Example #1
0
		private void SetupForTesting(int Nparticles)
		{
			double gradScaleFactor = 3000.0;
			double MinRad = 40.0;
			double MaxRad = 50.0;

			List<string> FFtype = new List<string>(new string[] { "SoftSpheres", "ExternalField" }); 
			
			ParticleStaticObjects.AtomPropertiesDefinition.Clear(); 
			ParticleStaticObjects.AtomPropertiesDefinition.addParticleDefinition(2, unchecked((int)0xc00A32FF), 0, 50); // neon blue
			ParticleStaticObjects.AtomPropertiesDefinition.addParticleDefinition(4, unchecked((int)0xc0FF0A32), 1, 49); // red
			ParticleStaticObjects.AtomPropertiesDefinition.addParticleDefinition(6, unchecked((int)0xc0320AFF), 2, 45); // purple
			ParticleStaticObjects.AtomPropertiesDefinition.addParticleDefinition(9.2, unchecked((int)0xc026D8FF), 3, 43); // sky blue // 0xc032FF0A, 3,  43); // green 
			ParticleStaticObjects.AtomPropertiesDefinition.addParticleDefinition(12.6, unchecked((int)0xc0FF320A), 4, 38); // orange

			ParticleStaticObjects.ReSeedRandom(42); 

			Ensemble1 = new ParticleEnsemble(Nparticles, MinRad, MaxRad, FFtype, m_SizeY, m_SizeX, gradScaleFactor);
			Field = new ExternalField(Ensemble1);

			double[] background = new double[m_NumberOfPixels]; 

			for (int i = 0; i < m_NumberOfPixels; i++)
			{
				background[i] = 512; 
			}

			Field.IncrementGrabberCalls();                         // increment the number of grabber calls			
			Field.BackgroundCalibration(m_NumberOfPixels, background);  // in order to simply set the background to zero 
			Field.SetCalibrating(false);
		}
Example #2
0
		// constructor
		public SoftSpheres(ParticleEnsemble pParticleSet)
		{
  
			epsilon=10.0;
	
			// allocate vectors holding positions & forces
			LJforces = new DPVector[pParticleSet.GetMaxNumberOfParticles()];			
  
			// allocate vector holding cutoff distance for calculating Wall-Particle interactions
			WallDistance = new double[pParticleSet.GetMaxNumberOfParticles()];
  		
			// allocate vector holding cutoff distance for calculating particle-particle interaction
			//Mat_DP tmp(0.0,pParticleSet->GetMaxNumberOfParticles(),pParticleSet->GetMaxNumberOfParticles());
			MinimumDistance = new DPMatrix(0, pParticleSet.GetMaxNumberOfParticles(),pParticleSet.GetMaxNumberOfParticles());
	
			// allocate vectors holding particle-particle LJ energy terms
			LJenergyTermA = new DPMatrix(0, pParticleSet.GetMaxNumberOfParticles(),pParticleSet.GetMaxNumberOfParticles()); // =tmp;
			LJenergyTermB = new DPMatrix(0, pParticleSet.GetMaxNumberOfParticles(), pParticleSet.GetMaxNumberOfParticles()); // =tmp;
			LJgradientTermA = new DPMatrix(0, pParticleSet.GetMaxNumberOfParticles(), pParticleSet.GetMaxNumberOfParticles()); // =tmp;
			LJgradientTermB = new DPMatrix(0, pParticleSet.GetMaxNumberOfParticles(), pParticleSet.GetMaxNumberOfParticles()); // =tmp;
  
			CalculateEnergyTerms(pParticleSet);
	
			// calculate initial forcefield
			CalculateForceField(pParticleSet);
  
		}
Example #3
0
		public void ResizeForceArrays(ParticleEnsemble ensemble)
		{
			// clear out the forces vectors
			//xforces.Clear();
			//yforces.Clear();

			// allocate vectors holding positions & forces
			//xforces.AddRange(new double[ensemble.GetNumberOfParticles()]);
			//yforces.AddRange(new double[ensemble.GetNumberOfParticles()]);

			for (int i = 0; i < MaxParticles; i++)
			{
				forces[i] = new DPVector(0, 0);
			}
		}
Example #4
0
		public override void UpdateEnergyTerms(ParticleEnsemble ensemble)
		{
			for (int i = 0; i < ensemble.GetNumberOfParticles(); ++i)
			{
				for (int j = (i + 1); j < ensemble.GetNumberOfParticles(); ++j)
				{
					double MinDistance = 2.0 * (ensemble.GetParticleRadius(i) + ensemble.GetParticleRadius(j));

