriteToDevice(offset);

                    int size = SUBMATRIXSIZE;
                    kernelBkLowerBackSubs.Execute(args, new int[] { size, nEqs }, new int[] { size, 1 });

                    if (i > 0)
                    {
                        //Propagation using __local storage
                        if (nRHSMult > 0) kernelBackPropag.Execute(args, new int[] { i, nRHSMult * SUBMATRIXSIZE }, new int[] { 1, SUBMATRIXSIZE });

                        //leftovers (not multiples of SUBMATRIXSIZE)
                        if (nRHSleftOver > 0)
                            kernelBackPropag2.Execute(args, new int[] { i, nRHSleftOver }, new int[] { 1, nRHSleftOver }, new int[] { 0, nRHSMult * SUBMATRIXSIZE });

                    }

                }
                if (SUBMATRIXSIZE + i > 0)
                {
                    offset[0] = 0; CLoffSet.WriteToDevice(offset);
                    kernelBkLowerBackSubs.Execute(args, new int[] { SUBMATRIXSIZE + i, nEqs }, new int[] { SUBMATRIXSIZE + i, 1 });
                }

                kernelCopyBuffer.Execute(new CLCalc.Program.Variable[] { CLb, resp.CLValues }, resp.Values.Length);

                //OpenCLTemplate.CLCalc.Program.CommQueues[OpenCLTemplate.CLCalc.Program.DefaultCQ].Finish();
                //sw.Stop();
            }
Esempio n. 48
0
 /// <summary>Creates a new isosurface calculator. You may pass variables created from a OpenGL context to the CL variables if you are using interop or NULL
 /// if not using OpenCL/GL interop.</summary>
 /// <param name="FuncValues">Values of the evaluated 3D function f(x,y,z). FuncValues=float[maxX,maxY,maxZ]</param>
 /// <param name="CLEdgeCoords">OpenCL variable (float) to hold edge coordinates. Dimension has to be 9 * maxX * maxY * maxZ</param>
 /// <param name="CLEdgeNormals">OpenCL variable (float) to hold edge normals. Dimension has to be 9 * maxX * maxY * maxZ</param>
 /// <param name="CLElementArrayIndex">OpenCL variable (int) to hold element array index. Dimension has to be 5 * 3 * (maxX - 1) * (maxY - 1) * (maxZ - 1)</param>
 public MarchingCubes(float[, ,] FuncValues, CLCalc.Program.Variable CLEdgeCoords, CLCalc.Program.Variable CLEdgeNormals, CLCalc.Program.Variable CLElementArrayIndex)
 {
     InitMarchingCubes(FuncValues, CLEdgeCoords, CLEdgeNormals, CLElementArrayIndex);
 }
Esempio n. 49
0
 /// <summary>OpenCL vector constructor</summary>
 /// <param name="Vals">Vector elements</param>
 public floatVector(float[] Vals)
 {
     this.Values = (float[])Vals.Clone();
     if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
     {
         CLValues = new CLCalc.Program.Variable(Values);
         CLCoef = new CLCalc.Program.Variable(new float[1]);
     }
 }
Esempio n. 50
0
        /// <summary>Creates a new isosurface calculator. You may pass variables created from a OpenGL context to the CL variables if you are using interop or NULL
        /// if not using OpenCL/GL interop.</summary>
        /// <param name="FuncValues">Values of the evaluated 3D function f(x,y,z). FuncValues=float[maxX,maxY,maxZ]</param>
        /// <param name="CLEdgeCoords">OpenCL variable (float) to hold edge coordinates. Dimension has to be 9 * maxX * maxY * maxZ</param>
        /// <param name="CLEdgeNormals">OpenCL variable (float) to hold edge normals. Dimension has to be 9 * maxX * maxY * maxZ</param>
        /// <param name="CLElementArrayIndex">OpenCL variable (int) to hold element array index. Dimension has to be 5 * 3 * (maxX - 1) * (maxY - 1) * (maxZ - 1)</param>
        private void InitMarchingCubes(float[, ,] FuncValues, CLCalc.Program.Variable CLEdgeCoords, CLCalc.Program.Variable CLEdgeNormals, CLCalc.Program.Variable CLElementArrayIndex)
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
            {
                CLCalc.InitCL();
            }

