Example #1
0
		/// <summary>
		/// Execute as much of a VDBE program as we can then return.
		/// 
		/// sqlite3VdbeMakeReady() must be called before this routine in order to
		/// close the program with a final OP_Halt and to set up the callbacks
		/// and the error message pointer.
		/// 
		/// Whenever a row or result data is available, this routine will either
		/// invoke the result callback (if there is one) or return with
		/// SQLITE_ROW.
		/// 
		/// If an attempt is made to open a locked database, then this routine
		/// will either invoke the busy callback (if there is one) or it will
		/// return SQLITE_BUSY.
		/// 
		/// If an error occurs, an error message is written to memory obtained
		/// from sqlite3Malloc() and p.zErrMsg is made to point to that memory.
		/// The error code is stored in p.rc and this routine returns SQLITE_ERROR.
		/// 
		/// If the callback ever returns non-zero, then the program exits
		/// immediately.  There will be no error message but the p.rc field is
		/// set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
		/// 
		/// A memory allocation error causes p.rc to be set to SQLITE_NOMEM and this
		/// routine to return SQLITE_ERROR.
		/// 
		/// Other fatal errors return SQLITE_ERROR.
		/// 
		/// After this routine has finished, sqlite3VdbeFinalize() should be
		/// used to clean up the mess that was left behind
		/// </summary>
		/// <param name='p'>
		/// The VDBE
		/// </param>
		static int sqlite3VdbeExec(Vdbe p)
		{
			int pc = 0;                /* The program counter */
			Op[] aOp = p.aOp;          /* Copy of p.aOp */
			Op pOp;                    /* Current operation */
			int rc = SQLITE_OK;        /* Value to return */
			sqlite3 db = p.db;         /* The database */
			u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
			u8 encoding = ENC(db);   /* The database encoding */
#if !SQLITE_OMIT_PROGRESS_CALLBACK
			bool checkProgress;        /* True if progress callbacks are enabled */
			int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
			Mem[] aMem = p.aMem;       /* Copy of p.aMem */
			Mem pIn1 = null;           /* 1st input operand */
			Mem pIn2 = null;           /* 2nd input operand */
			Mem pIn3 = null;           /* 3rd input operand */
			Mem pOut = null;           /* Output operand */
			int iCompare = 0;          /* Result of last OP_Compare operation */
			int[] aPermute = null;     /* Permutation of columns for OP_Compare */
			i64 lastRowid = db.lastRowid;  /* Saved value of the last insert ROWID */
#if VDBE_PROFILE
u64 start;                   /* CPU clock count at start of opcode */
int origPc;                  /* Program counter at start of opcode */
#endif
			/*** INSERT STACK UNION HERE ***/

			Debug.Assert(p.magic == VDBE_MAGIC_RUN);  /* sqlite3_step() verifies this */
			sqlite3VdbeEnter(p);
			if (p.rc == SQLITE_NOMEM)
			{
				/* This happens if a malloc() inside a call to sqlite3_column_text() or
				** sqlite3_column_text16() failed.  */
				goto no_mem;
			}
			Debug.Assert(p.rc == SQLITE_OK || p.rc == SQLITE_BUSY);
			p.rc = SQLITE_OK;
			Debug.Assert(p.explain == 0);
			p.pResultSet = null;
			db.busyHandler.nBusy = 0;
			if (db.u1.isInterrupted)
				goto abort_due_to_interrupt; //CHECK_FOR_INTERRUPT;
#if TRACE
sqlite3VdbeIOTraceSql( p );
#endif
#if !SQLITE_OMIT_PROGRESS_CALLBACK
			checkProgress = db.xProgress != null;
#endif
#if SQLITE_DEBUG
	  sqlite3BeginBenignMalloc();
	  if ( p.pc == 0
	  && ( p.db.flags & SQLITE_VdbeListing ) != 0 )
	  {
		int i;
		Console.Write( "VDBE Program Listing:\n" );
		sqlite3VdbePrintSql( p );
		for ( i = 0; i < p.nOp; i++ )
		{
		  sqlite3VdbePrintOp( Console.Out, i, aOp[i] );
		}
	  }
	  sqlite3EndBenignMalloc();
#endif
			for (pc = p.pc; rc == SQLITE_OK; pc++)
			{
				Debug.Assert(pc >= 0 && pc < p.nOp);
				//      if ( db.mallocFailed != 0 ) goto no_mem;
#if VDBE_PROFILE
origPc = pc;
start = sqlite3Hwtime();
#endif
				pOp = aOp[pc];
#if SQLITE_DEBUG
		if ( p.trace != null )
		{
		  if ( pc == 0 )
		  {
			printf( "VDBE Execution Trace:\n" );
			sqlite3VdbePrintSql( p );
		  }
		  sqlite3VdbePrintOp( p.trace, pc, pOp );
		}
#endif


				/* Check to see if we need to simulate an interrupt.  This only happens
** if we have a special test build.
*/
#if SQLITE_TEST
#if !TCLSH
		if ( sqlite3_interrupt_count > 0 )
		{
		  sqlite3_interrupt_count--;
		  if ( sqlite3_interrupt_count == 0 )
#else
		if ( sqlite3_interrupt_count.iValue > 0 )
		{
		  sqlite3_interrupt_count.iValue--;
		  if ( sqlite3_interrupt_count.iValue == 0 )
#endif
		  {
			sqlite3_interrupt( db );
		  }
		}
#endif

#if !SQLITE_OMIT_PROGRESS_CALLBACK
				/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqlite3VdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
				if (checkProgress)
				{
					if (db.nProgressOps == nProgressOps)
					{
						int prc;
						prc = db.xProgress(db.pProgressArg);
						if (prc != 0)
						{
							rc = SQLITE_INTERRUPT;
							goto vdbe_error_halt;
						}
						nProgressOps = 0;
					}
					nProgressOps++;
				}
#endif

				/* On any opcode with the "out2-prerelase" tag, free any
** external allocations out of mem[p2] and set mem[p2] to be
** an undefined integer.  Opcodes will either fill in the integer
** value or convert mem[p2] to a different type.
*/
				Debug.Assert(pOp.opflags == sqlite3OpcodeProperty[pOp.opcode]);
				if ((pOp.opflags & OPFLG_OUT2_PRERELEASE) != 0)
				{
					Debug.Assert(pOp.p2 > 0);
					Debug.Assert(pOp.p2 <= p.nMem);
					pOut = aMem[pOp.p2];
					memAboutToChange(p, pOut);
					sqlite3VdbeMemReleaseExternal(pOut);
					pOut.flags = MEM_Int;
				}

				/* Sanity checking on other operands */
				/* Sanity checking on other operands */
#if SQLITE_DEBUG
		if ( ( pOp.opflags & OPFLG_IN1 ) != 0 )
		{
		  Debug.Assert( pOp.p1 > 0 );
		  Debug.Assert( pOp.p1 <= p.nMem );
		  Debug.Assert( memIsValid( aMem[pOp.p1] ) );
		  REGISTER_TRACE( p, pOp.p1, aMem[pOp.p1] );
		}
		if ( ( pOp.opflags & OPFLG_IN2 ) != 0 )
		{
		  Debug.Assert( pOp.p2 > 0 );
		  Debug.Assert( pOp.p2 <= p.nMem );
		  Debug.Assert( memIsValid( aMem[pOp.p2] ) );
		  REGISTER_TRACE( p, pOp.p2, aMem[pOp.p2] );
		}
		if ( ( pOp.opflags & OPFLG_IN3 ) != 0 )
		{
		  Debug.Assert( pOp.p3 > 0 );
		  Debug.Assert( pOp.p3 <= p.nMem );
		  Debug.Assert( memIsValid( aMem[pOp.p3] ) );
		  REGISTER_TRACE( p, pOp.p3, aMem[pOp.p3] );
		}
		if ( ( pOp.opflags & OPFLG_OUT2 ) != 0 )
		{
		  Debug.Assert( pOp.p2 > 0 );
		  Debug.Assert( pOp.p2 <= p.nMem );
		  memAboutToChange( p, aMem[pOp.p2] );
		}
		if ( ( pOp.opflags & OPFLG_OUT3 ) != 0 )
		{
		  Debug.Assert( pOp.p3 > 0 );
		  Debug.Assert( pOp.p3 <= p.nMem );
		  memAboutToChange( p, aMem[pOp.p3] );
		}
#endif

				switch (pOp.opcode)
				{

					/*****************************************************************************
					** What follows is a massive switch statement where each case implements a
					** separate instruction in the virtual machine.  If we follow the usual
					** indentation conventions, each case should be indented by 6 spaces.  But
					** that is a lot of wasted space on the left margin.  So the code within
					** the switch statement will break with convention and be flush-left. Another
					** big comment (similar to this one) will mark the point in the code where
					** we transition back to normal indentation.
					**
					** The formatting of each case is important.  The makefile for SQLite
					** generates two C files "opcodes.h" and "opcodes.c" by scanning this
					** file looking for lines that begin with "case OP_".  The opcodes.h files
					** will be filled with #defines that give unique integer values to each
					** opcode and the opcodes.c file is filled with an array of strings where
					** each string is the symbolic name for the corresponding opcode.  If the
					** case statement is followed by a comment of the form "/# same as ... #/"
					** that comment is used to determine the particular value of the opcode.
					**
					** Other keywords in the comment that follows each case are used to
					** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
					** Keywords include: in1, in2, in3, ref2_prerelease, ref2, ref3.  See
					** the mkopcodeh.awk script for additional information.
					**
					** Documentation about VDBE opcodes is generated by scanning this file
					** for lines of that contain "Opcode:".  That line and all subsequent
					** comment lines are used in the generation of the opcode.html documentation
					** file.
					**
					** SUMMARY:
					**
					**     Formatting is important to scripts that scan this file.
					**     Do not deviate from the formatting style currently in use.
					**
					*****************************************************************************/

					/* Opcode:  Goto * P2 * * *
					**
					** An unconditional jump to address P2.
					** The next instruction executed will be
					** the one at index P2 from the beginning of
					** the program.
					*/
					case OP_Goto:
						{             /* jump */
							if (db.u1.isInterrupted)
								goto abort_due_to_interrupt; //CHECK_FOR_INTERRUPT;
							pc = pOp.p2 - 1;
							break;
						}

					/* Opcode:  Gosub P1 P2 * * *
					**
					** Write the current address onto register P1
					** and then jump to address P2.
					*/
					case OP_Gosub:
						{            /* jump, in1 */
							pIn1 = aMem[pOp.p1];
							Debug.Assert((pIn1.flags & MEM_Dyn) == 0);
							memAboutToChange(p, pIn1);
							pIn1.flags = MEM_Int;
							pIn1.u.i = pc;
							REGISTER_TRACE(p, pOp.p1, pIn1);
							pc = pOp.p2 - 1;
							break;
						}

					/* Opcode:  Return P1 * * * *
					**
					** Jump to the next instruction after the address in register P1.
					*/
					case OP_Return:
						{           /* in1 */
							pIn1 = aMem[pOp.p1];
							Debug.Assert((pIn1.flags & MEM_Int) != 0);
							pc = (int)pIn1.u.i;
							break;
						}

					/* Opcode:  Yield P1 * * * *
					**
					** Swap the program counter with the value in register P1.
					*/
					case OP_Yield:
						{            /* in1 */
							int pcDest;
							pIn1 = aMem[pOp.p1];
							Debug.Assert((pIn1.flags & MEM_Dyn) == 0);
							pIn1.flags = MEM_Int;
							pcDest = (int)pIn1.u.i;
							pIn1.u.i = pc;
							REGISTER_TRACE(p, pOp.p1, pIn1);
							pc = pcDest;
							break;
						}

					/* Opcode:  HaltIfNull  P1 P2 P3 P4 *
					**
					** Check the value in register P3.  If it is NULL then Halt using
					** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
					** value in register P3 is not NULL, then this routine is a no-op.
					*/
					case OP_HaltIfNull:
						{      /* in3 */
							pIn3 = aMem[pOp.p3];
							if ((pIn3.flags & MEM_Null) == 0)
								break;
							/* Fall through into OP_Halt */
							goto case OP_Halt;
						}

					/* Opcode:  Halt P1 P2 * P4 *
					**
					** Exit immediately.  All open cursors, etc are closed
					** automatically.
					**
					** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
					** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
					** For errors, it can be some other value.  If P1!=0 then P2 will determine
					** whether or not to rollback the current transaction.  Do not rollback
					** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
					** then back out all changes that have occurred during this execution of the
					** VDBE, but do not rollback the transaction.
					**
					** If P4 is not null then it is an error message string.
					**
					** There is an implied "Halt 0 0 0" instruction inserted at the very end of
					** every program.  So a jump past the last instruction of the program
					** is the same as executing Halt.
					*/
					case OP_Halt:
						{
							pIn3 = aMem[pOp.p3];
							if (pOp.p1 == SQLITE_OK && p.pFrame != null)
							{
								/* Halt the sub-program. Return control to the parent frame. */
								VdbeFrame pFrame = p.pFrame;
								p.pFrame = pFrame.pParent;
								p.nFrame--;
								sqlite3VdbeSetChanges(db, p.nChange);
								pc = sqlite3VdbeFrameRestore(pFrame);
								lastRowid = db.lastRowid;
								if (pOp.p2 == OE_Ignore)
								{
									/* Instruction pc is the OP_Program that invoked the sub-program 
									** currently being halted. If the p2 instruction of this OP_Halt
									** instruction is set to OE_Ignore, then the sub-program is throwing
									** an IGNORE exception. In this case jump to the address specified
									** as the p2 of the calling OP_Program.  */
									pc = p.aOp[pc].p2 - 1;
								}
								aOp = p.aOp;
								aMem = p.aMem;
								break;
							}
							p.rc = pOp.p1;
							p.errorAction = (u8)pOp.p2;
							p.pc = pc;
							if (pOp.p4.z != null)
							{
								Debug.Assert(p.rc != SQLITE_OK);
								sqlite3SetString(ref p.zErrMsg, db, "%s", pOp.p4.z);
								testcase(sqlite3GlobalConfig.xLog != null);
								sqlite3_log(pOp.p1, "abort at %d in [%s]: %s", pc, p.zSql, pOp.p4.z);
							}
							else if (p.rc != 0)
							{
								testcase(sqlite3GlobalConfig.xLog != null);
								sqlite3_log(pOp.p1, "constraint failed at %d in [%s]", pc, p.zSql);
							}
							rc = sqlite3VdbeHalt(p);
							Debug.Assert(rc == SQLITE_BUSY || rc == SQLITE_OK || rc == SQLITE_ERROR);
							if (rc == SQLITE_BUSY)
							{
								p.rc = rc = SQLITE_BUSY;
							}
							else
							{
								Debug.Assert(rc == SQLITE_OK || p.rc == SQLITE_CONSTRAINT);
								Debug.Assert(rc == SQLITE_OK || db.nDeferredCons > 0);
								rc = p.rc != 0 ? SQLITE_ERROR : SQLITE_DONE;
							}
							goto vdbe_return;
						}

					/* Opcode: Integer P1 P2 * * *
					**
					** The 32-bit integer value P1 is written into register P2.
					*/
					case OP_Integer:
						{         /* out2-prerelease */
							pOut.u.i = pOp.p1;
							break;
						}

					/* Opcode: Int64 * P2 * P4 *
					**
					** P4 is a pointer to a 64-bit integer value.
					** Write that value into register P2.
					*/
					case OP_Int64:
						{           /* out2-prerelease */
							// Integer pointer always exists Debug.Assert( pOp.p4.pI64 != 0 );
							pOut.u.i = pOp.p4.pI64;
							break;
						}

#if !SQLITE_OMIT_FLOATING_POINT
					/* Opcode: Real * P2 * P4 *
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
					case OP_Real:
						{            /* same as TK_FLOAT, ref2-prerelease */
							pOut.flags = MEM_Real;
							Debug.Assert(!sqlite3IsNaN(pOp.p4.pReal));
							pOut.r = pOp.p4.pReal;
							break;
						}
#endif

					/* Opcode: String8 * P2 * P4 *
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into an OP_String before it is executed for the first time.
*/
					case OP_String8:
						{         /* same as TK_STRING, ref2-prerelease */
							Debug.Assert(pOp.p4.z != null);
							pOp.opcode = OP_String;
							pOp.p1 = sqlite3Strlen30(pOp.p4.z);

#if !SQLITE_OMIT_UTF16
if( encoding!=SQLITE_UTF8 ){
rc = sqlite3VdbeMemSetStr(pOut, pOp.p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
if( rc==SQLITE_TOOBIG ) goto too_big;
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
Debug.Assert( pOut.zMalloc==pOut.z );
Debug.Assert( pOut.flags & MEM_Dyn );
pOut.zMalloc = 0;
pOut.flags |= MEM_Static;
pOut.flags &= ~MEM_Dyn;
if( pOp.p4type==P4_DYNAMIC ){
sqlite3DbFree(db, ref pOp.p4.z);
}
pOp.p4type = P4_DYNAMIC;
pOp.p4.z = pOut.z;
pOp.p1 = pOut.n;
}
#endif
							if (pOp.p1 > db.aLimit[SQLITE_LIMIT_LENGTH])
							{
								goto too_big;
							}
							/* Fall through to the next case, OP_String */
							goto case OP_String;
						}