					MinimumDistance[i, j] = MinDistance * MinDistance;
					MinimumDistance[j, i] = MinimumDistance[i, j];
					LJenergyTermA[i, j] = epsilon * Math.Pow(MinDistance, 12.0);
					LJenergyTermA[j, i] = LJenergyTermA[i, j];
					LJenergyTermB[i, j] = -2.0 * epsilon * Math.Pow(MinDistance, 6.0);
					LJenergyTermB[j, i] = LJenergyTermB[i, j];
					LJgradientTermA[i, j] = -12.0 * LJenergyTermA[i, j];
					LJgradientTermA[j, i] = LJgradientTermA[i, j];
					LJgradientTermB[i, j] = -6.0 * LJenergyTermB[i, j];
					LJgradientTermB[j, i] = LJgradientTermB[i, j];
				}
			}
		}
Example #5
0
		public ExternalField(ParticleEnsemble ensemble)
		{
			GrabberCalls = 0;
			CalibrationCalls = 1;
			consecutiveZeroThreshold = 3;
			BoxHeight = ensemble.GetBoxHeight();
			BoxWidth = ensemble.GetBoxWidth();
			Calibrating = false;

			// initialize background pixels
			BackgroundPixels = new double[BoxHeight * BoxWidth];

			// initialize the calibration count vector
			calibrationCountVector = new double[BoxHeight * BoxWidth];

			// initialize timeTpixels
			timeTpixels = new double[BoxHeight * BoxWidth];

			// initialize consecutiveZerosCount
			consecutiveZerosCount = new double[BoxHeight * BoxWidth];

			// allocate vectors holding positions & forces
			//xforces = new List<double>(new double[ensemble.GetNumberOfParticles()]);
			//yforces = new List<double>(new double[ensemble.GetNumberOfParticles()]);

			// set up the gaussian array with the desired smoothing width parameter
			sigma = 10;
			nGaussPoints = 2 * (3 * sigma) + 1;
			RangeEitherSide = 3 * sigma;
			gaussian = new double[nGaussPoints];
			double point = -1.0 * (3.0 * (double)sigma);
			for (int i = 0; i < nGaussPoints; ++i)
			{
				gaussian[i] = Math.Exp(-0.5 * (Math.Pow(point / (double)sigma, 2.0))) / ((double)sigma * Math.Sqrt(2.0 * Math.PI));
				//    cout << point << " " << gaussian[i] << endl;
				++point;
			}

		}
Example #6
0
		public override void CalculateForceField(ParticleEnsemble ensemble)
		{

			//variable declarations
			double posXi, posYi;
			double posXj, posYj;
			double LJxf,  LJyf;
			double ijSeparation = 0.0, LJforce = 0.0, PotentialEnergy = 0.0;
			int j, kk, ctr, dimensions = 2;
  
			//variable initializations

			int BoxHeight = ensemble.GetBoxHeight();
			int BoxWidth = ensemble.GetBoxWidth();
			double MaxForce = ensemble.GetMaxForceThreshold();
			double MinForce = -1.0 * (ensemble.GetMaxForceThreshold());
  
			// initialize vectors holding forces
			for (int i = 0; i < ensemble.GetNumberOfParticles(); ++i)
			{
				LJforces[i] = new DPVector(0, 0);
			}

			for (int i = 0; i < ensemble.GetNumberOfParticles(); ++i)
			{
				Particle particleI = ensemble.GetParticle(i); 

				for (j = (i + 1); j < ensemble.GetNumberOfParticles(); ++j)
				{
					Particle particleJ = ensemble.GetParticle(j); 

					//    get the interparticle separation distances
					ijSeparation = ensemble.GetInterParticleSeparation(i, j);
						