            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
            {
                //Reads maximum lengths
                int maxX = FuncValues.GetLength(0);
                int maxY = FuncValues.GetLength(1);
                int maxZ = FuncValues.GetLength(2);
                max = new int[] { maxX, maxY, maxZ };

                #region Creating variables

                //Isolevel
                isoLevel = new float[1] {
                    1.32746E-5f
                };
                varIsoLevel = new CLCalc.Program.Variable(isoLevel);

                //Step size and x0,y0,z0
                varStep     = new CLCalc.Program.Variable(step);
                varInitVals = new CLCalc.Program.Variable(initVals);

                //Create and copy function values
                funcVals   = new float[maxX * maxY * maxZ];
                CLFuncVals = new CLCalc.Program.Variable(funcVals);
                SetFuncVals(FuncValues);

                //Edge coordinates - 3 coords * 3 possible directions * number of points
                edgeCoords = new float[9 * maxX * maxY * maxZ];
                if (CLEdgeCoords != null)
                {
                    varEdgeCoords = CLEdgeCoords;
                    varEdgeCoords.WriteToDevice(edgeCoords);
                }
                else
                {
                    varEdgeCoords = new CLCalc.Program.Variable(edgeCoords);
                }

                //4 preliminary normals per edge - has to be averaged afterwards
                edgePrelimNormals    = new float[36 * maxX * maxY * maxZ];
                varEdgePrelimNormals = new CLCalc.Program.Variable(edgePrelimNormals);

                //Edge normals
                edgeNormals = new float[9 * maxX * maxY * maxZ];
                if (CLEdgeNormals != null)
                {
                    varEdgeNormals = CLEdgeNormals;
                    varEdgeNormals.WriteToDevice(edgeNormals);
                }
                else
                {
                    varEdgeNormals = new CLCalc.Program.Variable(edgeNormals);
                }

                //Number of cubes: (maxX-1)*(maxY-1)*(maxZ-1)
                //Marching cube algorithm: each cube can have 5 triangles drawn, 3 vertexes per triangle
                //q-th vertex of p-th triangle of the ijk-th cube: [(5*(i+(maxX-1)*j+k*(maxX-1)*(maxY-1))+p)*3+q]
                elementIndex = new int[5 * 3 * (maxX - 1) * (maxY - 1) * (maxZ - 1)];
                if (CLElementArrayIndex != null)
                {
                    varElemIndex = CLElementArrayIndex;
                    varElemIndex.WriteToDevice(elementIndex);
                }
                else
                {
                    varElemIndex = new CLCalc.Program.Variable(elementIndex);
                }

                //Edge remapping to build output
                edges = new int[edgeCoords.Length / 3];
                for (int i = 0; i < edges.Length; i++)
                {
                    edges[i] = -1;
                }

                #endregion

                #region Compile code and create kernels

                CLMarchingCubesSrc cmsrc = new CLMarchingCubesSrc();

                CLCalc.Program.Compile(new string[] { cmsrc.definitions, cmsrc.src });
                kernelInterpPts           = new CLCalc.Program.Kernel("interpPts");
                kernelPolygonize          = new CLCalc.Program.Kernel("Polygonize");
                kernelSmoothNormals       = new CLCalc.Program.Kernel("SmoothNormals");
                kernelPolygonizeNoNormals = new CLCalc.Program.Kernel("PolygonizeNoNormals");
                #endregion
            }
            else
            {
                throw new Exception("OpenCL not available");
            }
        }
Esempio n. 51
0
            /// <summary>Sums the components of a vector using __local memory and coalesced access</summary>
            /// <param name="CLv">Vector whose components should be summed</param>
            public static float SumVectorElements(floatVector CLv)
            {
                float resp = 0;
                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    /*
                     The idea here is to create a reduction in which the access pattern to the vectors is coalesced.
                     The first step is to reduce the number of non-summed items to a multiple of NWORKITEMS and then coalesce the access
                     */