					/* Opcode: String P1 P2 * P4 *
					**
					** The string value P4 of length P1 (bytes) is stored in register P2.
					*/
					case OP_String:
						{          /* out2-prerelease */
							Debug.Assert(pOp.p4.z != null);
							pOut.flags = MEM_Str | MEM_Static | MEM_Term;
							sqlite3_free(ref pOut.zBLOB);
							pOut.z = pOp.p4.z;
							pOut.n = pOp.p1;
#if SQLITE_OMIT_UTF16
							pOut.enc = SQLITE_UTF8;
#else             
			  pOut.enc = encoding;
#endif
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}

					/* Opcode: Null * P2 * * *
					**
					** Write a NULL into register P2.
					*/
					case OP_Null:
						{           /* out2-prerelease */
							pOut.flags = MEM_Null;
							break;
						}


					/* Opcode: Blob P1 P2 * P4
					**
					** P4 points to a blob of data P1 bytes long.  Store this
					**  blob in register P2.
					*/
					case OP_Blob:
						{                /* out2-prerelease */
							Debug.Assert(pOp.p1 <= db.aLimit[SQLITE_LIMIT_LENGTH]);
							sqlite3VdbeMemSetStr(pOut, pOp.p4.z, pOp.p1, 0, null);
							pOut.enc = encoding;
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}

					/* Opcode: Variable P1 P2 * P4 *
					**
					** Transfer the values of bound parameter P1 into register P2
					**
					** If the parameter is named, then its name appears in P4 and P3==1.
					** The P4 value is used by sqlite3_bind_parameter_name().
					*/
					case OP_Variable:
						{            /* out2-prerelease */
							Mem pVar;        /* Value being transferred */

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 <= p.nVar);
							Debug.Assert(pOp.p4.z == null || pOp.p4.z == p.azVar[pOp.p1 - 1]);
							pVar = p.aVar[pOp.p1 - 1];

							if (sqlite3VdbeMemTooBig(pVar))
							{
								goto too_big;
							}
							sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}
					/* Opcode: Move P1 P2 P3 * *
					**
					** Move the values in register P1..P1+P3-1 over into
					** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
					** left holding a NULL.  It is an error for register ranges
					** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
					*/
					case OP_Move:
						{
							//char* zMalloc;   /* Holding variable for allocated memory */
							int n;           /* Number of registers left to copy */
							int p1;          /* Register to copy from */
							int p2;          /* Register to copy to */

							n = pOp.p3;
							p1 = pOp.p1;
							p2 = pOp.p2;
							Debug.Assert(n > 0 && p1 > 0 && p2 > 0);
							Debug.Assert(p1 + n <= p2 || p2 + n <= p1);
							//pIn1 = aMem[p1];
							//pOut = aMem[p2];
							while (n-- != 0)
							{
								pIn1 = aMem[p1 + pOp.p3 - n - 1];
								pOut = aMem[p2];
								//Debug.Assert( pOut<=&aMem[p.nMem] );
								//Debug.Assert( pIn1<=&aMem[p.nMem] );
								Debug.Assert(memIsValid(pIn1));
								memAboutToChange(p, pOut);
								//zMalloc = pOut.zMalloc;
								//pOut.zMalloc = null;
								sqlite3VdbeMemMove(pOut, pIn1);
								//pIn1.zMalloc = zMalloc;
								REGISTER_TRACE(p, p2++, pOut);
								//pIn1++;
								//pOut++;
							}
							break;
						}

					/* Opcode: Copy P1 P2 * * *
					**
					** Make a copy of register P1 into register P2.
					**
					** This instruction makes a deep copy of the value.  A duplicate
					** is made of any string or blob constant.  See also OP_SCopy.
					*/
					case OP_Copy:
						{             /* in1, ref2 */
							pIn1 = aMem[pOp.p1];
							pOut = aMem[pOp.p2];

							Debug.Assert(pOut != pIn1);
							sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
							if ((pOut.flags & MEM_Ephem) != 0 && sqlite3VdbeMemMakeWriteable(pOut) != 0)
							{
								goto no_mem;
							}//Deephemeralize( pOut );
							REGISTER_TRACE(p, pOp.p2, pOut);
							break;
						}

					/* Opcode: SCopy P1 P2 * * *
					**
					** Make a shallow copy of register P1 into register P2.
					**
					** This instruction makes a shallow copy of the value.  If the value
					** is a string or blob, then the copy is only a pointer to the
					** original and hence if the original changes so will the copy.
					** Worse, if the original is deallocated, the copy becomes invalid.
					** Thus the program must guarantee that the original will not change
					** during the lifetime of the copy.  Use OP_Copy to make a complete
					** copy.
					*/
					case OP_SCopy:
						{            /* in1, ref2 */
							pIn1 = aMem[pOp.p1];
							pOut = aMem[pOp.p2];
							Debug.Assert(pOut != pIn1);
							sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
#if SQLITE_DEBUG
			  if ( pOut.pScopyFrom == null )
				pOut.pScopyFrom = pIn1;
#endif
							REGISTER_TRACE(p, pOp.p2, pOut);
							break;
						}

					/* Opcode: ResultRow P1 P2 * * *
					**
					** The registers P1 through P1+P2-1 contain a single row of
					** results. This opcode causes the sqlite3_step() call to terminate
					** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
					** structure to provide access to the top P1 values as the result
					** row.
					*/
					case OP_ResultRow:
						{
							//Mem[] pMem;
							int i;
							Debug.Assert(p.nResColumn == pOp.p2);
							Debug.Assert(pOp.p1 > 0);
							Debug.Assert(pOp.p1 + pOp.p2 <= p.nMem + 1);

							/* If this statement has violated immediate foreign key constraints, do
							** not return the number of rows modified. And do not RELEASE the statement
							** transaction. It needs to be rolled back.  */
							if (SQLITE_OK != (rc = sqlite3VdbeCheckFk(p, 0)))
							{
								Debug.Assert((db.flags & SQLITE_CountRows) != 0);
								Debug.Assert(p.usesStmtJournal);
								break;
							}

							/* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
							** DML statements invoke this opcode to return the number of rows
							** modified to the user. This is the only way that a VM that
							** opens a statement transaction may invoke this opcode.
							**
							** In case this is such a statement, close any statement transaction
							** opened by this VM before returning control to the user. This is to
							** ensure that statement-transactions are always nested, not overlapping.
							** If the open statement-transaction is not closed here, then the user
							** may step another VM that opens its own statement transaction. This
							** may lead to overlapping statement transactions.
							**
							** The statement transaction is never a top-level transaction.  Hence
							** the RELEASE call below can never fail.
							*/
							Debug.Assert(p.iStatement == 0 || (db.flags & SQLITE_CountRows) != 0);
							rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
							if (NEVER(rc != SQLITE_OK))
							{
								break;
							}

							/* Invalidate all ephemeral cursor row caches */
							p.cacheCtr = (p.cacheCtr + 2) | 1;

							/* Make sure the results of the current row are \000 terminated
							** and have an assigned type.  The results are de-ephemeralized as
							** as side effect.
							*/
							//pMem = p.pResultSet = aMem[pOp.p1];
							p.pResultSet = new Mem[pOp.p2];
							for (i = 0; i < pOp.p2; i++)
							{
								p.pResultSet[i] = aMem[pOp.p1 + i];
								Debug.Assert(memIsValid(p.pResultSet[i]));
								//Deephemeralize( p.pResultSet[i] );
								//Debug.Assert( ( p.pResultSet[i].flags & MEM_Ephem ) == 0
								//        || ( p.pResultSet[i].flags & ( MEM_Str | MEM_Blob ) ) == 0 );
								sqlite3VdbeMemNulTerminate(p.pResultSet[i]); //sqlite3VdbeMemNulTerminate(pMem[i]);
								sqlite3VdbeMemStoreType(p.pResultSet[i]);
								REGISTER_TRACE(p, pOp.p1 + i, p.pResultSet[i]);
							}
							//      if ( db.mallocFailed != 0 ) goto no_mem;

							/* Return SQLITE_ROW
							*/
							p.pc = pc + 1;
							rc = SQLITE_ROW;
							goto vdbe_return;
						}

					/* Opcode: Concat P1 P2 P3 * *
					**
					** Add the text in register P1 onto the end of the text in
					** register P2 and store the result in register P3.
					** If either the P1 or P2 text are NULL then store NULL in P3.
					**
					**   P3 = P2 || P1
					**
					** It is illegal for P1 and P3 to be the same register. Sometimes,
					** if P3 is the same register as P2, the implementation is able
					** to avoid a memcpy().
					*/
					case OP_Concat:
						{           /* same as TK_CONCAT, in1, in2, ref3 */
							i64 nByte;

							pIn1 = aMem[pOp.p1];
							pIn2 = aMem[pOp.p2];
							pOut = aMem[pOp.p3];
							Debug.Assert(pIn1 != pOut);
							if (((pIn1.flags | pIn2.flags) & MEM_Null) != 0)
							{
								sqlite3VdbeMemSetNull(pOut);
								break;
							}
							if (ExpandBlob(pIn1) != 0 || ExpandBlob(pIn2) != 0)
								goto no_mem;
							if (((pIn1.flags & (MEM_Str | MEM_Blob)) == 0) && sqlite3VdbeMemStringify(pIn1, encoding) != 0)
							{
								goto no_mem;
							}// Stringify(pIn1, encoding);
							if (((pIn2.flags & (MEM_Str | MEM_Blob)) == 0) && sqlite3VdbeMemStringify(pIn2, encoding) != 0)
							{
								goto no_mem;
							}// Stringify(pIn2, encoding);
							nByte = pIn1.n + pIn2.n;
							if (nByte > db.aLimit[SQLITE_LIMIT_LENGTH])
							{
								goto too_big;
							}
							MemSetTypeFlag(pOut, MEM_Str);
							//if ( sqlite3VdbeMemGrow( pOut, (int)nByte + 2, ( pOut == pIn2 ) ? 1 : 0 ) != 0 )
							//{
							//  goto no_mem;
							//}
							//if ( pOut != pIn2 )
							//{
							//  memcpy( pOut.z, pIn2.z, pIn2.n );
							//}
							//memcpy( &pOut.z[pIn2.n], pIn1.z, pIn1.n );
							if (pIn2.z != null && pIn2.z.Length >= pIn2.n)
								if (pIn1.z != null)
									pOut.z = pIn2.z.Substring(0, pIn2.n) + (pIn1.n < pIn1.z.Length ? pIn1.z.Substring(0, pIn1.n) : pIn1.z);
								else
								{
									if ((pIn1.flags & MEM_Blob) == 0) //String as Blob
									{
										StringBuilder sb = new StringBuilder(pIn1.n);
										for (int i = 0; i < pIn1.n; i++)
											sb.Append((byte)pIn1.zBLOB[i]);
										pOut.z = pIn2.z.Substring(0, pIn2.n) + sb.ToString();
									}
									else // UTF-8 Blob
										pOut.z = pIn2.z.Substring(0, pIn2.n) + Encoding.UTF8.GetString(pIn1.zBLOB, 0, pIn1.zBLOB.Length);
								}
							else
							{
								pOut.zBLOB = sqlite3Malloc(pIn1.n + pIn2.n);
								Buffer.BlockCopy(pIn2.zBLOB, 0, pOut.zBLOB, 0, pIn2.n);
								if (pIn1.zBLOB != null)
									Buffer.BlockCopy(pIn1.zBLOB, 0, pOut.zBLOB, pIn2.n, pIn1.n);
								else
									for (int i = 0; i < pIn1.n; i++)
										pOut.zBLOB[pIn2.n + i] = (byte)pIn1.z[i];
							}              //pOut.z[nByte] = 0;
							//pOut.z[nByte + 1] = 0;
							pOut.flags |= MEM_Term;
							pOut.n = (int)nByte;
							pOut.enc = encoding;
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}

					/* Opcode: Add P1 P2 P3 * *
					**
					** Add the value in register P1 to the value in register P2
					** and store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					/* Opcode: Multiply P1 P2 P3 * *
					**
					**
					** Multiply the value in register P1 by the value in register P2
					** and store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					/* Opcode: Subtract P1 P2 P3 * *
					**
					** Subtract the value in register P1 from the value in register P2
					** and store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					/* Opcode: Divide P1 P2 P3 * *
					**
					** Divide the value in register P1 by the value in register P2
					** and store the result in register P3 (P3=P2/P1). If the value in 
					** register P1 is zero, then the result is NULL. If either input is 
					** NULL, the result is NULL.
					*/
					/* Opcode: Remainder P1 P2 P3 * *
					**
					** Compute the remainder after integer division of the value in
					** register P1 by the value in register P2 and store the result in P3.
					** If the value in register P2 is zero the result is NULL.
					** If either operand is NULL, the result is NULL.
					*/
					case OP_Add:                   /* same as TK_PLUS, in1, in2, ref3 */
					case OP_Subtract:              /* same as TK_MINUS, in1, in2, ref3 */
					case OP_Multiply:              /* same as TK_STAR, in1, in2, ref3 */
					case OP_Divide:                /* same as TK_SLASH, in1, in2, ref3 */
					case OP_Remainder:
						{           /* same as TK_REM, in1, in2, ref3 */
							int flags;      /* Combined MEM_* flags from both inputs */
							i64 iA;         /* Integer value of left operand */
							i64 iB = 0;     /* Integer value of right operand */
							double rA;      /* Real value of left operand */
							double rB;      /* Real value of right operand */

							pIn1 = aMem[pOp.p1];
							applyNumericAffinity(pIn1);
							pIn2 = aMem[pOp.p2];
							applyNumericAffinity(pIn2);
							pOut = aMem[pOp.p3];
							flags = pIn1.flags | pIn2.flags;
							if ((flags & MEM_Null) != 0)
								goto arithmetic_result_is_null;
							bool fp_math;
							if (!(fp_math = !((pIn1.flags & pIn2.flags & MEM_Int) == MEM_Int)))
							{
								iA = pIn1.u.i;
								iB = pIn2.u.i;
								switch (pOp.opcode)
								{
									case OP_Add:
										{
											if (sqlite3AddInt64(ref iB, iA) != 0)
												fp_math = true; // goto fp_math
											break;
										}
									case OP_Subtract:
										{
											if (sqlite3SubInt64(ref iB, iA) != 0)
												fp_math = true; // goto fp_math
											break;
										}
									case OP_Multiply:
										{
											if (sqlite3MulInt64(ref iB, iA) != 0)
												fp_math = true; // goto fp_math
											break;
										}
									case OP_Divide:
										{
											if (iA == 0)
												goto arithmetic_result_is_null;
											if (iA == -1 && iB == SMALLEST_INT64)
											{
												fp_math = true; // goto fp_math
												break;
											}
											iB /= iA;
											break;
										}
									default:
										{
											if (iA == 0)
												goto arithmetic_result_is_null;
											if (iA == -1)
												iA = 1;
											iB %= iA;
											break;
										}
								}
							}
							if (!fp_math)
							{
								pOut.u.i = iB;
								MemSetTypeFlag(pOut, MEM_Int);
							}
							else
							{
								//fp_math:
								rA = sqlite3VdbeRealValue(pIn1);
								rB = sqlite3VdbeRealValue(pIn2);
								switch (pOp.opcode)
								{
									case OP_Add:
										rB += rA;
										break;
									case OP_Subtract:
										rB -= rA;
										break;
									case OP_Multiply:
										rB *= rA;
										break;
									case OP_Divide:
										{
											/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
											if (rA == (double)0)
												goto arithmetic_result_is_null;
											rB /= rA;
											break;
										}
									default:
										{
											iA = (i64)rA;
											iB = (i64)rB;
											if (iA == 0)
												goto arithmetic_result_is_null;
											if (iA == -1)
												iA = 1;
											rB = (double)(iB % iA);
											break;
										}
								}
#if SQLITE_OMIT_FLOATING_POINT
pOut->u.i = rB;
MemSetTypeFlag(pOut, MEM_Int);
#else
								if (sqlite3IsNaN(rB))
								{
									goto arithmetic_result_is_null;
								}
								pOut.r = rB;
								MemSetTypeFlag(pOut, MEM_Real);
								if ((flags & MEM_Real) == 0)
								{
									sqlite3VdbeIntegerAffinity(pOut);
								}
#endif
							}
							break;

						arithmetic_result_is_null:
							sqlite3VdbeMemSetNull(pOut);
							break;
						}

					/* Opcode: CollSeq * * P4
					**
					** P4 is a pointer to a CollSeq struct. If the next call to a user function
					** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
					** be returned. This is used by the built-in min(), max() and nullif()
					** functions.
					**
					** The interface used by the implementation of the aforementioned functions
					** to retrieve the collation sequence set by this opcode is not available
					** publicly, only to user functions defined in func.c.
					*/
					case OP_CollSeq:
						{
							Debug.Assert(pOp.p4type == P4_COLLSEQ);
							break;
						}

