private CompositeFixture(CompositeShape wrappedCompositeShape, CompositeMaterial wrappedCompositeMaterial, Matrix4x4 realParentPose, FixtureDescriptor descriptor)
 {
     _root = false;
     _realParentPose = realParentPose;
     _pose = descriptor.Pose;
     _realPose = GMath.mul( _pose ,_realParentPose);
     UserData = descriptor.UserData;
     _wrappedCompositeMaterial = wrappedCompositeMaterial;
     _wrappedCompositeShape = wrappedCompositeShape;
     FixtureFactory = new CompositeFixtureFixtureFactory(this);
 }
 public CompositeFixture(DR.RigidBody wrappedRigidBody, FixtureDescriptor descriptor)
 {
     _root = true;
     _pose = descriptor.Pose;
     _realPose = _pose;
     _wrappedCompositeMaterial = new CompositeMaterial();
     wrappedRigidBody.Material = _wrappedCompositeMaterial;
     _wrappedCompositeShape = new CompositeShape();
     wrappedRigidBody.Shape = _wrappedCompositeShape;
     UserData = descriptor.UserData;
     FixtureFactory = new CompositeFixtureFixtureFactory(this);
 }
Exemple #3
0
    public CompositeMaterial2Sample(Microsoft.Xna.Framework.Game game)
      : base(game)
    {
      // Add basic force effects.
      Simulation.ForceEffects.Add(new Gravity());
      Simulation.ForceEffects.Add(new Damping());

      // Add a ground plane.
      RigidBody groundPlane = new RigidBody(new PlaneShape(new Vector3F(0, 1, 0.25f).Normalized, 0))
      {
        Name = "GroundPlane",           // Names are not required but helpful for debugging.
        MotionType = MotionType.Static,
      };

      // Adjust the coefficients of friction of the ground plane.
      ((UniformMaterial)groundPlane.Material).DynamicFriction = 0.5f;
      ((UniformMaterial)groundPlane.Material).StaticFriction = 0.5f;
      Simulation.RigidBodies.Add(groundPlane);

      // Prepare two materials: a slippery material and a rough material.
      UniformMaterial slipperyMaterial = new UniformMaterial
      {
        DynamicFriction = 0.001f,
        StaticFriction = 0.001f,
      };
      UniformMaterial roughMaterial = new UniformMaterial
      {
        DynamicFriction = 1,
        StaticFriction = 1,
      };

      // Create a rigid body that consists of multiple shapes: Two boxes and a cylinder between them.
      CompositeShape compositeShape = new CompositeShape();
      compositeShape.Children.Add(new GeometricObject(new BoxShape(1f, 1f, 1f), new Pose(new Vector3F(1.5f, 0f, 0f))));
      compositeShape.Children.Add(new GeometricObject(new BoxShape(1f, 1, 1f), new Pose(new Vector3F(-1.5f, 0f, 0f))));
      compositeShape.Children.Add(new GeometricObject(new CylinderShape(0.1f, 2), new Pose(Matrix33F.CreateRotationZ(ConstantsF.PiOver2))));

      // A CompositeMaterial is used to assign a different material to each shape.
      CompositeMaterial compositeMaterial = new CompositeMaterial();
      compositeMaterial.Materials.Add(roughMaterial);     // Assign the rough material to the first box.
      compositeMaterial.Materials.Add(slipperyMaterial);  // Assign the slippery material to the second box.
      compositeMaterial.Materials.Add(null);              // Use whatever is default for the handle between the boxes.

      RigidBody body = new RigidBody(compositeShape, null, compositeMaterial)
      {
        Pose = new Pose(new Vector3F(0, 2.2f, -5)),
      };
      Simulation.RigidBodies.Add(body);
    }
Exemple #4
0
    public CompositeMaterialSample(Microsoft.Xna.Framework.Game game)
      : base(game)
    {
      // Add basic force effects.
      Simulation.ForceEffects.Add(new Gravity());
      Simulation.ForceEffects.Add(new Damping());

      // ----- Create a simple height field.
      // The height data consists of height samples with a resolution of 20 entries per dimension.
      // (Height samples are stored in a 1-dimensional array.)
      var numberOfSamplesX = 20;
      var numberOfSamplesZ = 20;
      var samples = new float[numberOfSamplesX * numberOfSamplesZ];
      for (int z = 0; z < numberOfSamplesZ; z++)
      {
        for (int x = 0; x < numberOfSamplesX; x++)
        {
          // Set the y values (height).
          samples[z * numberOfSamplesX + x] = 20 - z;
        }
      }

      // Set the size of the height field in world space. (WidthX/Z determine the extent
      // of the height field but not the resolution of the height samples.)
      float widthX = 40;
      float widthZ = 40;

      // The origin is at (-20, -20) to center the height field at the world space origin.
      float originX = -20;
      float originZ = -20;

      // Create the height field shape.
      HeightField heightField = new HeightField(
        originX, originZ, widthX, widthZ, samples, numberOfSamplesX, numberOfSamplesZ);

      RigidBody ground = new RigidBody(heightField)
      {
        Pose = new Pose(new Vector3F(0, -10, 0)),
        MotionType = MotionType.Static,
      };
      Simulation.RigidBodies.Add(ground);

      // Assign two different materials to the height field.
      // A rough material (high friction) should be used for the left cells of the height field.
      UniformMaterial roughMaterial = new UniformMaterial
      {
        DynamicFriction = 1,
        StaticFriction = 1,
      };

      // A slippery material (low friction) should be used for the right cells of the height field.
      UniformMaterial slipperyMaterial = new UniformMaterial
      {
        DynamicFriction = 0,
        StaticFriction = 0,
      };

      // Use a CompositeMaterial two assign the materials to the features of the height field.
      CompositeMaterial compositeMaterial = new CompositeMaterial();

      // A "feature" of a height field is a triangle:
      // The height field is triangulated. Each cell consists of two triangles. The triangles are 
      // numbered from left-to-right and top-to-bottom. 
      // (For more information: See the description of HeightField.)

      // Loop over the cells.
      // (If the resolution is 20, we have 20 height values in one row. Between these height
      // values are 19 cells.)
      for (int z = 0; z < numberOfSamplesZ - 1; z++)
      {
        for (int x = 0; x < numberOfSamplesX - 1; x++)
        {
          // Assign the rough material to the left cells and the slippery material to the 
          // right cells.
          if (x < numberOfSamplesX / 2)
          {
            // Each cell contains 2 triangles, therefore we have to add 2 entries to the 
            // CompositeMaterial.
            compositeMaterial.Materials.Add(roughMaterial);
            compositeMaterial.Materials.Add(roughMaterial);
          }
          else
          {
            compositeMaterial.Materials.Add(slipperyMaterial);
            compositeMaterial.Materials.Add(slipperyMaterial);
          }
        }
      }
      ground.Material = compositeMaterial;

      // Create a few boxes on the height field.
      // The left boxes will roll or stop on the height field because of the high friction.
      // The right boxes will slide down because of the low friction.
      BoxShape boxShape = new BoxShape(1, 1, 1);
      for (int i = 0; i < 10; i++)
      {
        RigidBody body = new RigidBody(boxShape, null, roughMaterial)
        {
          Pose = new Pose(new Vector3F(-19 + i * 4, 10, -10)),
        };
        Simulation.RigidBodies.Add(body);
      }
    }