                    int LOCALWORKSIZE = Math.Min(256, (int)CLCalc.Program.CommQueues[CLCalc.Program.DefaultCQ].Device.MaxWorkGroupSize);
                    int NWORKITEMS = 16 * LOCALWORKSIZE;

                    int n = CLv.Length;
                    float[] resps = new float[NWORKITEMS];
                    if (CLv.CLresps == null)
                    {
                        CLv.CLresps = new CLCalc.Program.Variable(resps);
                        CLv.CLn = new CLCalc.Program.Variable(new int[1]);
                    }

                    CLv.CLn.WriteToDevice(new int[] { n });
                    CLCalc.Program.Variable[] args = new CLCalc.Program.Variable[] { CLv.CLValues, CLv.CLresps, CLv.CLn };

                    //Write n = k*NWORKITEMS + p. Preprocess to eliminate p`s and leave summation only to a multiple of NWORKITEMS
                    int k = n / NWORKITEMS;
                    int p = n - k * NWORKITEMS;

                    //Clears partial responses
                    kernelClear.Execute(args, NWORKITEMS);

                    //Sums the p last elements into the p first elements
                    kernelPreSum.Execute(args, p);

                    //Use CLn to inform each work-item its workload. Each one will access and sum k numbers
                    CLv.CLn.WriteToDevice(new int[] { k });

                    kernelCoalLocalSum.Execute(args, new int[] { NWORKITEMS }, new int[] { LOCALWORKSIZE });

                    CLv.CLresps.ReadFromDeviceTo(resps);

                    //Serial part
                    int imax = NWORKITEMS / LOCALWORKSIZE;
                    for (int i = 0; i < imax; i++) resp += resps[i];

                }
                else
                {
                    double sum = 0;
                    for (int i = 0; i < CLv.Length; i++) sum += CLv.Values[i];
                    resp = (float)sum;
                }

                return resp;
            }
        public void Initialize(BaseCameraApplication app, OpenTKWrapper.CLGLInterop.GLAdvancedRender glw)
        {
            try
            {
                CLCalc.Program.Compile(app.GetPrimaryDevice().GetPreprocessCode() + src);
            }
            catch (BuildProgramFailureComputeException ex)
            {
                System.Console.WriteLine(ex.Message);
                Environment.Exit(1);
            }
            kernelCopyImage = new CLCalc.Program.Kernel("CopyImageToMesh");
            BoundingBox bbox = app.GetPrimaryDevice().GetBoundingBox();
            int w = app.GetPrimaryDevice().GetDepthImage().Width;
            int h = app.GetPrimaryDevice().GetDepthImage().Height;
            int size = w * h;
            ColorData = new float[16 * size];
            PositionData = new float[16 * size];
            NormalData = new float[12 * size];
            for (int i = 0; i < size; i++)
            {
                PositionData[4 * i] = (i / w) - w / 2;
                PositionData[4 * i + 2] = i % w - h / 2;
                PositionData[4 * i + 1] = i % 7;
                PositionData[4 * i + 3] = 1.0f;

            }

            GL.GenBuffers(3, QuadMeshBufs);

            GL.BindBuffer(BufferTarget.ArrayBuffer, QuadMeshBufs[0]);
            GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(ColorData.Length * sizeof(float)), ColorData, BufferUsageHint.StreamDraw);

            GL.BindBuffer(BufferTarget.ArrayBuffer, QuadMeshBufs[1]);
            GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(PositionData.Length * sizeof(float)), PositionData, BufferUsageHint.StreamDraw);//Notice STREAM DRAW