					/* Opcode: Function P1 P2 P3 P4 P5
					**
					** Invoke a user function (P4 is a pointer to a Function structure that
					** defines the function) with P5 arguments taken from register P2 and
					** successors.  The result of the function is stored in register P3.
					** Register P3 must not be one of the function inputs.
					**
					** P1 is a 32-bit bitmask indicating whether or not each argument to the
					** function was determined to be constant at compile time. If the first
					** argument was constant then bit 0 of P1 is set. This is used to determine
					** whether meta data associated with a user function argument using the
					** sqlite3_set_auxdata() API may be safely retained until the next
					** invocation of this opcode.
					**
					** See also: AggStep and AggFinal
					*/
					case OP_Function:
						{
							int i;
							Mem pArg;
							sqlite3_context ctx = new sqlite3_context();
							sqlite3_value[] apVal;
							int n;

							n = pOp.p5;
							apVal = p.apArg;
							Debug.Assert(apVal != null || n == 0);
							Debug.Assert(pOp.p3 > 0 && pOp.p3 <= p.nMem);
							pOut = aMem[pOp.p3];
							memAboutToChange(p, pOut);

							Debug.Assert(n == 0 || (pOp.p2 > 0 && pOp.p2 + n <= p.nMem + 1));
							Debug.Assert(pOp.p3 < pOp.p2 || pOp.p3 >= pOp.p2 + n);
							//pArg = aMem[pOp.p2];
							for (i = 0; i < n; i++)//, pArg++)
							{
								pArg = aMem[pOp.p2 + i];
								Debug.Assert(memIsValid(pArg));
								apVal[i] = pArg;
								Deephemeralize(pArg);
								sqlite3VdbeMemStoreType(pArg);
								REGISTER_TRACE(p, pOp.p2 + i, pArg);
							}

							Debug.Assert(pOp.p4type == P4_FUNCDEF || pOp.p4type == P4_VDBEFUNC);
							if (pOp.p4type == P4_FUNCDEF)
							{
								ctx.pFunc = pOp.p4.pFunc;
								ctx.pVdbeFunc = null;
							}
							else
							{
								ctx.pVdbeFunc = (VdbeFunc)pOp.p4.pVdbeFunc;
								ctx.pFunc = ctx.pVdbeFunc.pFunc;
							}

							ctx.s.flags = MEM_Null;
							ctx.s.db = db;
							ctx.s.xDel = null;
							//ctx.s.zMalloc = null;

							/* The output cell may already have a buffer allocated. Move
							** the pointer to ctx.s so in case the user-function can use
							** the already allocated buffer instead of allocating a new one.
							*/
							sqlite3VdbeMemMove(ctx.s, pOut);
							MemSetTypeFlag(ctx.s, MEM_Null);

							ctx.isError = 0;
							if ((ctx.pFunc.flags & SQLITE_FUNC_NEEDCOLL) != 0)
							{
								Debug.Assert(pc > 1);//Debug.Assert(pOp > aOp);
								Debug.Assert(p.aOp[pc - 1].p4type == P4_COLLSEQ);//Debug.Assert(pOp[-1].p4type == P4_COLLSEQ);
								Debug.Assert(p.aOp[pc - 1].opcode == OP_CollSeq);//Debug.Assert(pOp[-1].opcode == OP_CollSeq);
								ctx.pColl = p.aOp[pc - 1].p4.pColl;//ctx.pColl = pOp[-1].p4.pColl;
							}
							db.lastRowid = lastRowid;
							ctx.pFunc.xFunc(ctx, n, apVal);///* IMP: R-24505-23230 */
							lastRowid = db.lastRowid;

							/* If any auxillary data functions have been called by this user function,
							** immediately call the destructor for any non-static values.
							*/
							if (ctx.pVdbeFunc != null)
							{
								sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp.p1);
								pOp.p4.pVdbeFunc = ctx.pVdbeFunc;
								pOp.p4type = P4_VDBEFUNC;
							}

							//if ( db->mallocFailed )
							//{
							//  /* Even though a malloc() has failed, the implementation of the
							//  ** user function may have called an sqlite3_result_XXX() function
							//  ** to return a value. The following call releases any resources
							//  ** associated with such a value.
							//  */
							//  sqlite3VdbeMemRelease( &u.ag.ctx.s );
							//  goto no_mem;
							//}

							/* If the function returned an error, throw an exception */
							if (ctx.isError != 0)
							{
								sqlite3SetString(ref p.zErrMsg, db, sqlite3_value_text(ctx.s));
								rc = ctx.isError;
							}

							/* Copy the result of the function into register P3 */
							sqlite3VdbeChangeEncoding(ctx.s, encoding);
							sqlite3VdbeMemMove(pOut, ctx.s);
							if (sqlite3VdbeMemTooBig(pOut))
							{
								goto too_big;
							}
#if FALSE
  /* The app-defined function has done something that as caused this
  ** statement to expire.  (Perhaps the function called sqlite3_exec()
  ** with a CREATE TABLE statement.)
  */
  if( p.expired ) rc = SQLITE_ABORT;
#endif

							REGISTER_TRACE(p, pOp.p3, pOut);
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}

					/* Opcode: BitAnd P1 P2 P3 * *
					**
					** Take the bit-wise AND of the values in register P1 and P2 and
					** store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					/* Opcode: BitOr P1 P2 P3 * *
					**
					** Take the bit-wise OR of the values in register P1 and P2 and
					** store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					/* Opcode: ShiftLeft P1 P2 P3 * *
					**
					** Shift the integer value in register P2 to the left by the
					** number of bits specified by the integer in register P1.
					** Store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					/* Opcode: ShiftRight P1 P2 P3 * *
					**
					** Shift the integer value in register P2 to the right by the
					** number of bits specified by the integer in register P1.
					** Store the result in register P3.
					** If either input is NULL, the result is NULL.
					*/
					case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, ref3 */
					case OP_BitOr:                  /* same as TK_BITOR, in1, in2, ref3 */
					case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, ref3 */
					case OP_ShiftRight:
						{           /* same as TK_RSHIFT, in1, in2, ref3 */
							i64 iA;
							u64 uA;
							i64 iB;
							u8 op;

							pIn1 = aMem[pOp.p1];
							pIn2 = aMem[pOp.p2];
							pOut = aMem[pOp.p3];
							if (((pIn1.flags | pIn2.flags) & MEM_Null) != 0)
							{
								sqlite3VdbeMemSetNull(pOut);
								break;
							}
							iA = sqlite3VdbeIntValue(pIn2);
							iB = sqlite3VdbeIntValue(pIn1);
							op = pOp.opcode;
							if (op == OP_BitAnd)
							{
								iA &= iB;
							}
							else if (op == OP_BitOr)
							{
								iA |= iB;
							}
							else if (iB != 0)
							{
								Debug.Assert(op == OP_ShiftRight || op == OP_ShiftLeft);

								/* If shifting by a negative amount, shift in the other direction */
								if (iB < 0)
								{
									Debug.Assert(OP_ShiftRight == OP_ShiftLeft + 1);
									op = (u8)(2 * OP_ShiftLeft + 1 - op);
									iB = iB > (-64) ? -iB : 64;
								}

								if (iB >= 64)
								{
									iA = (iA >= 0 || op == OP_ShiftLeft) ? 0 : -1;
								}
								else
								{
									//uA = (ulong)(iA << 0); // memcpy( &uA, &iA, sizeof( uA ) );
									if (op == OP_ShiftLeft)
									{
										iA = iA << (int)iB;
									}
									else
									{
										iA = iA >> (int)iB;
										/* Sign-extend on a right shift of a negative number */
										//if ( iA < 0 )
										//  uA |= ( ( (0xffffffff ) << (u8)32 ) | 0xffffffff ) << (u8)( 64 - iB );
									}
									//iA = (long)( uA << 0 ); //memcpy( &iA, &uA, sizeof( iA ) );
								}
							}
							pOut.u.i = iA;
							MemSetTypeFlag(pOut, MEM_Int);
							break;
						}

					/* Opcode: AddImm  P1 P2 * * *
					**
					** Add the constant P2 to the value in register P1.
					** The result is always an integer.
					**
					** To force any register to be an integer, just add 0.
					*/
					case OP_AddImm:
						{            /* in1 */
							pIn1 = aMem[pOp.p1];
							memAboutToChange(p, pIn1);
							sqlite3VdbeMemIntegerify(pIn1);
							pIn1.u.i += pOp.p2;
							break;
						}

					/* Opcode: MustBeInt P1 P2 * * *
					**
					** Force the value in register P1 to be an integer.  If the value
					** in P1 is not an integer and cannot be converted into an integer
					** without data loss, then jump immediately to P2, or if P2==0
					** raise an SQLITE_MISMATCH exception.
					*/
					case OP_MustBeInt:
						{            /* jump, in1 */
							pIn1 = aMem[pOp.p1];
							applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
							if ((pIn1.flags & MEM_Int) == 0)
							{
								if (pOp.p2 == 0)
								{
									rc = SQLITE_MISMATCH;
									goto abort_due_to_error;
								}
								else
								{
									pc = pOp.p2 - 1;
								}
							}
							else
							{
								MemSetTypeFlag(pIn1, MEM_Int);
							}
							break;
						}

#if !SQLITE_OMIT_FLOATING_POINT
					/* Opcode: RealAffinity P1 * * * *
**
** If register P1 holds an integer convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity.  Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
					case OP_RealAffinity:
						{                  /* in1 */
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Int) != 0)
							{
								sqlite3VdbeMemRealify(pIn1);
							}
							break;
						}
#endif

#if !SQLITE_OMIT_CAST
					/* Opcode: ToText P1 * * * *
**
** Force the value in register P1 to be text.
** If the value is numeric, convert it to a string using the
** equivalent of printf().  Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
					case OP_ToText:
						{                  /* same as TK_TO_TEXT, in1 */
							pIn1 = aMem[pOp.p1];
							memAboutToChange(p, pIn1);
							if ((pIn1.flags & MEM_Null) != 0)
								break;
							Debug.Assert(MEM_Str == (MEM_Blob >> 3));
							pIn1.flags |= (u16)((pIn1.flags & MEM_Blob) >> 3);
							applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
							rc = ExpandBlob(pIn1);
							Debug.Assert((pIn1.flags & MEM_Str) != 0 /*|| db.mallocFailed != 0 */ );
							pIn1.flags = (u16)(pIn1.flags & ~(MEM_Int | MEM_Real | MEM_Blob | MEM_Zero));
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pIn1 );
#endif
							break;
						}

					/* Opcode: ToBlob P1 * * * *
					**
					** Force the value in register P1 to be a BLOB.
					** If the value is numeric, convert it to a string first.
					** Strings are simply reinterpreted as blobs with no change
					** to the underlying data.
					**
					** A NULL value is not changed by this routine.  It remains NULL.
					*/
					case OP_ToBlob:
						{                  /* same as TK_TO_BLOB, in1 */
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Null) != 0)
								break;
							if ((pIn1.flags & MEM_Blob) == 0)
							{
								applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
								Debug.Assert((pIn1.flags & MEM_Str) != 0 /*|| db.mallocFailed != 0 */ );
								MemSetTypeFlag(pIn1, MEM_Blob);
							}
							else
							{
								pIn1.flags = (ushort)(pIn1.flags & ~(MEM_TypeMask & ~MEM_Blob));
							}
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pIn1 );
#endif
							break;
						}

					/* Opcode: ToNumeric P1 * * * *
					**
					** Force the value in register P1 to be numeric (either an
					** integer or a floating-point number.)
					** If the value is text or blob, try to convert it to an using the
					** equivalent of atoi() or atof() and store 0 if no such conversion
					** is possible.
					**
					** A NULL value is not changed by this routine.  It remains NULL.
					*/
					case OP_ToNumeric:
						{                  /* same as TK_TO_NUMERIC, in1 */
							pIn1 = aMem[pOp.p1];
							sqlite3VdbeMemNumerify(pIn1);
							break;
						}
#endif // * SQLITE_OMIT_CAST */

					/* Opcode: ToInt P1 * * * *
**
** Force the value in register P1 to be an integer.  If
** The value is currently a real number, drop its fractional part.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
					case OP_ToInt:
						{                  /* same as TK_TO_INT, in1 */
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Null) == 0)
							{
								sqlite3VdbeMemIntegerify(pIn1);
							}
							break;
						}

#if !(SQLITE_OMIT_CAST) && !(SQLITE_OMIT_FLOATING_POINT)
					/* Opcode: ToReal P1 * * * *
**
** Force the value in register P1 to be a floating point number.
** If The value is currently an integer, convert it.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0.0 if no such conversion is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
					case OP_ToReal:
						{                  /* same as TK_TO_REAL, in1 */
							pIn1 = aMem[pOp.p1];
							memAboutToChange(p, pIn1);
							if ((pIn1.flags & MEM_Null) == 0)
							{
								sqlite3VdbeMemRealify(pIn1);
							}
							break;
						}
#endif //* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */

					/* Opcode: Lt P1 P2 P3 P4 P5
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3.  So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison.  If both values
** are text, then the appropriate collating function specified in
** P4 is  used to do the comparison.  If P4 is not specified then
** memcmp() is used to compare text string.  If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
** store a boolean result (either 0, or 1, or NULL) in register P2.
*/
					/* Opcode: Ne P1 P2 P3 P4 P5
					**
					** This works just like the Lt opcode except that the jump is taken if
					** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
					** additional information.
					**
					** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
					** true or false and is never NULL.  If both operands are NULL then the result
					** of comparison is false.  If either operand is NULL then the result is true.
					** If neither operand is NULL the result is the same as it would be if
					** the SQLITE_NULLEQ flag were omitted from P5.
					*/
					/* Opcode: Eq P1 P2 P3 P4 P5
					**
					** This works just like the Lt opcode except that the jump is taken if
					** the operands in registers P1 and P3 are equal.
					** See the Lt opcode for additional information.
					**
					** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
					** true or false and is never NULL.  If both operands are NULL then the result
					** of comparison is true.  If either operand is NULL then the result is false.
					** If neither operand is NULL the result is the same as it would be if
					** the SQLITE_NULLEQ flag were omitted from P5.
					*/
					/* Opcode: Le P1 P2 P3 P4 P5
					**
					** This works just like the Lt opcode except that the jump is taken if
					** the content of register P3 is less than or equal to the content of
					** register P1.  See the Lt opcode for additional information.
					*/
					/* Opcode: Gt P1 P2 P3 P4 P5
					**
					** This works just like the Lt opcode except that the jump is taken if
					** the content of register P3 is greater than the content of
					** register P1.  See the Lt opcode for additional information.
					*/
					/* Opcode: Ge P1 P2 P3 P4 P5
					**
					** This works just like the Lt opcode except that the jump is taken if
					** the content of register P3 is greater than or equal to the content of
					** register P1.  See the Lt opcode for additional information.
					*/
					case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
					case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
					case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
					case OP_Le:               /* same as TK_LE, jump, in1, in3 */
					case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
					case OP_Ge:
						{             /* same as TK_GE, jump, in1, in3 */
							int res = 0;        /* Result of the comparison of pIn1 against pIn3 */
							char affinity;      /* Affinity to use for comparison */
							u16 flags1;         /* Copy of initial value of pIn1->flags */
							u16 flags3;         /* Copy of initial value of pIn3->flags */
							pIn1 = aMem[pOp.p1];
							pIn3 = aMem[pOp.p3];
							flags1 = pIn1.flags;
							flags3 = pIn3.flags;
							if (((pIn1.flags | pIn3.flags) & MEM_Null) != 0)
							{
								/* One or both operands are NULL */
								if ((pOp.p5 & SQLITE_NULLEQ) != 0)
								{
									/* If SQLITE_NULLEQ is set (which will only happen if the operator is
									** OP_Eq or OP_Ne) then take the jump or not depending on whether
									** or not both operands are null.
									*/
									Debug.Assert(pOp.opcode == OP_Eq || pOp.opcode == OP_Ne);
									res = (pIn1.flags & pIn3.flags & MEM_Null) == 0 ? 1 : 0;
								}
								else
								{
									/* SQLITE_NULLEQ is clear and at least one operand is NULL,
									** then the result is always NULL.
									** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
									*/
									if ((pOp.p5 & SQLITE_STOREP2) != 0)
									{
										pOut = aMem[pOp.p2];
										MemSetTypeFlag(pOut, MEM_Null);
										REGISTER_TRACE(p, pOp.p2, pOut);
									}
									else if ((pOp.p5 & SQLITE_JUMPIFNULL) != 0)
									{
										pc = pOp.p2 - 1;
									}
									break;
								}

							}
							else
							{
								/* Neither operand is NULL.  Do a comparison. */
								affinity = (char)(pOp.p5 & SQLITE_AFF_MASK);
								if (affinity != '\0')
								{
									applyAffinity(pIn1, affinity, encoding);
									applyAffinity(pIn3, affinity, encoding);
									//      if ( db.mallocFailed != 0 ) goto no_mem;
								}

								Debug.Assert(pOp.p4type == P4_COLLSEQ || pOp.p4.pColl == null);
								ExpandBlob(pIn1);
								ExpandBlob(pIn3);
								res = sqlite3MemCompare(pIn3, pIn1, pOp.p4.pColl);
							}
							switch (pOp.opcode)
							{
								case OP_Eq:
									res = (res == 0) ? 1 : 0;
									break;
								case OP_Ne:
									res = (res != 0) ? 1 : 0;
									break;
								case OP_Lt:
									res = (res < 0) ? 1 : 0;
									break;
								case OP_Le:
									res = (res <= 0) ? 1 : 0;
									break;
								case OP_Gt:
									res = (res > 0) ? 1 : 0;
									break;
								default:
									res = (res >= 0) ? 1 : 0;
									break;
							}

							if ((pOp.p5 & SQLITE_STOREP2) != 0)
							{
								pOut = aMem[pOp.p2];
								memAboutToChange(p, pOut);
								MemSetTypeFlag(pOut, MEM_Int);
								pOut.u.i = res;
								REGISTER_TRACE(p, pOp.p2, pOut);
							}
							else if (res != 0)
							{
								pc = pOp.p2 - 1;
							}