					//		update the radial distribution function
			  //			pParticleSet->UpdateRadialDistributionFunction((int)(ijSeparation));
			
					double cutoffDistance = MinimumDistance[i, j];
			
					if (ijSeparation < cutoffDistance) {
	
						// for each particle, change the appropriate element of the setWithinRangeOfAnotherParticle vector to true

						posXi = particleI.Position.X; //ensemble.GetXParticlePosition(i);
						posYi = particleI.Position.Y; //ensemble.GetYParticlePosition(i);

						posXj = particleJ.Position.X; //ensemble.GetXParticlePosition(j);
						posYj = particleJ.Position.Y; //ensemble.GetYParticlePosition(j);
												
						//        PotentialEnergy += LJenergyTermA[i][j]/(pow(ijSeparation,12.0))+LJenergyTermB[i][j]/pow(ijSeparation,6.0)+epsilon;
						LJforce = (posXj - posXi) * (LJgradientTermA[i, j] / Math.Pow(ijSeparation, 13.0) + LJgradientTermB[i, j] / Math.Pow(ijSeparation, 7.0)) / ijSeparation;
						if (Math.Abs(LJforce) > MaxForce || Math.Abs(LJforce) < MinForce) { LJforce = 0.0; }    // error check for real-time stability...
						else if(double.IsNaN(LJforce) || double.IsInfinity(LJforce)){LJforce = 0.0;} // error check for real-time stability...

						DPVector newIForce = LJforces[i];
						DPVector newJForce = LJforces[j];

						newIForce.X += LJforce;
						newJForce.X += -1.0 * LJforce;
						//        cout << "x "<< i << " " << j << " " << LJforce << endl; 
				//				cout << "i " << i << " LJxforces[i] " << LJxforces[i] << " j " << j <<  " LJxforces[j] " << LJxforces[j] << endl;
						//        cout << "xi:=" << posXi << ";" << "xj:=" << posXj << ";" << "yi:=" << posYi << ";" << "yj:=" << posYj << ";" << LJxforces[i] << endl;
						LJforce = (posYj - posYi) * (LJgradientTermA[i, j] / Math.Pow(ijSeparation, 13.0) + LJgradientTermB[i, j] / Math.Pow(ijSeparation, 7.0)) / ijSeparation;

						if (Math.Abs(LJforce) > MaxForce || Math.Abs(LJforce) < MinForce) { LJforce = 0.0; }    // error check for real-time stability...
						else if (double.IsNaN(LJforce) || double.IsInfinity(LJforce)) { LJforce = 0.0; } // error check for real-time stability...

						newIForce.Y += LJforce;
						newJForce.Y += -1.0 * LJforce;

						ensemble.SetParticlesWithinRange(i, j);
						ensemble.SetParticlesWithinRange(j, i);

						LJforces[i] = newIForce;
						LJforces[j] = newJForce;
 
						//        cout << i << " " << j << endl; 
					}
					else{
						ensemble.SetParticlesNotWithinRange(i, j);
						ensemble.SetParticlesNotWithinRange(j, i);			
					}
				}        
			}
	
			// set the forces in the Particle Ensemble Object
			ensemble.AddForces(LJforces);
			
			// set the potential energy
			ensemble.AddPotentialEnergy(PotentialEnergy);
		}
Example #7
0
		public override void UpdateEnergyTerms(ParticleEnsemble ensemble)
		{
			throw new NotImplementedException();
		}
Example #8
0
		/// <summary>
		/// function to calculate Soft Spheres forcefield
		/// </summary>
		/// <param name="ensemble"></param>
		public override void CalculateForceField(ParticleEnsemble ensemble)
		{
			//  variable declarations    
			int i;
			double posXi, posYi, radius;
			double PotentialEnergy = 0.0;

			// variable initializations  
			int BoxHeight = ensemble.GetBoxHeight();
			int BoxWidth = ensemble.GetBoxWidth();

			// #pragma omp parallel for
			for (i = 0; i < ensemble.GetNumberOfParticles(); ++i)
			{
				// initialize vectors holding forces
				forces[i] = new DPVector(0, 0);																			// HERE'S THE PROBLEM - THE INDEX WILL OVERRUN THE VECTOR SIZE!!!			
			}