            GL.BindBuffer(BufferTarget.ArrayBuffer, QuadMeshBufs[2]);
            GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(NormalData.Length * sizeof(float)), NormalData, BufferUsageHint.StreamDraw);//Notice STREAM DRAW

            colorBuffer = new CLCalc.Program.Variable(QuadMeshBufs[0], typeof(float));
            positionBuffer = new CLCalc.Program.Variable(QuadMeshBufs[1], typeof(float));
            normalBuffer = new CLCalc.Program.Variable(QuadMeshBufs[2], typeof(float));

            GL.BindBuffer(BufferTarget.ArrayBuffer, 0);
            GL.Enable(EnableCap.Blend);
        }
Esempio n. 53
0
 /// <summary>OpenCL diagonal matrix constructor</summary>
 /// <param name="Vals">Main diagonal elements</param>
 public floatDiag(float[] Vals)
 {
     this.Values = (float[])Vals.Clone();
     if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
     {
         CLValues = new CLCalc.Program.Variable(Values);
     }
     nRows = Vals.Length;
     nCols = Vals.Length;
 }
Esempio n. 54
0
        /// <summary>Constructor.</summary>
        public SparseLinalg()
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
            {
                try { CLCalc.InitCL(); }
                catch
                {
                }
            }

            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
            {
                //Creates control variables
                dprod = new float[SparseLinalg.GLOBALWORKSIZE];
                dotProd = new CLCalc.Program.Variable(dprod);
                dotProdSum = new CLCalc.Program.Variable(new float[1]);

                int[] i = new int[1];
                vLenBy4 = new CLCalc.Program.Variable(i);

                CLNonZeroElemsPerRow = new CLCalc.Program.Variable(new int[1]);
            }
        }
Esempio n. 55
0
            /// <summary>New matrix constructor</summary>
            /// <param name="Vals">Matrix values</param>
            public floatMatrix(float[,] Vals)
            {
                nRows = Vals.GetLength(0);
                nCols = Vals.GetLength(1);
                Values = new float[nRows * nCols];

                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    CLValues = new CLCalc.Program.Variable(Values);
                    CLDim = new CLCalc.Program.Variable(new int[] { nRows, nCols });
                    CLCoef = new CLCalc.Program.Variable(new float[1]);
                }

                SetValues(Vals);
            }
Esempio n. 56
0
        /// <summary>Solves linear system Mx = b using conjugate gradient method. Doesn't try to improve the solution obtained.</summary>
        /// <param name="M">Matrix M</param>
        /// <param name="b">Vector b</param>
        /// <param name="tol">Error tolerance</param>
        /// <param name="x">Initial guess</param>
        public void LinSolveCLStep(CLImgSparseMatrix M, CLImgVector b, float tol, ref CLImgVector x)
        {
            int n = b.Length;
            int nBy4 = 1 + ((n - 1) >> 2);

            if (lambda == null)
            {
                lambda = new float[1];
                CLlambda = new CLCalc.Program.Variable(lambda);
            }

            if (r == null || r.Length != n)
            {
                r = new CLImgVector(n);
                p = new CLImgVector(n);
                //x = new CLImgVector(n);
                Ap = new CLImgVector(n);
                temp = new CLImgVector(n);
            }
            if (temp == null) temp = new CLImgVector(n);

            if (x == null || x.Length != n) x = new CLImgVector(n);

            float alpha, beta, RDotROld, RDotR;

            //Initialization
            Multiply(M, x, Ap);

            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { b.CLVector, Ap.CLVector, r.CLVector, p.CLVector };
            kernelInitRP.Execute(args, nBy4);

            //Loop
            int count = 0;

            RDotR = DotProduct(r, r);

            while (count<1 || ((RDotR > tol) && (count < n*MAXITER)))
            {
                RDotROld = RDotR;

                //if ((count & 0x0080) == 0)
                //{
                //    Multiply(M, x, Ap);

                //    args = new CLCalc.Program.MemoryObject[] { b.CLVector, Ap.CLVector, r.CLVector, p.CLVector };
                //    kernelInitRP.Execute(args, nBy4);
                //}

                Multiply(M, p, Ap);

                alpha = RDotROld / DotProduct(Ap, p);