							/* Undo any changes made by applyAffinity() to the input registers. */
							pIn1.flags = (u16)((pIn1.flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask));
							pIn3.flags = (u16)((pIn3.flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask));
							break;
						}

					/* Opcode: Permutation * * * P4 *
					**
					** Set the permutation used by the OP_Compare operator to be the array
					** of integers in P4.
					**
					** The permutation is only valid until the next OP_Permutation, OP_Compare,
					** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
					** immediately prior to the OP_Compare.
					*/
					case OP_Permutation:
						{
							Debug.Assert(pOp.p4type == P4_INTARRAY);
							Debug.Assert(pOp.p4.ai != null);
							aPermute = pOp.p4.ai;
							break;
						}

					/* Opcode: Compare P1 P2 P3 P4 *
					**
					** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
					** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
					** the comparison for use by the next OP_Jump instruct.
					**
					** P4 is a KeyInfo structure that defines collating sequences and sort
					** orders for the comparison.  The permutation applies to registers
					** only.  The KeyInfo elements are used sequentially.
					**
					** The comparison is a sort comparison, so NULLs compare equal,
					** NULLs are less than numbers, numbers are less than strings,
					** and strings are less than blobs.
					*/
					case OP_Compare:
						{
							int n;
							int i;
							int p1;
							int p2;
							KeyInfo pKeyInfo;
							int idx;
							CollSeq pColl;    /* Collating sequence to use on this term */
							int bRev;          /* True for DESCENDING sort order */

							n = pOp.p3;
							pKeyInfo = pOp.p4.pKeyInfo;
							Debug.Assert(n > 0);
							Debug.Assert(pKeyInfo != null);
							p1 = pOp.p1;
							p2 = pOp.p2;
#if SQLITE_DEBUG
			  if ( aPermute != null )
			  {
				int k, mx = 0;
				for ( k = 0; k < n; k++ )
				  if ( aPermute[k] > mx )
					mx = aPermute[k];
				Debug.Assert( p1 > 0 && p1 + mx <= p.nMem + 1 );
				Debug.Assert( p2 > 0 && p2 + mx <= p.nMem + 1 );
			  }
			  else
			  {
				Debug.Assert( p1 > 0 && p1 + n <= p.nMem + 1 );
				Debug.Assert( p2 > 0 && p2 + n <= p.nMem + 1 );
			  }
#endif //* SQLITE_DEBUG */
							for (i = 0; i < n; i++)
							{
								idx = aPermute != null ? aPermute[i] : i;
								Debug.Assert(memIsValid(aMem[p1 + idx]));
								Debug.Assert(memIsValid(aMem[p2 + idx]));
								REGISTER_TRACE(p, p1 + idx, aMem[p1 + idx]);
								REGISTER_TRACE(p, p2 + idx, aMem[p2 + idx]);
								Debug.Assert(i < pKeyInfo.nField);
								pColl = pKeyInfo.aColl[i];
								bRev = pKeyInfo.aSortOrder[i];
								iCompare = sqlite3MemCompare(aMem[p1 + idx], aMem[p2 + idx], pColl);
								if (iCompare != 0)
								{
									if (bRev != 0)
										iCompare = -iCompare;
									break;
								}
							}
							aPermute = null;
							break;
						}

					/* Opcode: Jump P1 P2 P3 * *
					**
					** Jump to the instruction at address P1, P2, or P3 depending on whether
					** in the most recent OP_Compare instruction the P1 vector was less than
					** equal to, or greater than the P2 vector, respectively.
					*/
					case OP_Jump:
						{             /* jump */
							if (iCompare < 0)
							{
								pc = pOp.p1 - 1;
							}
							else if (iCompare == 0)
							{
								pc = pOp.p2 - 1;
							}
							else
							{
								pc = pOp.p3 - 1;
							}
							break;
						}
					/* Opcode: And P1 P2 P3 * *
					**
					** Take the logical AND of the values in registers P1 and P2 and
					** write the result into register P3.
					**
					** If either P1 or P2 is 0 (false) then the result is 0 even if
					** the other input is NULL.  A NULL and true or two NULLs give
					** a NULL output.
					*/
					/* Opcode: Or P1 P2 P3 * *
					**
					** Take the logical OR of the values in register P1 and P2 and
					** store the answer in register P3.
					**
					** If either P1 or P2 is nonzero (true) then the result is 1 (true)
					** even if the other input is NULL.  A NULL and false or two NULLs
					** give a NULL output.
					*/
					case OP_And:              /* same as TK_AND, in1, in2, ref3 */
					case OP_Or:
						{             /* same as TK_OR, in1, in2, ref3 */
							int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
							int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */

							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Null) != 0)
							{
								v1 = 2;
							}
							else
							{
								v1 = (sqlite3VdbeIntValue(pIn1) != 0) ? 1 : 0;
							}
							pIn2 = aMem[pOp.p2];
							if ((pIn2.flags & MEM_Null) != 0)
							{
								v2 = 2;
							}
							else
							{
								v2 = (sqlite3VdbeIntValue(pIn2) != 0) ? 1 : 0;
							}
							if (pOp.opcode == OP_And)
							{
								byte[] and_logic = new byte[] { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
								v1 = and_logic[v1 * 3 + v2];
							}
							else
							{
								byte[] or_logic = new byte[] { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
								v1 = or_logic[v1 * 3 + v2];
							}
							pOut = aMem[pOp.p3];
							if (v1 == 2)
							{
								MemSetTypeFlag(pOut, MEM_Null);
							}
							else
							{
								pOut.u.i = v1;
								MemSetTypeFlag(pOut, MEM_Int);
							}
							break;
						}

					/* Opcode: Not P1 P2 * * *
					**
					** Interpret the value in register P1 as a boolean value.  Store the
					** boolean complement in register P2.  If the value in register P1 is
					** NULL, then a NULL is stored in P2.
					*/
					case OP_Not:
						{                /* same as TK_NOT, in1 */
							pIn1 = aMem[pOp.p1];
							pOut = aMem[pOp.p2];
							if ((pIn1.flags & MEM_Null) != 0)
							{
								sqlite3VdbeMemSetNull(pOut);
							}
							else
							{
								sqlite3VdbeMemSetInt64(pOut, sqlite3VdbeIntValue(pIn1) == 0 ? 1 : 0);
							}
							break;
						}

					/* Opcode: BitNot P1 P2 * * *
					**
					** Interpret the content of register P1 as an integer.  Store the
					** ones-complement of the P1 value into register P2.  If P1 holds
					** a NULL then store a NULL in P2.
					*/
					case OP_BitNot:
						{             /* same as TK_BITNOT, in1 */
							pIn1 = aMem[pOp.p1];
							pOut = aMem[pOp.p2];
							if ((pIn1.flags & MEM_Null) != 0)
							{
								sqlite3VdbeMemSetNull(pOut);
							}
							else
							{
								sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
							}
							break;
						}

					/* Opcode: If P1 P2 P3 * *
					**
					** Jump to P2 if the value in register P1 is true.  The value
					** is considered true if it is numeric and non-zero.  If the value
					** in P1 is NULL then take the jump if P3 is true.
					*/
					/* Opcode: IfNot P1 P2 P3 * *
					**
					** Jump to P2 if the value in register P1 is False.  The value
					** is considered true if it has a numeric value of zero.  If the value
					** in P1 is NULL then take the jump if P3 is true.
					*/
					case OP_If:                 /* jump, in1 */
					case OP_IfNot:
						{            /* jump, in1 */
							int c;
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Null) != 0)
							{
								c = pOp.p3;
							}
							else
							{
#if SQLITE_OMIT_FLOATING_POINT
c = sqlite3VdbeIntValue(pIn1)!=0;
#else
								c = (sqlite3VdbeRealValue(pIn1) != 0.0) ? 1 : 0;
#endif
								if (pOp.opcode == OP_IfNot)
									c = (c == 0) ? 1 : 0;
							}
							if (c != 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: IsNull P1 P2 * * *
					**
					** Jump to P2 if the value in register P1 is NULL.
					*/
					case OP_IsNull:
						{            /* same as TK_ISNULL, jump, in1 */
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Null) != 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: NotNull P1 P2 * * *
					**
					** Jump to P2 if the value in register P1 is not NULL.
					*/
					case OP_NotNull:
						{            /* same as TK_NOTNULL, jump, in1 */
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_Null) == 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: Column P1 P2 P3 P4 *
					**
					** Interpret the data that cursor P1 points to as a structure built using
					** the MakeRecord instruction.  (See the MakeRecord opcode for additional
					** information about the format of the data.)  Extract the P2-th column
					** from this record.  If there are less that (P2+1)
					** values in the record, extract a NULL.
					**
					** The value extracted is stored in register P3.
					**
					** If the column contains fewer than P2 fields, then extract a NULL.  Or,
					** if the P4 argument is a P4_MEM use the value of the P4 argument as
					** the result.
					**
					** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
					** then the cache of the cursor is reset prior to extracting the column.
					** The first OP_Column against a pseudo-table after the value of the content
					** register has changed should have this bit set.
					*/
					case OP_Column:
						{
							u32 payloadSize;   /* Number of bytes in the record */
							i64 payloadSize64; /* Number of bytes in the record */
							int p1;            /* P1 value of the opcode */
							int p2;            /* column number to retrieve */
							VdbeCursor pC;     /* The VDBE cursor */
							byte[] zRec;       /* Pointer to complete record-data */
							BtCursor pCrsr;    /* The BTree cursor */
							u32[] aType;       /* aType[i] holds the numeric type of the i-th column */
							u32[] aOffset;     /* aOffset[i] is offset to start of data for i-th column */
							int nField;        /* number of fields in the record */
							int len;           /* The length of the serialized data for the column */
							int i;             /* Loop counter */
							byte[] zData = null;/* Part of the record being decoded */
							Mem pDest;         /* Where to write the extracted value */
							Mem sMem = null;   /* For storing the record being decoded */
							int zIdx;          /* Index into header */
							int zEndHdr;       /* Pointer to first byte after the header */
							u32 offset;        /* Offset into the data */
							u32 szField = 0;   /* Number of bytes in the content of a field */
							int szHdr;         /* Size of the header size field at start of record */
							int avail;         /* Number of bytes of available data */
							Mem pReg;          /* PseudoTable input register */

							p1 = pOp.p1;
							p2 = pOp.p2;
							pC = null;

							payloadSize = 0;
							payloadSize64 = 0;
							offset = 0;

							sMem = sqlite3Malloc(sMem);
							//  memset(&sMem, 0, sizeof(sMem));
							Debug.Assert(p1 < p.nCursor);
							Debug.Assert(pOp.p3 > 0 && pOp.p3 <= p.nMem);
							pDest = aMem[pOp.p3];
							memAboutToChange(p, pDest);
							MemSetTypeFlag(pDest, MEM_Null);
							zRec = null;

							/* This block sets the variable payloadSize to be the total number of
							** bytes in the record.
							**
							** zRec is set to be the complete text of the record if it is available.
							** The complete record text is always available for pseudo-tables
							** If the record is stored in a cursor, the complete record text
							** might be available in the  pC.aRow cache.  Or it might not be.
							** If the data is unavailable,  zRec is set to NULL.
							**
							** We also compute the number of columns in the record.  For cursors,
							** the number of columns is stored in the VdbeCursor.nField element.
							*/
							pC = p.apCsr[p1];
							Debug.Assert(pC != null);
#if !SQLITE_OMIT_VIRTUALTABLE
							Debug.Assert(pC.pVtabCursor == null);
#endif
							pCrsr = pC.pCursor;
							if (pCrsr != null)
							{
								/* The record is stored in a B-Tree */
								rc = sqlite3VdbeCursorMoveto(pC);
								if (rc != 0)
									goto abort_due_to_error;
								if (pC.nullRow)
								{
									payloadSize = 0;
								}
								else if ((pC.cacheStatus == p.cacheCtr) && (pC.aRow != -1))
								{
									payloadSize = pC.payloadSize;
									zRec = sqlite3Malloc((int)payloadSize);
									Buffer.BlockCopy(pCrsr.info.pCell, pC.aRow, zRec, 0, (int)payloadSize);
								}
								else if (pC.isIndex)
								{
									Debug.Assert(sqlite3BtreeCursorIsValid(pCrsr));
									rc = sqlite3BtreeKeySize(pCrsr, ref payloadSize64);
									Debug.Assert(rc == SQLITE_OK);   /* True because of CursorMoveto() call above */
									/* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
									** payload size, so it is impossible for payloadSize64 to be
									** larger than 32 bits. */
									Debug.Assert(((u64)payloadSize64 & SQLITE_MAX_U32) == (u64)payloadSize64);
									payloadSize = (u32)payloadSize64;
								}
								else
								{
									Debug.Assert(sqlite3BtreeCursorIsValid(pCrsr));
									rc = sqlite3BtreeDataSize(pCrsr, ref payloadSize);
									Debug.Assert(rc == SQLITE_OK);   /* DataSize() cannot fail */
								}
							}
							else if (pC.pseudoTableReg > 0)
							{
								/* The record is the sole entry of a pseudo-table */
								pReg = aMem[pC.pseudoTableReg];
								Debug.Assert((pReg.flags & MEM_Blob) != 0);
								Debug.Assert(memIsValid(pReg));
								payloadSize = (u32)pReg.n;
								zRec = pReg.zBLOB;
								pC.cacheStatus = (pOp.p5 & OPFLAG_CLEARCACHE) != 0 ? CACHE_STALE : p.cacheCtr;
								Debug.Assert(payloadSize == 0 || zRec != null);
							}
							else
							{
								/* Consider the row to be NULL */
								payloadSize = 0;
							}

							/* If payloadSize is 0, then just store a NULL */
							if (payloadSize == 0)
							{
								Debug.Assert((pDest.flags & MEM_Null) != 0);
								goto op_column_out;
							}
							Debug.Assert(db.aLimit[SQLITE_LIMIT_LENGTH] >= 0);
							if (payloadSize > (u32)db.aLimit[SQLITE_LIMIT_LENGTH])
							{
								goto too_big;
							}

							nField = pC.nField;
							Debug.Assert(p2 < nField);

							/* Read and parse the table header.  Store the results of the parse
							** into the record header cache fields of the cursor.
							*/
							aType = pC.aType;
							if (pC.cacheStatus == p.cacheCtr)
							{
								aOffset = pC.aOffset;
							}
							else
							{
								Debug.Assert(aType != null);
								avail = 0;
								//pC.aOffset = aOffset = aType[nField];
								aOffset = new u32[nField];
								pC.aOffset = aOffset;
								pC.payloadSize = payloadSize;
								pC.cacheStatus = p.cacheCtr;

								/* Figure out how many bytes are in the header */
								if (zRec != null)
								{
									zData = zRec;
								}
								else
								{
									if (pC.isIndex)
									{
										zData = sqlite3BtreeKeyFetch(pCrsr, ref avail, ref pC.aRow);
									}
									else
									{
										zData = sqlite3BtreeDataFetch(pCrsr, ref avail, ref pC.aRow);
									}
									/* If KeyFetch()/DataFetch() managed to get the entire payload,
									** save the payload in the pC.aRow cache.  That will save us from
									** having to make additional calls to fetch the content portion of
									** the record.
									*/
									Debug.Assert(avail >= 0);
									if (payloadSize <= (u32)avail)
									{
										zRec = zData;
										//pC.aRow = zData;
									}
									else
									{
										pC.aRow = -1; //pC.aRow = null;
									}
								}
								/* The following Debug.Assert is true in all cases accept when
								** the database file has been corrupted externally.
								**    Debug.Assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
								szHdr = getVarint32(zData, out offset);

								/* Make sure a corrupt database has not given us an oversize header.
								** Do this now to avoid an oversize memory allocation.
								**
								** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
								** types use so much data space that there can only be 4096 and 32 of
								** them, respectively.  So the maximum header length results from a
								** 3-byte type for each of the maximum of 32768 columns plus three
								** extra bytes for the header length itself.  32768*3 + 3 = 98307.
								*/
								if (offset > 98307)
								{
									rc = SQLITE_CORRUPT_BKPT();
									goto op_column_out;
								}

								/* Compute in len the number of bytes of data we need to read in order
								** to get nField type values.  offset is an upper bound on this.  But
								** nField might be significantly less than the true number of columns
								** in the table, and in that case, 5*nField+3 might be smaller than offset.
								** We want to minimize len in order to limit the size of the memory
								** allocation, especially if a corrupt database file has caused offset
								** to be oversized. Offset is limited to 98307 above.  But 98307 might
								** still exceed Robson memory allocation limits on some configurations.
								** On systems that cannot tolerate large memory allocations, nField*5+3
								** will likely be much smaller since nField will likely be less than
								** 20 or so.  This insures that Robson memory allocation limits are
								** not exceeded even for corrupt database files.
								*/
								len = nField * 5 + 3;
								if (len > (int)offset)
									len = (int)offset;