			//#pragma omp parallel for
			for (i = 0; i < ensemble.GetNumberOfParticles(); ++i)
			{
				Particle particle = ensemble.GetParticle(i);
				
				posXi = particle.Position.X; //ensemble.GetXParticlePosition(i);
				posYi = particle.Position.Y; //ensemble.GetYParticlePosition(i);
				radius = particle.Radius; //ensemble.GetParticleRadius(i);

				// get pixel vectors along the particle's X & Y axes for getting gradient of image field
				// there are 2 steps to this process: 
				//  (1) do some gaussian smoothing with a user defined width parameter (this determines how
				//      many pixels we need
				//  (2) determine the gradient from linear regression of the 3 surrounding points...
				//    cout << "particle " << i << " Xpos " << posXi << " Ypos " << posYi << endl;

				//    first get the vectors that we need - the length of the vectors depend on the width of the gaussian
				//    if the pixels are near the edge, the pixels beyond them (which arent in the image) are simply returned as zeros

				//    vector < double > AllThePixelsAlongX = pParticleSet->GetAllThePixelsAlongX(posYi,posXi,RangeEitherSide);
				//    xforces[i] = pParticleSet->GetGradientScaleFactor()*GaussianSmoothedSlope(posXi,AllThePixelsAlongX);
				//    cout << "Xposition " << posXi << endl;

				if (m_CalculateForceField_TempArray.Length < RangeEitherSide + 1)
				{
					m_CalculateForceField_TempArray = new double[RangeEitherSide + 1]; 
				}

				int count;
				DPVector newForce = new DPVector(); 

				GetSubsetOfPixelsAlongX(posYi, posXi, RangeEitherSide + 1, ref m_CalculateForceField_TempArray, out count);
				//    for(int kk=0; kk<SubsetOfPixelsAlongX.size(); ++kk){
				//      cout << kk << " " << SubsetOfPixelsAlongX[kk] << endl;      
				//    }

				//    cout << "Xposition " << posXi << endl;
				//    for(int kk=1;kk<SubsetOfPixelsAlongX.size();++kk){cout << kk << " " << SubsetOfPixelsAlongX[kk] << endl;}
				newForce.X = ensemble.GetGradientScaleFactor() * GaussianSmoothedSlope(posXi, m_CalculateForceField_TempArray, count);

				//    vector < double > AllThePixelsAlongY = pParticleSet->GetAllThePixelsAlongY(posXi,posYi,RangeEitherSide);
				//    cout << "Yposition " << posYi << endl;
				//    for(int kk=0;kk<AllThePixelsAlongY.size();++kk){cout << kk << " " << AllThePixelsAlongY[kk] << endl;}
				//    yforces[i] = pParticleSet->GetGradientScaleFactor()*GaussianSmoothedSlope(posYi,AllThePixelsAlongY);


				GetSubsetOfPixelsAlongY(posXi, posYi, RangeEitherSide + 1, ref m_CalculateForceField_TempArray, out count);
				//List<double> SubsetOfPixelsAlongY = GetSubsetOfPixelsAlongY(posXi, posYi, RangeEitherSide + 1);
				//    cout << "Yposition " << endl;
				newForce.Y = ensemble.GetGradientScaleFactor() * GaussianSmoothedSlope(posYi, m_CalculateForceField_TempArray, count);
				//    cout << "yforces[i] " << i << " " << yforces[i] << endl;    

				// get the gradient scale factor, depending on whether the particle is attractive or repulsive

				ParticleInfo typeInfo = ParticleStaticObjects.AtomPropertiesDefinition.Lookup[particle.TypeID];
				double attractiveOrRepulsiveFactor = typeInfo.AttractiveOrRepulsive;
				newForce.X *= attractiveOrRepulsiveFactor;
				newForce.Y *= attractiveOrRepulsiveFactor;

				forces[i] = newForce;
			}


			ensemble.AddForces(forces);		  // set the forces in the Particle Ensemble Object			
			ensemble.AddPotentialEnergy(PotentialEnergy);		// add in the potential energy    

		}
Example #9
0
		public abstract void CalculateForceField(ParticleEnsemble ensemble);
Example #10
0
		public abstract void UpdateEnergyTerms(ParticleEnsemble ensemble);
Example #11
0
		public abstract void CalculateEnergyTerms(ParticleEnsemble ensemble);