                //Update x
                kernelCopyToTemp.Execute(new CLCalc.Program.MemoryObject[] { x.CLVector, temp.CLVector }, nBy4);
                lambda[0] = alpha; CLlambda.WriteToDevice(lambda);
                kernelMultiplyAdd.Execute(new CLCalc.Program.MemoryObject[] { CLlambda, p.CLVector, temp.CLVector, x.CLVector }, nBy4);

                //Update r
                kernelCopyToTemp.Execute(new CLCalc.Program.MemoryObject[] { r.CLVector, temp.CLVector }, nBy4);
                lambda[0] = -alpha; CLlambda.WriteToDevice(lambda);
                kernelMultiplyAdd.Execute(new CLCalc.Program.MemoryObject[] { CLlambda, Ap.CLVector, temp.CLVector, r.CLVector }, nBy4);

                RDotR = DotProduct(r, r);
                beta = RDotR / RDotROld;

                //Update p
                kernelCopyToTemp.Execute(new CLCalc.Program.MemoryObject[] { p.CLVector, temp.CLVector }, nBy4);
                lambda[0] = beta; CLlambda.WriteToDevice(lambda);
                kernelMultiplyAdd.Execute(new CLCalc.Program.MemoryObject[] { CLlambda, temp.CLVector, r.CLVector, p.CLVector }, nBy4);

                count++;
            }
        }
Esempio n. 57
0
        /// <summary>Equalizes image histogram using OpenCL</summary>
        private void CLEqualizeHistogram(ref Bitmap bmp)
        {
            if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.Unknown)
            {
                CLCalc.InitCL();
            }
            if (CLCalc.CLAcceleration != CLCalc.CLAccelerationType.UsingCL)
            {
                return;
            }

            float[] PartialHistograms = new float[NLumIntens * bmp.Width];
            float[] histLuminance     = new float[NLumIntens];

            if (kernelComputeHistograms == null || CLN == null || CLHistogram == null)
            {
                CLHistogram         = new CLCalc.Program.Variable(histLuminance);
                CLPartialHistograms = new CLCalc.Program.Variable(PartialHistograms);
            }
            InitKernels();


            System.Diagnostics.Stopwatch swTotal               = new System.Diagnostics.Stopwatch();
            System.Diagnostics.Stopwatch swCopyBmp             = new System.Diagnostics.Stopwatch();
            System.Diagnostics.Stopwatch swRescaling           = new System.Diagnostics.Stopwatch();
            System.Diagnostics.Stopwatch swComputeHistPartial  = new System.Diagnostics.Stopwatch();
            System.Diagnostics.Stopwatch swComputeHistConsolid = new System.Diagnostics.Stopwatch();
            System.Diagnostics.Stopwatch swHistIntegral        = new System.Diagnostics.Stopwatch();

            swTotal.Start();

            swCopyBmp.Start();
            if (CLbmp == null || CLbmp.Height != bmp.Height || CLbmp.Width != bmp.Width)
            {
                CLbmp               = new CLCalc.Program.Image2D(bmp);
                CLNewBmp            = new CLCalc.Program.Image2D(bmp);
                CLPartialHistograms = new CLCalc.Program.Variable(PartialHistograms);
            }
            else
            {
                CLbmp.WriteBitmap(bmp);
                CLN.WriteToDevice(new int[] { NLumIntens });
                CLWidth.WriteToDevice(new int[] { bmp.Width });
                CLHeight.WriteToDevice(new int[] { bmp.Height });
            }
            swCopyBmp.Stop();

            swComputeHistPartial.Start();

            //Partial histograms
            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { CLbmp, CLPartialHistograms, CLHeight, CLN };

            kernelComputeHistograms.Execute(args, bmp.Width);
            CLCalc.Program.Sync();
            swComputeHistPartial.Stop();



            swComputeHistConsolid.Start();

            args = new CLCalc.Program.MemoryObject[] { CLPartialHistograms, CLHistogram, CLHeight, CLN };
            kernelConsolidateHist.Execute(args, NLumIntens);