								/* The KeyFetch() or DataFetch() above are fast and will get the entire
								** record header in most cases.  But they will fail to get the complete
								** record header if the record header does not fit on a single page
								** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
								** acquire the complete header text.
								*/
								if (zRec == null && avail < len)
								{
									sMem.db = null;
									sMem.flags = 0;
									rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC.isIndex, sMem);
									if (rc != SQLITE_OK)
									{
										goto op_column_out;
									}
									zData = sMem.zBLOB;
								}
								zEndHdr = len;// zData[len];
								zIdx = szHdr;// zData[szHdr];

								/* Scan the header and use it to fill in the aType[] and aOffset[]
								** arrays.  aType[i] will contain the type integer for the i-th
								** column and aOffset[i] will contain the offset from the beginning
								** of the record to the start of the data for the i-th column
								*/
								for (i = 0; i < nField; i++)
								{
									if (zIdx < zEndHdr)
									{
										aOffset[i] = offset;
										zIdx += getVarint32(zData, zIdx, out aType[i]);//getVarint32(zIdx, aType[i]);
										szField = sqlite3VdbeSerialTypeLen(aType[i]);
										offset += szField;
										if (offset < szField)
										{  /* True if offset overflows */
											zIdx = int.MaxValue;  /* Forces SQLITE_CORRUPT return below */
											break;
										}
									}
									else
									{
										/* If i is less that nField, then there are less fields in this
										** record than SetNumColumns indicated there are columns in the
										** table. Set the offset for any extra columns not present in
										** the record to 0. This tells code below to store a NULL
										** instead of deserializing a value from the record.
										*/
										aOffset[i] = 0;
									}
								}
								sqlite3VdbeMemRelease(sMem);
								sMem.flags = MEM_Null;

								/* If we have read more header data than was contained in the header,
								** or if the end of the last field appears to be past the end of the
								** record, or if the end of the last field appears to be before the end
								** of the record (when all fields present), then we must be dealing
								** with a corrupt database.
								*/
								if ((zIdx > zEndHdr) || (offset > payloadSize)
								|| (zIdx == zEndHdr && offset != payloadSize))
								{
									rc = SQLITE_CORRUPT_BKPT();
									goto op_column_out;
								}
							}

							/* Get the column information. If aOffset[p2] is non-zero, then
							** deserialize the value from the record. If aOffset[p2] is zero,
							** then there are not enough fields in the record to satisfy the
							** request.  In this case, set the value NULL or to P4 if P4 is
							** a pointer to a Mem object.
							*/
							if (aOffset[p2] != 0)
							{
								Debug.Assert(rc == SQLITE_OK);
								if (zRec != null)
								{
									sqlite3VdbeMemReleaseExternal(pDest);
									sqlite3VdbeSerialGet(zRec, (int)aOffset[p2], aType[p2], pDest);
								}
								else
								{
									len = (int)sqlite3VdbeSerialTypeLen(aType[p2]);
									sqlite3VdbeMemMove(sMem, pDest);
									rc = sqlite3VdbeMemFromBtree(pCrsr, (int)aOffset[p2], len, pC.isIndex, sMem);
									if (rc != SQLITE_OK)
									{
										goto op_column_out;
									}
									zData = sMem.zBLOB;
									sMem.zBLOB = null;
									sqlite3VdbeSerialGet(zData, aType[p2], pDest);
								}
								pDest.enc = encoding;
							}
							else
							{
								if (pOp.p4type == P4_MEM)
								{
									sqlite3VdbeMemShallowCopy(pDest, pOp.p4.pMem, MEM_Static);
								}
								else
								{
									Debug.Assert((pDest.flags & MEM_Null) != 0);
								}
							}

							/* If we dynamically allocated space to hold the data (in the
							** sqlite3VdbeMemFromBtree() call above) then transfer control of that
							** dynamically allocated space over to the pDest structure.
							** This prevents a memory copy.
							*/
							//if ( sMem.zMalloc != null )
							//{
							//  Debug.Assert( sMem.z == sMem.zMalloc);
							//  Debug.Assert( sMem.xDel == null );
							//  Debug.Assert( ( pDest.flags & MEM_Dyn ) == 0 );
							//  Debug.Assert( ( pDest.flags & ( MEM_Blob | MEM_Str ) ) == 0 || pDest.z == sMem.z );
							//  pDest.flags &= ~( MEM_Ephem | MEM_Static );
							//  pDest.flags |= MEM_Term;
							//  pDest.z = sMem.z;
							//  pDest.zMalloc = sMem.zMalloc;
							//}

							rc = sqlite3VdbeMemMakeWriteable(pDest);

						op_column_out:
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pDest );
#endif
							REGISTER_TRACE(p, pOp.p3, pDest);
							if (zData != null && zData != zRec)
								sqlite3_free(ref zData);
							//sqlite3_free( ref zRec );
							sqlite3_free(ref sMem);
							break;
						}

					/* Opcode: Affinity P1 P2 * P4 *
					**
					** Apply affinities to a range of P2 registers starting with P1.
					**
					** P4 is a string that is P2 characters long. The nth character of the
					** string indicates the column affinity that should be used for the nth
					** memory cell in the range.
					*/
					case OP_Affinity:
						{
							string zAffinity;        /* The affinity to be applied */
							char cAff;               /* A single character of affinity */

							zAffinity = pOp.p4.z;
							Debug.Assert(!String.IsNullOrEmpty(zAffinity));
							Debug.Assert(zAffinity.Length <= pOp.p2);//zAffinity[pOp.p2] == 0
							//pIn1 = aMem[pOp.p1];
							for (int zI = 0; zI < zAffinity.Length; zI++)// while( (cAff = *(zAffinity++))!=0 ){
							{
								cAff = zAffinity[zI];
								pIn1 = aMem[pOp.p1 + zI];
								//Debug.Assert( pIn1 <= p->aMem[p->nMem] );
								Debug.Assert(memIsValid(pIn1));
								ExpandBlob(pIn1);
								applyAffinity(pIn1, cAff, encoding);
								//pIn1++;
							}
							break;
						}

					/* Opcode: MakeRecord P1 P2 P3 P4 *
					**
					** Convert P2 registers beginning with P1 into the [record format]
					** use as a data record in a database table or as a key
					** in an index.  The OP_Column opcode can decode the record later.
					**
					** P4 may be a string that is P2 characters long.  The nth character of the
					** string indicates the column affinity that should be used for the nth
					** field of the index key.
					**
					** The mapping from character to affinity is given by the SQLITE_AFF_
					** macros defined in sqliteInt.h.
					**
					** If P4 is NULL then all index fields have the affinity NONE.
					*/
					case OP_MakeRecord:
						{
							byte[] zNewRecord;     /* A buffer to hold the data for the new record */
							Mem pRec;              /* The new record */
							u64 nData;             /* Number of bytes of data space */
							int nHdr;              /* Number of bytes of header space */
							i64 nByte;             /* Data space required for this record */
							int nZero;             /* Number of zero bytes at the end of the record */
							int nVarint;           /* Number of bytes in a varint */
							u32 serial_type;       /* Type field */
							//Mem pData0;            /* First field to be combined into the record */
							//Mem pLast;             /* Last field of the record */
							int nField;            /* Number of fields in the record */
							string zAffinity;      /* The affinity string for the record */
							int file_format;       /* File format to use for encoding */
							int i;                 /* Space used in zNewRecord[] */
							int len;               /* Length of a field */
							/* Assuming the record contains N fields, the record format looks
							** like this:
							**
							** ------------------------------------------------------------------------
							** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
							** ------------------------------------------------------------------------
							**
							** Data(0) is taken from register P1.  Data(1) comes from register P1+1
							** and so froth.
							**
							** Each type field is a varint representing the serial type of the
							** corresponding data element (see sqlite3VdbeSerialType()). The
							** hdr-size field is also a varint which is the offset from the beginning
							** of the record to data0.
							*/

							nData = 0;         /* Number of bytes of data space */
							nHdr = 0;          /* Number of bytes of header space */
							nZero = 0;         /* Number of zero bytes at the end of the record */
							nField = pOp.p1;
							zAffinity = (pOp.p4.z == null || pOp.p4.z.Length == 0) ? "" : pOp.p4.z;
							Debug.Assert(nField > 0 && pOp.p2 > 0 && pOp.p2 + nField <= p.nMem + 1);
							//pData0 = aMem[nField];
							nField = pOp.p2;
							//pLast =  pData0[nField - 1];
							file_format = p.minWriteFileFormat;

							/* Identify the output register */
							Debug.Assert(pOp.p3 < pOp.p1 || pOp.p3 >= pOp.p1 + pOp.p2);
							pOut = aMem[pOp.p3];
							memAboutToChange(p, pOut);

							/* Loop through the elements that will make up the record to figure
							** out how much space is required for the new record.
							*/
							//for (pRec = pData0; pRec <= pLast; pRec++)
							for (int pD0 = 0; pD0 < nField; pD0++)
							{
								pRec = p.aMem[pOp.p1 + pD0];
								Debug.Assert(memIsValid(pRec));
								if (pD0 < zAffinity.Length && zAffinity[pD0] != '\0')
								{
									applyAffinity(pRec, (char)zAffinity[pD0], encoding);
								}
								if ((pRec.flags & MEM_Zero) != 0 && pRec.n > 0)
								{
									sqlite3VdbeMemExpandBlob(pRec);
								}
								serial_type = sqlite3VdbeSerialType(pRec, file_format);
								len = (int)sqlite3VdbeSerialTypeLen(serial_type);
								nData += (u64)len;
								nHdr += sqlite3VarintLen(serial_type);
								if ((pRec.flags & MEM_Zero) != 0)
								{
									/* Only pure zero-filled BLOBs can be input to this Opcode.
									** We do not allow blobs with a prefix and a zero-filled tail. */
									nZero += pRec.u.nZero;
								}
								else if (len != 0)
								{
									nZero = 0;
								}
							}

							/* Add the initial header varint and total the size */
							nHdr += nVarint = sqlite3VarintLen((u64)nHdr);
							if (nVarint < sqlite3VarintLen((u64)nHdr))
							{
								nHdr++;
							}
							nByte = (i64)((u64)nHdr + nData - (u64)nZero);
							if (nByte > db.aLimit[SQLITE_LIMIT_LENGTH])
							{
								goto too_big;
							}

							/* Make sure the output register has a buffer large enough to store
							** the new record. The output register (pOp.p3) is not allowed to
							** be one of the input registers (because the following call to
							** sqlite3VdbeMemGrow() could clobber the value before it is used).
							*/
							//if ( sqlite3VdbeMemGrow( pOut, (int)nByte, 0 ) != 0 )
							//{
							//  goto no_mem;
							//}
							zNewRecord = sqlite3Malloc((int)nByte);// (u8 )pOut.z;

							/* Write the record */
							i = putVarint32(zNewRecord, nHdr);
							for (int pD0 = 0; pD0 < nField; pD0++)//for (pRec = pData0; pRec <= pLast; pRec++)
							{
								pRec = p.aMem[pOp.p1 + pD0];
								serial_type = sqlite3VdbeSerialType(pRec, file_format);
								i += putVarint32(zNewRecord, i, (int)serial_type);      /* serial type */
							}
							for (int pD0 = 0; pD0 < nField; pD0++)//for (pRec = pData0; pRec <= pLast; pRec++)
							{  /* serial data */
								pRec = p.aMem[pOp.p1 + pD0];
								i += (int)sqlite3VdbeSerialPut(zNewRecord, i, (int)nByte - i, pRec, file_format);
							}
							//TODO -- Remove this  for testing Debug.Assert( i == nByte );

							Debug.Assert(pOp.p3 > 0 && pOp.p3 <= p.nMem);
							pOut.zBLOB = zNewRecord;
							pOut.z = null;
							pOut.n = (int)nByte;
							pOut.flags = MEM_Blob | MEM_Dyn;
							pOut.xDel = null;
							if (nZero != 0)
							{
								pOut.u.nZero = nZero;
								pOut.flags |= MEM_Zero;
							}
							pOut.enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
							REGISTER_TRACE(p, pOp.p3, pOut);
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}

					/* Opcode: Count P1 P2 * * *
					**
					** Store the number of entries (an integer value) in the table or index
					** opened by cursor P1 in register P2
					*/
#if !SQLITE_OMIT_BTREECOUNT
					case OP_Count:
						{         /* out2-prerelease */
							i64 nEntry = 0;
							BtCursor pCrsr;
							pCrsr = p.apCsr[pOp.p1].pCursor;
							if (pCrsr != null)
							{
								rc = sqlite3BtreeCount(pCrsr, ref nEntry);
							}
							else
							{
								nEntry = 0;
							}
							pOut.u.i = nEntry;
							break;
						}
#endif

					/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
					case OP_Savepoint:
						{
							int p1;                         /* Value of P1 operand */
							string zName;                   /* Name of savepoint */
							int nName;
							Savepoint pNew;
							Savepoint pSavepoint;
							Savepoint pTmp;
							int iSavepoint;
							int ii;

							p1 = pOp.p1;
							zName = pOp.p4.z;

							/* Assert that the p1 parameter is valid. Also that if there is no open
							** transaction, then there cannot be any savepoints.
							*/
							Debug.Assert(db.pSavepoint == null || db.autoCommit == 0);
							Debug.Assert(p1 == SAVEPOINT_BEGIN || p1 == SAVEPOINT_RELEASE || p1 == SAVEPOINT_ROLLBACK);
							Debug.Assert(db.pSavepoint != null || db.isTransactionSavepoint == 0);
							Debug.Assert(checkSavepointCount(db) != 0);

							if (p1 == SAVEPOINT_BEGIN)
							{
								if (db.writeVdbeCnt > 0)
								{
									/* A new savepoint cannot be created if there are active write
									** statements (i.e. open read/write incremental blob handles).
									*/
									sqlite3SetString(ref p.zErrMsg, db, "cannot open savepoint - ",
									"SQL statements in progress");
									rc = SQLITE_BUSY;
								}
								else
								{
									nName = sqlite3Strlen30(zName);

#if !SQLITE_OMIT_VIRTUALTABLE
									/* This call is Ok even if this savepoint is actually a transaction
	  ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
	  ** If this is a transaction savepoint being opened, it is guaranteed
	  ** that the db->aVTrans[] array is empty.  */
									Debug.Assert(db.autoCommit == 0 || db.nVTrans == 0);
									rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
															  db.nStatement + db.nSavepoint);
									if (rc != SQLITE_OK)
										goto abort_due_to_error;
#endif

									/* Create a new savepoint structure. */
									pNew = new Savepoint();// sqlite3DbMallocRaw( db, sizeof( Savepoint ) + nName + 1 );
									if (pNew != null)
									{
										//pNew.zName = (char )&pNew[1];
										//memcpy(pNew.zName, zName, nName+1);
										pNew.zName = zName;

										/* If there is no open transaction, then mark this as a special
										** "transaction savepoint". */
										if (db.autoCommit != 0)
										{
											db.autoCommit = 0;
											db.isTransactionSavepoint = 1;
										}
										else
										{
											db.nSavepoint++;
										}

										/* Link the new savepoint into the database handle's list. */
										pNew.pNext = db.pSavepoint;
										db.pSavepoint = pNew;
										pNew.nDeferredCons = db.nDeferredCons;
									}
								}
							}
							else
							{
								iSavepoint = 0;

								/* Find the named savepoint. If there is no such savepoint, then an
								** an error is returned to the user.  */
								for (
								pSavepoint = db.pSavepoint;
								pSavepoint != null && !pSavepoint.zName.Equals(zName, StringComparison.InvariantCultureIgnoreCase);
								pSavepoint = pSavepoint.pNext
								)
								{
									iSavepoint++;
								}
								if (null == pSavepoint)
								{
									sqlite3SetString(ref p.zErrMsg, db, "no such savepoint: %s", zName);
									rc = SQLITE_ERROR;
								}
								else if (
								db.writeVdbeCnt > 0 || (p1 == SAVEPOINT_ROLLBACK && db.activeVdbeCnt > 1)
								)
								{
									/* It is not possible to release (commit) a savepoint if there are
									** active write statements. It is not possible to rollback a savepoint
									** if there are any active statements at all.
									*/
									sqlite3SetString(ref p.zErrMsg, db,
									"cannot %s savepoint - SQL statements in progress",
									(p1 == SAVEPOINT_ROLLBACK ? "rollback" : "release")
									);
									rc = SQLITE_BUSY;
								}
								else
								{

									/* Determine whether or not this is a transaction savepoint. If so,
									** and this is a RELEASE command, then the current transaction
									** is committed.
									*/
									int isTransaction = (pSavepoint.pNext == null && db.isTransactionSavepoint != 0) ? 1 : 0;
									if (isTransaction != 0 && p1 == SAVEPOINT_RELEASE)
									{
										if ((rc = sqlite3VdbeCheckFk(p, 1)) != SQLITE_OK)
										{
											goto vdbe_return;
										}
										db.autoCommit = 1;
										if (sqlite3VdbeHalt(p) == SQLITE_BUSY)
										{
											p.pc = pc;
											db.autoCommit = 0;
											p.rc = rc = SQLITE_BUSY;
											goto vdbe_return;
										}
										db.isTransactionSavepoint = 0;
										rc = p.rc;
									}
									else
									{
										iSavepoint = db.nSavepoint - iSavepoint - 1;
										for (ii = 0; ii < db.nDb; ii++)
										{
											rc = sqlite3BtreeSavepoint(db.aDb[ii].pBt, p1, iSavepoint);
											if (rc != SQLITE_OK)
											{
												goto abort_due_to_error;
											}
										}
										if (p1 == SAVEPOINT_ROLLBACK && (db.flags & SQLITE_InternChanges) != 0)
										{
											sqlite3ExpirePreparedStatements(db);
											sqlite3ResetInternalSchema(db, -1);
											db.flags = (db.flags | SQLITE_InternChanges);
										}
									}

