//Make a new edge that has this vertex as source and another vertex 
        //as target.
        public Edge insertEdge(Vertex target)
        {
            if (adjList == null)
                adjList = new List<Edge>(size);

            Edge e = new Edge(this, target);
            adjList.Add(e);

            return e;
        }
        //Reverse the edge. Used in the Max Bipartite Matching algorithm.
        public void reverseEdge()
        {
            if (source.removeEdge(this))
            {
                target.insertEdge(this);

                Vertex tmp = source;
                source = target;
                target = tmp;
            }

        }
 public Edge(Vertex source, Vertex target, int cost)
 {
     this.source = source;
     this.target = target;
     this.cost = cost;
 }
 public Edge(Vertex source, Vertex target)
 {
     this.source = source;
     this.target = target;
 }
        public int topDownUnorderedMaxCommonSubtreeIso(Node r1, Node r2)
        {
            //Cannot find a isomophism when the labels differ
            if (r1.getId() != r2.getId())
            {
                return 0;
            }

            //The isomorphism has size 0 or 1 if one of the nodes are leaf nodes
            if (r1.isLeaf() || r2.isLeaf())
            {
                return (r1.getId() == r2.getId()) ? 1 : 0;
            }

            int result;

            Node rp1 = r1.Parent;
            Node rp2 = r2.Parent;

                //Use LCS if r1 and r2 are root nodes in subtrees that represents method bodies.
            if ((rp1 != null && r1.getId() == SyntaxKind.Block && rp1.getId() == SyntaxKind.MethodDeclaration)
                && (rp2 != null && r2.getId() == SyntaxKind.Block && rp2.getId() == SyntaxKind.MethodDeclaration))
            {
                int res = lcs(r1, r2);
                result = res;
            }
            else
            {
                int p = r1.Size;
                int q = r2.Size;

                //Each child of r1 has a corresponding vertex in the bipartite graph. A map from node to vertex.
                Dictionary<Node, Vertex> T1G = new Dictionary<Node, Vertex>(p);
                //Each child of r2 has a corresponding vertex in the bipartite graph. A map from node to vertex.
                Dictionary<Node, Vertex> T2G = new Dictionary<Node, Vertex>(q);
                //A map from vertex to node.
                Dictionary<Vertex, Node> GT = new Dictionary<Vertex, Node>(p + q);

                //There is maximum p*q edges in the bipartite graph.
                List<Edge> edges = new List<Edge>(p * q);

                //The vertices that represents the children of r1.
                List<Vertex> U = new List<Vertex>(p);

                foreach (Node v1 in r1.Children)
                {
                    //q is the number of neighbors that v can have in the bipartite graph.
                    Vertex v = new Vertex(q);

                    U.Add(v);

                    GT.Add(v, v1);
                    T1G.Add(v1, v);
                }

                //The vertices that represents the children of r2.
                List<Vertex> W = new List<Vertex>(q);

                foreach (Node v2 in r2.Children)
                {
                    //p is the number of neighbors that w can have in the bipartite graph.
                    Vertex w = new Vertex(p);

                    W.Add(w);

                    GT.Add(w, v2);
                    T2G.Add(v2, w);
                }

                //List of matched edges
                List<Edge> list = null;

                foreach (Node v1 in r1.Children)
                {
                    foreach (Node v2 in r2.Children)
                    {

                        //Find max common subtree between v1 and v2
                        int res = topDownUnorderedMaxCommonSubtreeIso(v1, v2);

                        //If max common subtree
                        if (res != 0)
                        {
                            Vertex v = T1G[v1];

                            //Insert edge between v1 and v2
                            Edge e = v.insertEdge(T2G[v2]);

                            //Set cost of edge to res (size of max common subtree)
                            e.setCost(res);

                            edges.Add(e);
                        }
                    }
                }

                //Find the children of r1 and r2 that are part of r1's and r2's max common subtree
                BipartiteMatching bm = new BipartiteMatching();
                list = bm.maxWeightBipartiteMatching(U, W, edges, p, q);

                //Can map r1 to r2
                int ress = 1;

                //Go through the mached edges in the bipartite graph
                foreach (Edge e in list)
                {
                    List<Node> nodeList;

                    //All edges goes from the children of r1 to the children of r2
                    Node v = GT[e.getSource()];
                    Node w = GT[e.getTarget()];

                    //v is already in B
                    if (bMap.ContainsKey(v))
                    {
                        nodeList = bMap[v];
                    }

                    //First time we insert v. Create a list for the nodes that can be mapped to v.
                    else
                    {
                        nodeList = new List<Node>(100);
                    }