            CLHistogram.ReadFromDeviceTo(histLuminance);

            swComputeHistConsolid.Stop();


            swHistIntegral.Start();
            //Perform histogram integration - better performance in CPU
            //Compute histogram integrals in-place
            for (int i = 1; i < NLumIntens; i++)
            {
                histLuminance[i] += histLuminance[i - 1];
            }

            float scale = 0.9f / histLuminance[NLumIntens - 1];

            //Scales histograms
            for (int i = 0; i < NLumIntens; i++)
            {
                histLuminance[i] *= scale;
            }

            //Writes histogram integral
            CLHistogram.WriteToDevice(histLuminance);
            swHistIntegral.Stop();

            swRescaling.Start();
            //Computes equalized image
            args = new CLCalc.Program.MemoryObject[] { CLbmp, CLNewBmp, CLHistogram, CLN };
            kernelPerformNormalization.Execute(args, new int [] { bmp.Width, bmp.Height });

            bmp = CLNewBmp.ReadBitmap();
            swRescaling.Stop();


            swTotal.Stop();
        }
        public void Initialize(BaseCameraApplication capture, GLAdvancedRender glw)
        {
            try
            {
                CLCalc.Program.Compile(capture.GetPrimaryDevice().GetPreprocessCode() + src);

            }
            catch (BuildProgramFailureComputeException ex)
            {
                System.Console.WriteLine(ex.Message);
                Environment.Exit(1);
            }
            DepthCameraFrame frame = capture.GetDevices()[0].GetDepthImage();
            kernelCopyBmp = new CLCalc.Program.Kernel("CopyImageToPointCloud");
            int size = frame.Width * frame.Height;
            bufs = new int[4];

            ColorData = new float[4 * size];
            PositionData = new float[4 * size];

            GL.GenBuffers(2, bufs);

            GL.BindBuffer(BufferTarget.ArrayBuffer, bufs[0]);
            GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(ColorData.Length * sizeof(float)), ColorData, BufferUsageHint.StreamDraw);

            GL.BindBuffer(BufferTarget.ArrayBuffer, bufs[1]);
            GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(PositionData.Length * sizeof(float)), PositionData, BufferUsageHint.StreamDraw);//Notice STREAM DRAW
            GL.Enable(EnableCap.PointSmooth);
            GL.PointSize(4.0f);
            positions = new CLCalc.Program.Variable(bufs[1], typeof(float));
            colors = new CLCalc.Program.Variable(bufs[0], typeof(float));
        }
Esempio n. 59
0
        /// <summary>Computes frame difference</summary>
        private void ComputeFrameDiff()
        {
            //Needs both images to compute
            if (CLBmp == null || CLBmpPrev == null || CLBmp.Width != CLBmpPrev.Width || CLBmp.Height != CLBmpPrev.Height) return;

            if (frameDiff == null || frameDiff.Length != ((CLBmp.Height * CLBmp.Width) >> 6))
            {
                //Reduces image size by 8
                frameDiff = new byte[(CLBmp.Height * CLBmp.Width) >> 6];

                CLframeDiff = new CLCalc.Program.Variable(frameDiff);

                MovingRegionBoxes = new List<int>();
            }

            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { CLBmp, CLBmpPrev, CLframeDiff };

            kernelComputeFrameDiff.Execute(args, new int[] { CLBmp.Width >> 3, CLBmp.Height >> 3 });

            CLframeDiff.ReadFromDeviceTo(frameDiff);

            MovingRegionBoxes.Clear();
            BracketMovingRegions(frameDiff, CLBmp.Width >> 3, CLBmp.Height >> 3, MovingRegionBoxes);
        }
Esempio n. 60
0
        /// <summary>Specific function when SVM contains only one object, such as faces</summary>
        /// <param name="bmp">Next frame to process</param>
        public List <int> FindSingleObj(Bitmap bmp)
        {
            //System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch(), sw2 = new System.Diagnostics.Stopwatch();
            //sw.Start();

            if (SVM == null)
            {
                return(null);
            }

            if (imgWidth != bmp.Width || imgHeight != bmp.Height)
            {
                imgWidth    = bmp.Width;
                imgHeight   = bmp.Height;
                SubFramePos = 0;