									/* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
									** savepoints nested inside of the savepoint being operated on. */
									while (db.pSavepoint != pSavepoint)
									{
										pTmp = db.pSavepoint;
										db.pSavepoint = pTmp.pNext;
										sqlite3DbFree(db, ref pTmp);
										db.nSavepoint--;
									}

									/* If it is a RELEASE, then destroy the savepoint being operated on 
									** too. If it is a ROLLBACK TO, then set the number of deferred 
									** constraint violations present in the database to the value stored
									** when the savepoint was created.  */
									if (p1 == SAVEPOINT_RELEASE)
									{
										Debug.Assert(pSavepoint == db.pSavepoint);
										db.pSavepoint = pSavepoint.pNext;
										sqlite3DbFree(db, ref pSavepoint);
										if (0 == isTransaction)
										{
											db.nSavepoint--;
										}
									}
									else
									{
										db.nDeferredCons = pSavepoint.nDeferredCons;
									}

									if (0 == isTransaction)
									{
										rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
										if (rc != SQLITE_OK)
											goto abort_due_to_error;
									}

								}
							}

							break;
						}

					/* Opcode: AutoCommit P1 P2 * * *
					**
					** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
					** back any currently active btree transactions. If there are any active
					** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
					**
					** This instruction causes the VM to halt.
					*/
					case OP_AutoCommit:
						{
							int desiredAutoCommit;
							int iRollback;
							int turnOnAC;

							desiredAutoCommit = (u8)pOp.p1;
							iRollback = pOp.p2;
							turnOnAC = (desiredAutoCommit != 0 && 0 == db.autoCommit) ? 1 : 0;

							Debug.Assert(desiredAutoCommit != 0 || 0 == desiredAutoCommit);
							Debug.Assert(desiredAutoCommit != 0 || 0 == iRollback);

							Debug.Assert(db.activeVdbeCnt > 0);  /* At least this one VM is active */

							if (turnOnAC != 0 && iRollback != 0 && db.activeVdbeCnt > 1)
							{
								/* If this instruction implements a ROLLBACK and other VMs are
								** still running, and a transaction is active, return an error indicating
								** that the other VMs must complete first.
								*/
								sqlite3SetString(ref p.zErrMsg, db, "cannot rollback transaction - " +
								"SQL statements in progress");
								rc = SQLITE_BUSY;
							}
							else if (turnOnAC != 0 && 0 == iRollback && db.writeVdbeCnt > 0)
							{
								/* If this instruction implements a COMMIT and other VMs are writing
								** return an error indicating that the other VMs must complete first.
								*/
								sqlite3SetString(ref p.zErrMsg, db, "cannot commit transaction - " +
								"SQL statements in progress");
								rc = SQLITE_BUSY;
							}
							else if (desiredAutoCommit != db.autoCommit)
							{
								if (iRollback != 0)
								{
									Debug.Assert(desiredAutoCommit != 0);
									sqlite3RollbackAll(db);
									db.autoCommit = 1;
								}
								else if ((rc = sqlite3VdbeCheckFk(p, 1)) != SQLITE_OK)
								{
									goto vdbe_return;
								}
								else
								{
									db.autoCommit = (u8)desiredAutoCommit;
									if (sqlite3VdbeHalt(p) == SQLITE_BUSY)
									{
										p.pc = pc;
										db.autoCommit = (u8)(desiredAutoCommit == 0 ? 1 : 0);
										p.rc = rc = SQLITE_BUSY;
										goto vdbe_return;
									}
								}
								Debug.Assert(db.nStatement == 0);
								sqlite3CloseSavepoints(db);
								if (p.rc == SQLITE_OK)
								{
									rc = SQLITE_DONE;
								}
								else
								{
									rc = SQLITE_ERROR;
								}
								goto vdbe_return;
							}
							else
							{
								sqlite3SetString(ref p.zErrMsg, db,
								(0 == desiredAutoCommit) ? "cannot start a transaction within a transaction" : (
								(iRollback != 0) ? "cannot rollback - no transaction is active" :
								"cannot commit - no transaction is active"));
								rc = SQLITE_ERROR;
							}
							break;
						}

					/* Opcode: Transaction P1 P2 * * *
					**
					** Begin a transaction.  The transaction ends when a Commit or Rollback
					** opcode is encountered.  Depending on the ON CONFLICT setting, the
					** transaction might also be rolled back if an error is encountered.
					**
					** P1 is the index of the database file on which the transaction is
					** started.  Index 0 is the main database file and index 1 is the
					** file used for temporary tables.  Indices of 2 or more are used for
					** attached databases.
					**
					** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
					** obtained on the database file when a write-transaction is started.  No
					** other process can start another write transaction while this transaction is
					** underway.  Starting a write transaction also creates a rollback journal. A
					** write transaction must be started before any changes can be made to the
					** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
					** on the file.
					**
					** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
					** true (this flag is set if the Vdbe may modify more than one row and may
					** throw an ABORT exception), a statement transaction may also be opened.
					** More specifically, a statement transaction is opened iff the database
					** connection is currently not in autocommit mode, or if there are other
					** active statements. A statement transaction allows the affects of this
					** VDBE to be rolled back after an error without having to roll back the
					** entire transaction. If no error is encountered, the statement transaction
					** will automatically commit when the VDBE halts.
					**
					** If P2 is zero, then a read-lock is obtained on the database file.
					*/
					case OP_Transaction:
						{
							Btree pBt;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << pOp.p1)) != 0);
							pBt = db.aDb[pOp.p1].pBt;

							if (pBt != null)
							{
								rc = sqlite3BtreeBeginTrans(pBt, pOp.p2);
								if (rc == SQLITE_BUSY)
								{
									p.pc = pc;
									p.rc = rc = SQLITE_BUSY;
									goto vdbe_return;
								}
								if (rc != SQLITE_OK)
								{
									goto abort_due_to_error;
								}
								if (pOp.p2 != 0 && p.usesStmtJournal
								&& (db.autoCommit == 0 || db.activeVdbeCnt > 1)
								)
								{
									Debug.Assert(sqlite3BtreeIsInTrans(pBt));
									if (p.iStatement == 0)
									{
										Debug.Assert(db.nStatement >= 0 && db.nSavepoint >= 0);
										db.nStatement++;
										p.iStatement = db.nSavepoint + db.nStatement;
									}
									rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p.iStatement - 1);
									if (rc == SQLITE_OK)
									{
										rc = sqlite3BtreeBeginStmt(pBt, p.iStatement);
									}
									/* Store the current value of the database handles deferred constraint
									** counter. If the statement transaction needs to be rolled back,
									** the value of this counter needs to be restored too.  */
									p.nStmtDefCons = db.nDeferredCons;
								}
							}
							break;
						}

					/* Opcode: ReadCookie P1 P2 P3 * *
					**
					** Read cookie number P3 from database P1 and write it into register P2.
					** P3==1 is the schema version.  P3==2 is the database format.
					** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
					** the main database file and P1==1 is the database file used to store
					** temporary tables.
					**
					** There must be a read-lock on the database (either a transaction
					** must be started or there must be an open cursor) before
					** executing this instruction.
					*/
					case OP_ReadCookie:
						{               /* out2-prerelease */
							u32 iMeta;
							int iDb;
							int iCookie;

							iMeta = 0;
							iDb = pOp.p1;
							iCookie = pOp.p3;

							Debug.Assert(pOp.p3 < SQLITE_N_BTREE_META);
							Debug.Assert(iDb >= 0 && iDb < db.nDb);
							Debug.Assert(db.aDb[iDb].pBt != null);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << iDb)) != 0);
							sqlite3BtreeGetMeta(db.aDb[iDb].pBt, iCookie, ref iMeta);
							pOut.u.i = (int)iMeta;
							break;
						}

					/* Opcode: SetCookie P1 P2 P3 * *
					**
					** Write the content of register P3 (interpreted as an integer)
					** into cookie number P2 of database P1.  P2==1 is the schema version.
					** P2==2 is the database format. P2==3 is the recommended pager cache
					** size, and so forth.  P1==0 is the main database file and P1==1 is the
					** database file used to store temporary tables.
					**
					** A transaction must be started before executing this opcode.
					*/
					case OP_SetCookie:
						{       /* in3 */
							Db pDb;
							Debug.Assert(pOp.p2 < SQLITE_N_BTREE_META);
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << pOp.p1)) != 0);
							pDb = db.aDb[pOp.p1];
							Debug.Assert(pDb.pBt != null);
							Debug.Assert(sqlite3SchemaMutexHeld(db, pOp.p1, null));
							pIn3 = aMem[pOp.p3];
							sqlite3VdbeMemIntegerify(pIn3);
							/* See note about index shifting on OP_ReadCookie */
							rc = sqlite3BtreeUpdateMeta(pDb.pBt, pOp.p2, (u32)pIn3.u.i);
							if (pOp.p2 == BTREE_SCHEMA_VERSION)
							{
								/* When the schema cookie changes, record the new cookie internally */
								pDb.pSchema.schema_cookie = (int)pIn3.u.i;
								db.flags |= SQLITE_InternChanges;
							}
							else if (pOp.p2 == BTREE_FILE_FORMAT)
							{
								/* Record changes in the file format */
								pDb.pSchema.file_format = (u8)pIn3.u.i;
							}
							if (pOp.p1 == 1)
							{
								/* Invalidate all prepared statements whenever the TEMP database
								** schema is changed.  Ticket #1644 */
								sqlite3ExpirePreparedStatements(db);
								p.expired = false;
							}
							break;
						}

					/* Opcode: VerifyCookie P1 P2 P3 * *
					**
					** Check the value of global database parameter number 0 (the
					** schema version) and make sure it is equal to P2 and that the
					** generation counter on the local schema parse equals P3.
					**
					** P1 is the database number which is 0 for the main database file
					** and 1 for the file holding temporary tables and some higher number
					** for auxiliary databases.
					**
					** The cookie changes its value whenever the database schema changes.
					** This operation is used to detect when that the cookie has changed
					** and that the current process needs to reread the schema.
					**
					** Either a transaction needs to have been started or an OP_Open needs
					** to be executed (to establish a read lock) before this opcode is
					** invoked.
					*/
					case OP_VerifyCookie:
						{
							u32 iMeta = 0;
							u32 iGen;
							Btree pBt;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);
							Debug.Assert((p.btreeMask & ((yDbMask)1 << pOp.p1)) != 0);
							Debug.Assert(sqlite3SchemaMutexHeld(db, pOp.p1, null));
							pBt = db.aDb[pOp.p1].pBt;
							if (pBt != null)
							{
								sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, ref iMeta);
								iGen = db.aDb[pOp.p1].pSchema.iGeneration;
							}
							else
							{
								iGen = iMeta = 0;
							}
							if (iMeta != pOp.p2 || iGen != pOp.p3)
							{
								sqlite3DbFree(db, ref p.zErrMsg);
								p.zErrMsg = "database schema has changed";// sqlite3DbStrDup(db, "database schema has changed");
								/* If the schema-cookie from the database file matches the cookie
								** stored with the in-memory representation of the schema, do
								** not reload the schema from the database file.
								**
								** If virtual-tables are in use, this is not just an optimization.
								** Often, v-tables store their data in other SQLite tables, which
								** are queried from within xNext() and other v-table methods using
								** prepared queries. If such a query is out-of-date, we do not want to
								** discard the database schema, as the user code implementing the
								** v-table would have to be ready for the sqlite3_vtab structure itself
								** to be invalidated whenever sqlite3_step() is called from within
								** a v-table method.
								*/
								if (db.aDb[pOp.p1].pSchema.schema_cookie != iMeta)
								{
									sqlite3ResetInternalSchema(db, pOp.p1);
								}

								p.expired = true;
								rc = SQLITE_SCHEMA;
							}
							break;
						}

					/* Opcode: OpenRead P1 P2 P3 P4 P5
					**
					** Open a read-only cursor for the database table whose root page is
					** P2 in a database file.  The database file is determined by P3.
					** P3==0 means the main database, P3==1 means the database used for
					** temporary tables, and P3>1 means used the corresponding attached
					** database.  Give the new cursor an identifier of P1.  The P1
					** values need not be contiguous but all P1 values should be small integers.
					** It is an error for P1 to be negative.
					**
					** If P5!=0 then use the content of register P2 as the root page, not
					** the value of P2 itself.
					**
					** There will be a read lock on the database whenever there is an
					** open cursor.  If the database was unlocked prior to this instruction
					** then a read lock is acquired as part of this instruction.  A read
					** lock allows other processes to read the database but prohibits
					** any other process from modifying the database.  The read lock is
					** released when all cursors are closed.  If this instruction attempts
					** to get a read lock but fails, the script terminates with an
					** SQLITE_BUSY error code.
					**
					** The P4 value may be either an integer (P4_INT32) or a pointer to
					** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
					** structure, then said structure defines the content and collating
					** sequence of the index being opened. Otherwise, if P4 is an integer
					** value, it is set to the number of columns in the table.
					**
					** See also OpenWrite.
					*/
					/* Opcode: OpenWrite P1 P2 P3 P4 P5
					**
					** Open a read/write cursor named P1 on the table or index whose root
					** page is P2.  Or if P5!=0 use the content of register P2 to find the
					** root page.
					**
					** The P4 value may be either an integer (P4_INT32) or a pointer to
					** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
					** structure, then said structure defines the content and collating
					** sequence of the index being opened. Otherwise, if P4 is an integer
					** value, it is set to the number of columns in the table, or to the
					** largest index of any column of the table that is actually used.
					**
					** This instruction works just like OpenRead except that it opens the cursor
					** in read/write mode.  For a given table, there can be one or more read-only
					** cursors or a single read/write cursor but not both.
					**
					** See also OpenRead.
					*/
					case OP_OpenRead:
					case OP_OpenWrite:
						{
							int nField;
							KeyInfo pKeyInfo;
							int p2;
							int iDb;
							int wrFlag;
							Btree pX;
							VdbeCursor pCur;
							Db pDb;

							if (p.expired)
							{
								rc = SQLITE_ABORT;
								break;
							}

							nField = 0;
							pKeyInfo = null;
							p2 = pOp.p2;
							iDb = pOp.p3;
							Debug.Assert(iDb >= 0 && iDb < db.nDb);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << iDb)) != 0);
							pDb = db.aDb[iDb];
							pX = pDb.pBt;
							Debug.Assert(pX != null);
							if (pOp.opcode == OP_OpenWrite)
							{
								wrFlag = 1;
								Debug.Assert(sqlite3SchemaMutexHeld(db, iDb, null));
								if (pDb.pSchema.file_format < p.minWriteFileFormat)
								{
									p.minWriteFileFormat = pDb.pSchema.file_format;
								}
							}
							else
							{
								wrFlag = 0;
							}
							if (pOp.p5 != 0)
							{
								Debug.Assert(p2 > 0);
								Debug.Assert(p2 <= p.nMem);
								pIn2 = aMem[p2];
								Debug.Assert(memIsValid(pIn2));
								Debug.Assert((pIn2.flags & MEM_Int) != 0);
								sqlite3VdbeMemIntegerify(pIn2);
								p2 = (int)pIn2.u.i;
								/* The p2 value always comes from a prior OP_CreateTable opcode and
								** that opcode will always set the p2 value to 2 or more or else fail.
								** If there were a failure, the prepared statement would have halted
								** before reaching this instruction. */
								if (NEVER(p2 < 2))
								{
									rc = SQLITE_CORRUPT_BKPT();
									goto abort_due_to_error;
								}
							}
							if (pOp.p4type == P4_KEYINFO)
							{
								pKeyInfo = pOp.p4.pKeyInfo;
								pKeyInfo.enc = ENC(p.db);
								nField = pKeyInfo.nField + 1;
							}
							else if (pOp.p4type == P4_INT32)
							{
								nField = pOp.p4.i;
							}
							Debug.Assert(pOp.p1 >= 0);
							pCur = allocateCursor(p, pOp.p1, nField, iDb, 1);
							if (pCur == null)
								goto no_mem;
							pCur.nullRow = true;
							pCur.isOrdered = true;
							rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur.pCursor);
							pCur.pKeyInfo = pKeyInfo;
							/* Since it performs no memory allocation or IO, the only values that
							** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 
							** SQLITE_EMPTY is only returned when attempting to open the table
							** rooted at page 1 of a zero-byte database.  */
							Debug.Assert(rc == SQLITE_EMPTY || rc == SQLITE_OK);
							if (rc == SQLITE_EMPTY)
							{
								sqlite3MemFreeBtCursor(ref pCur.pCursor);
								rc = SQLITE_OK;
							}
							/* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
							** SQLite used to check if the root-page flags were sane at this point
							** and report database corruption if they were not, but this check has
							** since moved into the btree layer.  */
							pCur.isTable = pOp.p4type != P4_KEYINFO;
							pCur.isIndex = !pCur.isTable;
							break;
						}