                    //Insert w into the list
                    nodeList.Add(w);
                    bMap[v] = nodeList;

                    //Add the size of the max common subtree between v and w to res.
                    ress += e.getCost();
                }

                result = ress;
            }
            return result;
        }
        private void augment(Vertex a, Dictionary<Vertex, Boolean> free,
            Dictionary<Vertex, Edge> pred, Dictionary<Vertex, Int32> dist,
            Dictionary<Vertex, Int32> pot, FibHeap PQ)
        {
            //init

            //dist from a is zero
            dist[a] = 0;

            //a is the best vertex in A
            Vertex bestVertexInA = a;

            //potential of a
            int minA = pot[a];
            int delta;

            //make a stack for nodes in A that are visited during the shortest path comp.
            Stack<Vertex> RA = new Stack<Vertex>();
            RA.Push(a);

            //make a strack for the nodes in B that are visited during the shortest path comp.
            Stack<Vertex> RB = new Stack<Vertex>();

            Vertex a1 = a;

            //relax all edges out of a1

            List<Edge> adjEdges = a1.getAdjList();

            if(adjEdges == null)
                return;

            foreach(Edge e in adjEdges){
                Vertex b = e.getTarget();
                //set the distance from a1 to all its neighbors. 
                int db = dist[a1] + (pot[a1] + pot[b] - e.getCost());
                dist[b] = db;
                pred[b] = e; //predecessor for b is e

                RB.Push(b); //push to stack
                PQ.insert(b, db); //insert in priority queue
            
            }

            //select from PQ the vertex b with min distance db

            while(true){
                Vertex b;
                int db = 0;

                if(PQ.empty()){
                    b = null;
                }

                else {
                    b = (Vertex) PQ.extractMin();
                    db = dist[b];
                }

                //distinguish three cases
                if(b == null || db >= minA){
                    //We have a node v in A with potential zero. augment a path from a to v.
                    delta = minA;

                    //augmentation by path to best vertex in A
                    augmentPathTo(bestVertexInA, pred);
                    free[a] = false;
                    free[bestVertexInA] = true;
                    break;
                }

                else {
                    //b is a free node, can be matched
                    if(free[b]){
                        delta = db; 

                        //augmentation by path to b
                        augmentPathTo(b, pred);
                        free[a] = false;
                        free[b] = false;
                        break;
                    }

                    //Neither of the above. b is matched
                    else {
                        //continue shortest-path computation
                        Edge e = b.getFirstAdjEdge();        

                        a1 = e.getTarget(); //target of b 
                        pred[a1] = e;
                        RA.Push(a1);
                        dist[a1] = db;

                        //if better than minA
                        if((db + pot[a1]) < minA){
                            bestVertexInA = a1;
                            minA = db + pot[a1];
                        }

                        //relax all edges out of a1
                        adjEdges = a1.getAdjList();

                        foreach(Edge e1 in adjEdges){
                            b = e1.getTarget();

                            db = dist[a1] + (pot[a1] + pot[b] - e1.getCost());

                            if(pred[b] == null){
                                dist[b] = db;
                                pred[b] = e1;
    
                                RB.Push(b);
                                PQ.insert(b, db);
                            }

                            //b is already in the priority queue
                            else {
                                if(db < dist[b]){
                                    dist[b] = db;
                                    pred[b] = e1;

                                    PQ.decreaseKey(b, db);
                                }
                            }
                        }
                    }
                }
            }

            //augment: potential update and reinit

            //Update the potential and remove the nodes from the stack
            while(RA.Count > 0){
                Vertex tmp = RA.Pop();
                pred[tmp] = null;
                int potChange = delta - dist[tmp];

                if(potChange <= 0){
                    continue;
                }

                pot[tmp] = (pot[tmp] - potChange);
            }

            //Update the potential and remove the nodes from the stack.
            while(RB.Count > 0){
                Vertex tmp = RB.Pop();
                pred[tmp] = (Edge) null;

                //if b is in the heap
                if(PQ.member(tmp)){
                    PQ.delete(tmp);
                }

                int potChange = delta - dist[tmp];

                if(potChange <= 0){
                    continue;
                }

                pot[tmp] = (pot[tmp] + potChange);
            }
        }
        //We reverse all the edges on the path when we augment from a node v
        private void augmentPathTo(Vertex v, Dictionary<Vertex, Edge> pred)
        {
            Edge e = pred[v];

            while (e != null)
            {
                e.reverseEdge();
                e = pred[e.getTarget()];//NOT SOURCE
            }
        }