                List <int> subFrames = new List <int>();
                ComputeSubFrames(0, 0, bmp.Width, bmp.Height, subFrames);
                SubFrames = subFrames.ToArray();


                SubFeatures = new float[(SubFrames.Length / 3) * 364];

                if (CLCalc.CLAcceleration == CLCalc.CLAccelerationType.UsingCL)
                {
                    CLSubFrames   = new CLCalc.Program.Variable(SubFrames);
                    CLSubFeatures = new CLCalc.Program.Image2D(SubFeatures, 91, SubFrames.Length / 3);
                    CLBmp         = new CLCalc.Program.Image2D(bmp);
                    //CLBmpTemp = new CLCalc.Program.Image2D(bmp);
                    CLBmpPrev = new CLCalc.Program.Image2D(bmp);
                }
            }

            //Swaps current and previous bitmap pointers
            CLCalc.Program.Image2D temp = CLBmp;
            CLBmp     = CLBmpPrev;
            CLBmpPrev = temp;

            //Computes frame difference
            ComputeFrameDiff();

            //Replaces subFrames based on moving regions
            for (int k = 0; k < MovingRegionBoxes.Count >> 2; k++)
            {
                List <int> sframes = new List <int>();
                int        ind     = 4 * k;
                ComputeSubFrames(MovingRegionBoxes[ind] << 3, MovingRegionBoxes[ind + 2] << 3, MovingRegionBoxes[ind + 1] << 3, MovingRegionBoxes[ind + 3] << 3, sframes);

                for (int p = 0; p < sframes.Count; p += 3)
                {
                    SubFrames[SubFramePos]     = sframes[p];
                    SubFrames[SubFramePos + 1] = sframes[p + 1];
                    SubFrames[SubFramePos + 2] = sframes[p + 2];

                    SubFramePos += 3; if (SubFramePos > SubFrames.Length - 1)
                    {
                        SubFramePos = 0;
                    }
                }
            }
            CLSubFrames.WriteToDevice(SubFrames);


            CLBmp.WriteBitmap(bmp);

            ////Segments skin
            //kernelSegregateSkin.Execute(new CLCalc.Program.MemoryObject[] { CLBmpTemp, CLBmp }, new int[] { bmp.Width, bmp.Height });

            //Extract features using OpenCL
            CLCalc.Program.MemoryObject[] args = new CLCalc.Program.MemoryObject[] { CLSubFrames, CLSubFeatures, CLBmp };
            kernelExtractFeatures.Execute(args, SubFrames.Length / 3);

            #region No OpenCL
            //float[] testSubFeats = new float[364 * (SubFrames.Length / 3)];
            //CLSubFeatures.ReadFromDeviceTo(testSubFeats);


            //Extract features without OpenCL
            //ExtractFeatures(SubFrames, SubFeatures, bmp);
            //CLSubFeatures.WriteToDevice(SubFeatures);
            #endregion

            //sw2.Start();
            float[] maxvals = OpenCLTemplate.MachineLearning.SVM.MultiClassify(SVM.SVMs[0], CLSubFeatures);
            //SVM.Classify(CLSubFeatures, out maxvals);
            //sw2.Stop();


            List <int>   FacesPos = new List <int>();
            List <float> MaxVals  = new List <float>();


            //Goes in decreasing window size order
            for (int kk = Config.WINDOWSIZES.Length - 1; kk >= 0; kk--)
            {
                for (int i = maxvals.Length - 1; i >= 0; i--)
                {
                    if (SubFrames[3 * i + 2] == Config.WINDOWSIZES[kk] && maxvals[i] > Config.REQCERTAINTY)
                    {
                        //Checks if a face already has been found in that region
                        bool contido = false;