					/* Opcode: OpenEphemeral P1 P2 * P4 *
					**
					** Open a new cursor P1 to a transient table.
					** The cursor is always opened read/write even if 
					** the main database is read-only.  The ephemeral
					** table is deleted automatically when the cursor is closed.
					**
					** P2 is the number of columns in the ephemeral table.
					** The cursor points to a BTree table if P4==0 and to a BTree index
					** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
					** that defines the format of keys in the index.
					**
					** This opcode was once called OpenTemp.  But that created
					** confusion because the term "temp table", might refer either
					** to a TEMP table at the SQL level, or to a table opened by
					** this opcode.  Then this opcode was call OpenVirtual.  But
					** that created confusion with the whole virtual-table idea.
					*/
					/* Opcode: OpenAutoindex P1 P2 * P4 *
					**
					** This opcode works the same as OP_OpenEphemeral.  It has a
					** different name to distinguish its use.  Tables created using
					** by this opcode will be used for automatically created transient
					** indices in joins.
					*/
					case OP_OpenAutoindex:
					case OP_OpenEphemeral:
						{
							VdbeCursor pCx;
							const int vfsFlags =
							SQLITE_OPEN_READWRITE |
							SQLITE_OPEN_CREATE |
							SQLITE_OPEN_EXCLUSIVE |
							SQLITE_OPEN_DELETEONCLOSE |
							SQLITE_OPEN_TRANSIENT_DB;

							Debug.Assert(pOp.p1 >= 0);
							pCx = allocateCursor(p, pOp.p1, pOp.p2, -1, 1);
							if (pCx == null)
								goto no_mem;
							pCx.nullRow = true;
							rc = sqlite3BtreeOpen(db.pVfs, null, db, ref pCx.pBt,
												BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp.p5, vfsFlags);
							if (rc == SQLITE_OK)
							{
								rc = sqlite3BtreeBeginTrans(pCx.pBt, 1);
							}
							if (rc == SQLITE_OK)
							{
								/* If a transient index is required, create it by calling
								** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
								** opening it. If a transient table is required, just use the
								** automatically created table with root-page 1 (an BLOB_INTKEY table).
								*/
								if (pOp.p4.pKeyInfo != null)
								{
									int pgno = 0;
									Debug.Assert(pOp.p4type == P4_KEYINFO);
									rc = sqlite3BtreeCreateTable(pCx.pBt, ref pgno, BTREE_BLOBKEY);
									if (rc == SQLITE_OK)
									{
										Debug.Assert(pgno == MASTER_ROOT + 1);
										rc = sqlite3BtreeCursor(pCx.pBt, pgno, 1,
										pOp.p4.pKeyInfo, pCx.pCursor);
										pCx.pKeyInfo = pOp.p4.pKeyInfo;
										pCx.pKeyInfo.enc = ENC(p.db);
									}
									pCx.isTable = false;
								}
								else
								{
									rc = sqlite3BtreeCursor(pCx.pBt, MASTER_ROOT, 1, null, pCx.pCursor);
									pCx.isTable = true;
								}
							}
							pCx.isOrdered = (pOp.p5 != BTREE_UNORDERED);
							pCx.isIndex = !pCx.isTable;
							break;
						}

					/* Opcode: OpenPseudo P1 P2 P3 * *
					**
					** Open a new cursor that points to a fake table that contains a single
					** row of data.  The content of that one row in the content of memory
					** register P2.  In other words, cursor P1 becomes an alias for the 
					** MEM_Blob content contained in register P2.
					**
					** A pseudo-table created by this opcode is used to hold a single
					** row output from the sorter so that the row can be decomposed into
					** individual columns using the OP_Column opcode.  The OP_Column opcode
					** is the only cursor opcode that works with a pseudo-table.
					**
					** P3 is the number of fields in the records that will be stored by
					** the pseudo-table.
					*/
					case OP_OpenPseudo:
						{
							VdbeCursor pCx;
							Debug.Assert(pOp.p1 >= 0);
							pCx = allocateCursor(p, pOp.p1, pOp.p3, -1, 0);
							if (pCx == null)
								goto no_mem;
							pCx.nullRow = true;
							pCx.pseudoTableReg = pOp.p2;
							pCx.isTable = true;
							pCx.isIndex = false;
							break;
						}

					/* Opcode: Close P1 * * * *
					**
					** Close a cursor previously opened as P1.  If P1 is not
					** currently open, this instruction is a no-op.
					*/
					case OP_Close:
						{
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							sqlite3VdbeFreeCursor(p, p.apCsr[pOp.p1]);
							p.apCsr[pOp.p1] = null;
							break;
						}

					/* Opcode: SeekGe P1 P2 P3 P4 *
					**
					** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
					** use the value in register P3 as the key.  If cursor P1 refers
					** to an SQL index, then P3 is the first in an array of P4 registers
					** that are used as an unpacked index key.
					**
					** Reposition cursor P1 so that  it points to the smallest entry that
					** is greater than or equal to the key value. If there are no records
					** greater than or equal to the key and P2 is not zero, then jump to P2.
					**
					** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
					*/
					/* Opcode: SeekGt P1 P2 P3 P4 *
					**
					** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
					** use the value in register P3 as a key. If cursor P1 refers
					** to an SQL index, then P3 is the first in an array of P4 registers
					** that are used as an unpacked index key.
					**
					** Reposition cursor P1 so that  it points to the smallest entry that
					** is greater than the key value. If there are no records greater than
					** the key and P2 is not zero, then jump to P2.
					**
					** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
					*/
					/* Opcode: SeekLt P1 P2 P3 P4 *
					**
					** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
					** use the value in register P3 as a key. If cursor P1 refers
					** to an SQL index, then P3 is the first in an array of P4 registers
					** that are used as an unpacked index key.
					**
					** Reposition cursor P1 so that  it points to the largest entry that
					** is less than the key value. If there are no records less than
					** the key and P2 is not zero, then jump to P2.
					**
					** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
					*/
					/* Opcode: SeekLe P1 P2 P3 P4 *
					**
					** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
					** use the value in register P3 as a key. If cursor P1 refers
					** to an SQL index, then P3 is the first in an array of P4 registers
					** that are used as an unpacked index key.
					**
					** Reposition cursor P1 so that it points to the largest entry that
					** is less than or equal to the key value. If there are no records
					** less than or equal to the key and P2 is not zero, then jump to P2.
					**
					** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
					*/
					case OP_SeekLt:         /* jump, in3 */
					case OP_SeekLe:         /* jump, in3 */
					case OP_SeekGe:         /* jump, in3 */
					case OP_SeekGt:
						{       /* jump, in3 */
							int res;
							int oc;
							VdbeCursor pC;
							UnpackedRecord r;
							int nField;
							i64 iKey;      /* The rowid we are to seek to */

							res = 0;
							r = new UnpackedRecord();

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							Debug.Assert(pOp.p2 != 0);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							Debug.Assert(pC.pseudoTableReg == 0);
							Debug.Assert(OP_SeekLe == OP_SeekLt + 1);
							Debug.Assert(OP_SeekGe == OP_SeekLt + 2);
							Debug.Assert(OP_SeekGt == OP_SeekLt + 3);
							Debug.Assert(pC.isOrdered);
							if (pC.pCursor != null)
							{
								oc = pOp.opcode;
								pC.nullRow = false;
								if (pC.isTable)
								{
									/* The input value in P3 might be of any type: integer, real, string,
									** blob, or NULL.  But it needs to be an integer before we can do
									** the seek, so convert it. */
									pIn3 = aMem[pOp.p3];
									applyNumericAffinity(pIn3);
									iKey = sqlite3VdbeIntValue(pIn3);
									pC.rowidIsValid = false;

									/* If the P3 value could not be converted into an integer without
									** loss of information, then special processing is required... */
									if ((pIn3.flags & MEM_Int) == 0)
									{
										if ((pIn3.flags & MEM_Real) == 0)
										{
											/* If the P3 value cannot be converted into any kind of a number,
											** then the seek is not possible, so jump to P2 */
											pc = pOp.p2 - 1;
											break;
										}
										/* If we reach this point, then the P3 value must be a floating
										** point number. */
										Debug.Assert((pIn3.flags & MEM_Real) != 0);

										if (iKey == SMALLEST_INT64 && (pIn3.r < (double)iKey || pIn3.r > 0))
										{
											/* The P3 value is too large in magnitude to be expressed as an
											** integer. */
											res = 1;
											if (pIn3.r < 0)
											{
												if (oc >= OP_SeekGe)
												{
													Debug.Assert(oc == OP_SeekGe || oc == OP_SeekGt);
													rc = sqlite3BtreeFirst(pC.pCursor, ref res);
													if (rc != SQLITE_OK)
														goto abort_due_to_error;
												}
											}
											else
											{
												if (oc <= OP_SeekLe)
												{
													Debug.Assert(oc == OP_SeekLt || oc == OP_SeekLe);
													rc = sqlite3BtreeLast(pC.pCursor, ref res);
													if (rc != SQLITE_OK)
														goto abort_due_to_error;
												}
											}
											if (res != 0)
											{
												pc = pOp.p2 - 1;
											}
											break;
										}
										else if (oc == OP_SeekLt || oc == OP_SeekGe)
										{
											/* Use the ceiling() function to convert real.int */
											if (pIn3.r > (double)iKey)
												iKey++;
										}
										else
										{
											/* Use the floor() function to convert real.int */
											Debug.Assert(oc == OP_SeekLe || oc == OP_SeekGt);
											if (pIn3.r < (double)iKey)
												iKey--;
										}
									}
									rc = sqlite3BtreeMovetoUnpacked(pC.pCursor, null, iKey, 0, ref res);
									if (rc != SQLITE_OK)
									{
										goto abort_due_to_error;
									}
									if (res == 0)
									{
										pC.rowidIsValid = true;
										pC.lastRowid = iKey;
									}
								}
								else
								{
									nField = pOp.p4.i;
									Debug.Assert(pOp.p4type == P4_INT32);
									Debug.Assert(nField > 0);
									r.pKeyInfo = pC.pKeyInfo;
									r.nField = (u16)nField;

									/* The next line of code computes as follows, only faster:
									**   if( oc==OP_SeekGt || oc==OP_SeekLe ){
									**     r.flags = UNPACKED_INCRKEY;
									**   }else{
									**     r.flags = 0;
									**   }
									*/
									r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
									Debug.Assert(oc != OP_SeekGt || r.flags == UNPACKED_INCRKEY);
									Debug.Assert(oc != OP_SeekLe || r.flags == UNPACKED_INCRKEY);
									Debug.Assert(oc != OP_SeekGe || r.flags == 0);
									Debug.Assert(oc != OP_SeekLt || r.flags == 0);

									r.aMem = new Mem[r.nField];
									for (int rI = 0; rI < r.nField; rI++)
										r.aMem[rI] = aMem[pOp.p3 + rI];// r.aMem = aMem[pOp.p3];
#if SQLITE_DEBUG
				  {
					int i;
					for ( i = 0; i < r.nField; i++ )
					  Debug.Assert( memIsValid( r.aMem[i] ) );
				  }
#endif
									ExpandBlob(r.aMem[0]);
									rc = sqlite3BtreeMovetoUnpacked(pC.pCursor, r, 0, 0, ref res);
									if (rc != SQLITE_OK)
									{
										goto abort_due_to_error;
									}
									pC.rowidIsValid = false;
								}
								pC.deferredMoveto = false;
								pC.cacheStatus = CACHE_STALE;
#if SQLITE_TEST
#if !TCLSH
				sqlite3_search_count++;
#else
				sqlite3_search_count.iValue++;
#endif
#endif
								if (oc >= OP_SeekGe)
								{
									Debug.Assert(oc == OP_SeekGe || oc == OP_SeekGt);
									if (res < 0 || (res == 0 && oc == OP_SeekGt))
									{
										rc = sqlite3BtreeNext(pC.pCursor, ref res);
										if (rc != SQLITE_OK)
											goto abort_due_to_error;
										pC.rowidIsValid = false;
									}
									else
									{
										res = 0;
									}
								}
								else
								{
									Debug.Assert(oc == OP_SeekLt || oc == OP_SeekLe);
									if (res > 0 || (res == 0 && oc == OP_SeekLt))
									{
										rc = sqlite3BtreePrevious(pC.pCursor, ref res);
										if (rc != SQLITE_OK)
											goto abort_due_to_error;
										pC.rowidIsValid = false;
									}
									else
									{
										/* res might be negative because the table is empty.  Check to
										** see if this is the case.
										*/
										res = sqlite3BtreeEof(pC.pCursor) ? 1 : 0;
									}
								}
								Debug.Assert(pOp.p2 > 0);
								if (res != 0)
								{
									pc = pOp.p2 - 1;
								}
							}
							else
							{
								/* This happens when attempting to open the sqlite3_master table
								** for read access returns SQLITE_EMPTY. In this case always
								** take the jump (since there are no records in the table).
								*/
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: Seek P1 P2 * * *
					**
					** P1 is an open table cursor and P2 is a rowid integer.  Arrange
					** for P1 to move so that it points to the rowid given by P2.
					**
					** This is actually a deferred seek.  Nothing actually happens until
					** the cursor is used to read a record.  That way, if no reads
					** occur, no unnecessary I/O happens.
					*/
					case OP_Seek:
						{    /* in2 */
							VdbeCursor pC;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(ALWAYS(pC != null));
							if (pC.pCursor != null)
							{
								Debug.Assert(pC.isTable);
								pC.nullRow = false;
								pIn2 = aMem[pOp.p2];
								pC.movetoTarget = sqlite3VdbeIntValue(pIn2);
								pC.rowidIsValid = false;
								pC.deferredMoveto = true;
							}
							break;
						}

					/* Opcode: Found P1 P2 P3 P4 *
					**
					** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
					** P4>0 then register P3 is the first of P4 registers that form an unpacked
					** record.
					**
					** Cursor P1 is on an index btree.  If the record identified by P3 and P4
					** is a prefix of any entry in P1 then a jump is made to P2 and
					** P1 is left pointing at the matching entry.
					*/
					/* Opcode: NotFound P1 P2 P3 P4 *
					**
					** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
					** P4>0 then register P3 is the first of P4 registers that form an unpacked
					** record.
					** 
					** Cursor P1 is on an index btree.  If the record identified by P3 and P4
					** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
					** does contain an entry whose prefix matches the P3/P4 record then control
					** falls through to the next instruction and P1 is left pointing at the
					** matching entry.
					**
					** See also: Found, NotExists, IsUnique
					*/
					case OP_NotFound:       /* jump, in3 */
					case OP_Found:
						{        /* jump, in3 */
							int alreadyExists;
							VdbeCursor pC;
							int res = 0;
							UnpackedRecord pIdxKey;
							UnpackedRecord r = new UnpackedRecord();
							UnpackedRecord aTempRec = new UnpackedRecord();//char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

#if SQLITE_TEST
#if !TCLSH
			  sqlite3_found_count++;
#else
			  sqlite3_found_count.iValue++;
#endif
#endif
							alreadyExists = 0;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							Debug.Assert(pOp.p4type == P4_INT32);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							pIn3 = aMem[pOp.p3];
							if (ALWAYS(pC.pCursor != null))
							{

								Debug.Assert(!pC.isTable);
								if (pOp.p4.i > 0)
								{
									r.pKeyInfo = pC.pKeyInfo;
									r.nField = (u16)pOp.p4.i;
									r.aMem = new Mem[r.nField];
									for (int i = 0; i < r.aMem.Length; i++)
									{
										r.aMem[i] = aMem[pOp.p3 + i];
#if SQLITE_DEBUG
					Debug.Assert( memIsValid( r.aMem[i] ) );
#endif
									}
									r.flags = UNPACKED_PREFIX_MATCH;
									pIdxKey = r;
								}
								else
								{
									Debug.Assert((pIn3.flags & MEM_Blob) != 0);
									Debug.Assert((pIn3.flags & MEM_Zero) == 0);  /* zeroblobs already expanded */
									pIdxKey = sqlite3VdbeRecordUnpack(pC.pKeyInfo, pIn3.n, pIn3.zBLOB,
									aTempRec, 0);//sizeof( aTempRec ) );
									if (pIdxKey == null)
									{
										goto no_mem;
									}
									pIdxKey.flags |= UNPACKED_PREFIX_MATCH;
								}
								rc = sqlite3BtreeMovetoUnpacked(pC.pCursor, pIdxKey, 0, 0, ref res);
								if (pOp.p4.i == 0)
								{
									sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
								}
								if (rc != SQLITE_OK)
								{
									break;
								}
								alreadyExists = (res == 0) ? 1 : 0;
								pC.deferredMoveto = false;
								pC.cacheStatus = CACHE_STALE;
							}
							if (pOp.opcode == OP_Found)
							{
								if (alreadyExists != 0)
									pc = pOp.p2 - 1;
							}
							else
							{
								if (0 == alreadyExists)
									pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: IsUnique P1 P2 P3 P4 *
					**
					** Cursor P1 is open on an index b-tree - that is to say, a btree which
					** no data and where the key are records generated by OP_MakeRecord with
					** the list field being the integer ROWID of the entry that the index
					** entry refers to.
					**
					** The P3 register contains an integer record number. Call this record
					** number R. Register P4 is the first in a set of N contiguous registers
					** that make up an unpacked index key that can be used with cursor P1.
					** The value of N can be inferred from the cursor. N includes the rowid
					** value appended to the end of the index record. This rowid value may
					** or may not be the same as R.
					**
					** If any of the N registers beginning with register P4 contains a NULL
					** value, jump immediately to P2.
					**
					** Otherwise, this instruction checks if cursor P1 contains an entry
					** where the first (N-1) fields match but the rowid value at the end
					** of the index entry is not R. If there is no such entry, control jumps
					** to instruction P2. Otherwise, the rowid of the conflicting index
					** entry is copied to register P3 and control falls through to the next
					** instruction.
					**
					** See also: NotFound, NotExists, Found
					*/
					case OP_IsUnique:
						{        /* jump, in3 */
							u16 ii;
							VdbeCursor pCx = new VdbeCursor();
							BtCursor pCrsr;
							u16 nField;
							Mem[] aMx;
							UnpackedRecord r;                  /* B-Tree index search key */
							i64 R;                             /* Rowid stored in register P3 */

							r = new UnpackedRecord();

							pIn3 = aMem[pOp.p3];
							//aMx = aMem[pOp->p4.i];
							/* Assert that the values of parameters P1 and P4 are in range. */
							Debug.Assert(pOp.p4type == P4_INT32);
							Debug.Assert(pOp.p4.i > 0 && pOp.p4.i <= p.nMem);
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);