                        int i3   = 3 * i;
                        int kmax = FacesPos.Count / 3;
                        for (int k = 0; k < kmax; k++)
                        {
                            int k3 = 3 * k;

                            if (
                                (FacesPos[k3] <= SubFrames[i3] && SubFrames[i3] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                 FacesPos[k3 + 1] <= SubFrames[i3 + 1] && SubFrames[i3 + 1] <= FacesPos[k3 + 1] + FacesPos[k3 + 2]) ||

                                (FacesPos[k3] <= SubFrames[i3] + SubFrames[i3 + 2] && SubFrames[i3] + SubFrames[i3 + 2] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                 FacesPos[k3 + 1] <= SubFrames[i3 + 1] + SubFrames[i3 + 2] && SubFrames[i3 + 1] + SubFrames[i3 + 2] <= FacesPos[k3 + 1] + FacesPos[k3 + 2]) ||

                                (FacesPos[k3] <= SubFrames[i3] && SubFrames[i3] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                 FacesPos[k3 + 1] <= SubFrames[i3 + 1] + SubFrames[i3 + 2] && SubFrames[i3 + 1] + SubFrames[i3 + 2] <= FacesPos[k3 + 1] + FacesPos[k3 + 2]) ||

                                (FacesPos[k3] <= SubFrames[i3] + SubFrames[i3 + 2] && SubFrames[i3] + SubFrames[i3 + 2] <= FacesPos[k3] + FacesPos[k3 + 2] &&
                                 FacesPos[k3 + 1] <= SubFrames[i3 + 1] && SubFrames[i3 + 1] <= FacesPos[k3 + 1] + FacesPos[k3 + 2])

                                )
                            {
                                contido = true;

                                //Replaces if better
                                if (maxvals[i] > MaxVals[k] && SubFrames[3 * i + 2] == FacesPos[3 * k + 2])
                                {
                                    FacesPos[k3]     = SubFrames[i3];
                                    FacesPos[k3 + 1] = SubFrames[i3 + 1];
                                    FacesPos[k3 + 2] = SubFrames[i3 + 2];
                                    MaxVals[k]       = maxvals[i];
                                }

                                k = FacesPos.Count;
                            }
                        }

                        if (!contido)
                        {
                            FacesPos.Add(SubFrames[3 * i]);
                            FacesPos.Add(SubFrames[3 * i + 1]);
                            FacesPos.Add(SubFrames[3 * i + 2]);
                            MaxVals.Add(maxvals[i]);
                        }
                    }
                }
            }

            //sw.Stop();
            Random rnd = new Random();

            //Updates frame search region
            if (MovingRegionBoxes.Count > 0)
            {
                for (int i = 0; i < maxvals.Length; i++)
                {
                    if (maxvals[i] > Config.REFINEUNCERTAINTY)
                    {
                        int i3 = 3 * i;

                        List <int> sframes = new List <int>();
                        int        cx      = SubFrames[i3] + (SubFrames[i3 + 2] >> 1) + rnd.Next(7) - 3;
                        int        cy      = SubFrames[i3 + 1] + (SubFrames[i3 + 2] >> 1) + rnd.Next(7) - 3;

                        int bigwSize = Config.WINDOWSIZES[Config.WINDOWSIZES.Length - 1];

                        try
                        {
                            ComputeSubFrames(cx - (bigwSize >> 1), cy - (bigwSize >> 1), cx + (bigwSize >> 1), cy + (bigwSize >> 1), sframes);

                            for (int p = 0; p < sframes.Count; p += 3)
                            {
                                SubFrames[SubFramePos]     = sframes[p];
                                SubFrames[SubFramePos + 1] = sframes[p + 1];
                                SubFrames[SubFramePos + 2] = sframes[p + 2];

                                SubFramePos += 3; if (SubFramePos > SubFrames.Length - 1)
                                {
                                    SubFramePos = 0;
                                }
                            }
                        }
                        catch
                        {
                        }
                    }
                }
            }


            return(FacesPos);
        }