							/* Find the index cursor. */
							pCx = p.apCsr[pOp.p1];
							Debug.Assert(!pCx.deferredMoveto);
							pCx.seekResult = 0;
							pCx.cacheStatus = CACHE_STALE;
							pCrsr = pCx.pCursor;

							/* If any of the values are NULL, take the jump. */
							nField = pCx.pKeyInfo.nField;
							aMx = new Mem[nField + 1];
							for (ii = 0; ii < nField; ii++)
							{
								aMx[ii] = aMem[pOp.p4.i + ii];
								if ((aMx[ii].flags & MEM_Null) != 0)
								{
									pc = pOp.p2 - 1;
									pCrsr = null;
									break;
								}
							}
							aMx[nField] = new Mem();
							//Debug.Assert( ( aMx[nField].flags & MEM_Null ) == 0 );

							if (pCrsr != null)
							{
								/* Populate the index search key. */
								r.pKeyInfo = pCx.pKeyInfo;
								r.nField = (ushort)(nField + 1);
								r.flags = UNPACKED_PREFIX_SEARCH;
								r.aMem = aMx;
#if SQLITE_DEBUG
				{
				  int i;
				  for ( i = 0; i < r.nField; i++ )
					Debug.Assert( memIsValid( r.aMem[i] ) );
				}
#endif

								/* Extract the value of R from register P3. */
								sqlite3VdbeMemIntegerify(pIn3);
								R = pIn3.u.i;

								/* Search the B-Tree index. If no conflicting record is found, jump
								** to P2. Otherwise, copy the rowid of the conflicting record to
								** register P3 and fall through to the next instruction.  */
								rc = sqlite3BtreeMovetoUnpacked(pCrsr, r, 0, 0, ref pCx.seekResult);
								if ((r.flags & UNPACKED_PREFIX_SEARCH) != 0 || r.rowid == R)
								{
									pc = pOp.p2 - 1;
								}
								else
								{
									pIn3.u.i = r.rowid;
								}
							}
							break;
						}


					/* Opcode: NotExists P1 P2 P3 * *
					**
					** Use the content of register P3 as an integer key.  If a record
					** with that key does not exist in table of P1, then jump to P2.
					** If the record does exist, then fall through.  The cursor is left
					** pointing to the record if it exists.
					**
					** The difference between this operation and NotFound is that this
					** operation assumes the key is an integer and that P1 is a table whereas
					** NotFound assumes key is a blob constructed from MakeRecord and
					** P1 is an index.
					**
					** See also: Found, NotFound, IsUnique
					*/
					case OP_NotExists:
						{        /* jump, in3 */
							VdbeCursor pC;
							BtCursor pCrsr;
							int res;
							i64 iKey;

							pIn3 = aMem[pOp.p3];
							Debug.Assert((pIn3.flags & MEM_Int) != 0);
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							Debug.Assert(pC.isTable);
							Debug.Assert(pC.pseudoTableReg == 0);
							pCrsr = pC.pCursor;
							if (pCrsr != null)
							{
								res = 0;
								iKey = pIn3.u.i;
								rc = sqlite3BtreeMovetoUnpacked(pCrsr, null, (long)iKey, 0, ref res);
								pC.lastRowid = pIn3.u.i;
								pC.rowidIsValid = res == 0 ? true : false;
								pC.nullRow = false;
								pC.cacheStatus = CACHE_STALE;
								pC.deferredMoveto = false;
								if (res != 0)
								{
									pc = pOp.p2 - 1;
									Debug.Assert(!pC.rowidIsValid);
								}
								pC.seekResult = res;
							}
							else
							{
								/* This happens when an attempt to open a read cursor on the
								** sqlite_master table returns SQLITE_EMPTY.
								*/
								pc = pOp.p2 - 1;
								Debug.Assert(!pC.rowidIsValid);
								pC.seekResult = 0;
							}
							break;
						}

					/* Opcode: Sequence P1 P2 * * *
					**
					** Find the next available sequence number for cursor P1.
					** Write the sequence number into register P2.
					** The sequence number on the cursor is incremented after this
					** instruction.
					*/
					case OP_Sequence:
						{           /* out2-prerelease */
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							Debug.Assert(p.apCsr[pOp.p1] != null);
							pOut.u.i = (long)p.apCsr[pOp.p1].seqCount++;
							break;
						}


					/* Opcode: NewRowid P1 P2 P3 * *
					**
					** Get a new integer record number (a.k.a "rowid") used as the key to a table.
					** The record number is not previously used as a key in the database
					** table that cursor P1 points to.  The new record number is written
					** written to register P2.
					**
					** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
					** the largest previously generated record number. No new record numbers are
					** allowed to be less than this value. When this value reaches its maximum, 
					** an SQLITE_FULL error is generated. The P3 register is updated with the '
					** generated record number. This P3 mechanism is used to help implement the
					** AUTOINCREMENT feature.
					*/
					case OP_NewRowid:
						{           /* out2-prerelease */
							i64 v;                 /* The new rowid */
							VdbeCursor pC;         /* Cursor of table to get the new rowid */
							int res;               /* Result of an sqlite3BtreeLast() */
							int cnt;               /* Counter to limit the number of searches */
							Mem pMem;              /* Register holding largest rowid for AUTOINCREMENT */
							VdbeFrame pFrame;      /* Root frame of VDBE */

							v = 0;
							res = 0;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							if (NEVER(pC.pCursor == null))
							{
								/* The zero initialization above is all that is needed */
							}
							else
							{
								/* The next rowid or record number (different terms for the same
								** thing) is obtained in a two-step algorithm.
								**
								** First we attempt to find the largest existing rowid and add one
								** to that.  But if the largest existing rowid is already the maximum
								** positive integer, we have to fall through to the second
								** probabilistic algorithm
								**
								** The second algorithm is to select a rowid at random and see if
								** it already exists in the table.  If it does not exist, we have
								** succeeded.  If the random rowid does exist, we select a new one
								** and try again, up to 100 times.
								*/
								Debug.Assert(pC.isTable);

#if SQLITE_32BIT_ROWID
const int MAX_ROWID = i32.MaxValue;//#   define MAX_ROWID 0x7fffffff
#else
								/* Some compilers complain about constants of the form 0x7fffffffffffffff.
** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
** to provide the constant while making all compilers happy.
*/
								const long MAX_ROWID = i64.MaxValue;// (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

								if (!pC.useRandomRowid)
								{
									v = sqlite3BtreeGetCachedRowid(pC.pCursor);
									if (v == 0)
									{
										rc = sqlite3BtreeLast(pC.pCursor, ref res);
										if (rc != SQLITE_OK)
										{
											goto abort_due_to_error;
										}
										if (res != 0)
										{
											v = 1;/* IMP: R-61914-48074 */
										}
										else
										{
											Debug.Assert(sqlite3BtreeCursorIsValid(pC.pCursor));
											rc = sqlite3BtreeKeySize(pC.pCursor, ref v);
											Debug.Assert(rc == SQLITE_OK);   /* Cannot fail following BtreeLast() */
											if (v == MAX_ROWID)
											{
												pC.useRandomRowid = true;
											}
											else
											{
												v++; /* IMP: R-29538-34987 */
											}
										}
									}

#if !SQLITE_OMIT_AUTOINCREMENT
									if (pOp.p3 != 0)
									{
										/* Assert that P3 is a valid memory cell. */
										Debug.Assert(pOp.p3 > 0);
										if (p.pFrame != null)
										{
											for (pFrame = p.pFrame; pFrame.pParent != null; pFrame = pFrame.pParent)
												;
											/* Assert that P3 is a valid memory cell. */
											Debug.Assert(pOp.p3 <= pFrame.nMem);
											pMem = pFrame.aMem[pOp.p3];
										}
										else
										{
											/* Assert that P3 is a valid memory cell. */
											Debug.Assert(pOp.p3 <= p.nMem);
											pMem = aMem[pOp.p3];
											memAboutToChange(p, pMem);
										}
										Debug.Assert(memIsValid(pMem));

										REGISTER_TRACE(p, pOp.p3, pMem);
										sqlite3VdbeMemIntegerify(pMem);
										Debug.Assert((pMem.flags & MEM_Int) != 0);  /* mem(P3) holds an integer */
										if (pMem.u.i == MAX_ROWID || pC.useRandomRowid)
										{
											rc = SQLITE_FULL;  /* IMP: R-12275-61338 */
											goto abort_due_to_error;
										}
										if (v < (pMem.u.i + 1))
										{
											v = (int)(pMem.u.i + 1);
										}
										pMem.u.i = (long)v;
									}
#endif

									sqlite3BtreeSetCachedRowid(pC.pCursor, v < MAX_ROWID ? v + 1 : 0);
								}
								if (pC.useRandomRowid)
								{
									/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
									** largest possible integer (9223372036854775807) then the database
									** engine starts picking positive candidate ROWIDs at random until
									** it finds one that is not previously used. */
									Debug.Assert(pOp.p3 == 0);  /* We cannot be in random rowid mode if this is
** an AUTOINCREMENT table. */
									/* on the first attempt, simply do one more than previous */
									v = lastRowid;
									v &= (MAX_ROWID >> 1); /* ensure doesn't go negative */
									v++; /* ensure non-zero */
									cnt = 0;
									while (((rc = sqlite3BtreeMovetoUnpacked(pC.pCursor, null, v,
									  0, ref res)) == SQLITE_OK)
									&& (res == 0)
									&& (++cnt < 100))
									{
										/* collision - try another random rowid */
										sqlite3_randomness(sizeof(i64), ref v);
										if (cnt < 5)
										{
											/* try "small" random rowids for the initial attempts */
											v &= 0xffffff;
										}
										else
										{
											v &= (MAX_ROWID >> 1); /* ensure doesn't go negative */
										}
										v++; /* ensure non-zero */
									}
									if (rc == SQLITE_OK && res == 0)
									{
										rc = SQLITE_FULL;/* IMP: R-38219-53002 */
										goto abort_due_to_error;
									}
									Debug.Assert(v > 0);  /* EV: R-40812-03570 */
								}
								pC.rowidIsValid = false;
								pC.deferredMoveto = false;
								pC.cacheStatus = CACHE_STALE;
							}
							pOut.u.i = (long)v;
							break;
						}

					/* Opcode: Insert P1 P2 P3 P4 P5
					**
					** Write an entry into the table of cursor P1.  A new entry is
					** created if it doesn't already exist or the data for an existing
					** entry is overwritten.  The data is the value MEM_Blob stored in register
					** number P2. The key is stored in register P3. The key must
					** be a MEM_Int.
					**
					** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
					** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
					** then rowid is stored for subsequent return by the
					** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
					**
					** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
					** the last seek operation (OP_NotExists) was a success, then this
					** operation will not attempt to find the appropriate row before doing
					** the insert but will instead overwrite the row that the cursor is
					** currently pointing to.  Presumably, the prior OP_NotExists opcode
					** has already positioned the cursor correctly.  This is an optimization
					** that boosts performance by avoiding redundant seeks.
					**
					** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
					** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
					** is part of an INSERT operation.  The difference is only important to
					** the update hook.
					**
					** Parameter P4 may point to a string containing the table-name, or
					** may be NULL. If it is not NULL, then the update-hook 
					** (sqlite3.xUpdateCallback) is invoked following a successful insert.
					**
					** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
					** allocated, then ownership of P2 is transferred to the pseudo-cursor
					** and register P2 becomes ephemeral.  If the cursor is changed, the
					** value of register P2 will then change.  Make sure this does not
					** cause any problems.)
					**
					** This instruction only works on tables.  The equivalent instruction
					** for indices is OP_IdxInsert.
					*/
					/* Opcode: InsertInt P1 P2 P3 P4 P5
					**
					** This works exactly like OP_Insert except that the key is the
					** integer value P3, not the value of the integer stored in register P3.
					*/
					case OP_Insert:
					case OP_InsertInt:
						{
							Mem pData;        /* MEM cell holding data for the record to be inserted */
							Mem pKey;         /* MEM cell holding key  for the record */
							i64 iKey;         /* The integer ROWID or key for the record to be inserted */
							VdbeCursor pC;    /* Cursor to table into which insert is written */
							int nZero;        /* Number of zero-bytes to append */
							int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
							string zDb;       /* database name - used by the update hook */
							string zTbl;      /* Table name - used by the opdate hook */
							int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */

							pData = aMem[pOp.p2];
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							Debug.Assert(memIsValid(pData));
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							Debug.Assert(pC.pCursor != null);
							Debug.Assert(pC.pseudoTableReg == 0);
							Debug.Assert(pC.isTable);
							REGISTER_TRACE(p, pOp.p2, pData);

							if (pOp.opcode == OP_Insert)
							{
								pKey = aMem[pOp.p3];
								Debug.Assert((pKey.flags & MEM_Int) != 0);
								Debug.Assert(memIsValid(pKey));
								REGISTER_TRACE(p, pOp.p3, pKey);
								iKey = pKey.u.i;
							}
							else
							{
								Debug.Assert(pOp.opcode == OP_InsertInt);
								iKey = pOp.p3;
							}

							if ((pOp.p5 & OPFLAG_NCHANGE) != 0)
								p.nChange++;
							if ((pOp.p5 & OPFLAG_LASTROWID) != 0)
								db.lastRowid = lastRowid = iKey;
							if ((pData.flags & MEM_Null) != 0)
							{
								sqlite3_free(ref pData.zBLOB);
								pData.z = null;
								pData.n = 0;
							}
							else
							{
								Debug.Assert((pData.flags & (MEM_Blob | MEM_Str)) != 0);
							}
							seekResult = ((pOp.p5 & OPFLAG_USESEEKRESULT) != 0 ? pC.seekResult : 0);
							if ((pData.flags & MEM_Zero) != 0)
							{
								nZero = pData.u.nZero;
							}
							else
							{
								nZero = 0;
							}
							rc = sqlite3BtreeInsert(pC.pCursor, null, iKey,
							pData.zBLOB
							, pData.n, nZero,
							(pOp.p5 & OPFLAG_APPEND) != 0 ? 1 : 0, seekResult
							);

							pC.rowidIsValid = false;
							pC.deferredMoveto = false;
							pC.cacheStatus = CACHE_STALE;

							/* Invoke the update-hook if required. */
							if (rc == SQLITE_OK && db.xUpdateCallback != null && pOp.p4.z != null)
							{
								zDb = db.aDb[pC.iDb].zName;
								zTbl = pOp.p4.z;
								op = ((pOp.p5 & OPFLAG_ISUPDATE) != 0 ? SQLITE_UPDATE : SQLITE_INSERT);
								Debug.Assert(pC.isTable);
								db.xUpdateCallback(db.pUpdateArg, op, zDb, zTbl, iKey);
								Debug.Assert(pC.iDb >= 0);
							}
							break;
						}

					/* Opcode: Delete P1 P2 * P4 *
					**
					** Delete the record at which the P1 cursor is currently pointing.
					**
					** The cursor will be left pointing at either the next or the previous
					** record in the table. If it is left pointing at the next record, then
					** the next Next instruction will be a no-op.  Hence it is OK to delete
					** a record from within an Next loop.
					**
					** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
					** incremented (otherwise not).
					**
					** P1 must not be pseudo-table.  It has to be a real table with
					** multiple rows.
					**
					** If P4 is not NULL, then it is the name of the table that P1 is
					** pointing to.  The update hook will be invoked, if it exists.
					** If P4 is not NULL then the P1 cursor must have been positioned
					** using OP_NotFound prior to invoking this opcode.
					*/
					case OP_Delete:
						{
							i64 iKey;
							VdbeCursor pC;

							iKey = 0;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							Debug.Assert(pC.pCursor != null);  /* Only valid for real tables, no pseudotables */

							/* If the update-hook will be invoked, set iKey to the rowid of the
							** row being deleted.
							*/
							if (db.xUpdateCallback != null && pOp.p4.z != null)
							{
								Debug.Assert(pC.isTable);
								Debug.Assert(pC.rowidIsValid);  /* lastRowid set by previous OP_NotFound */
								iKey = pC.lastRowid;
							}

							/* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
							** OP_Column on the same table without any intervening operations that
							** might move or invalidate the cursor.  Hence cursor pC is always pointing
							** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
							** below is always a no-op and cannot fail.  We will run it anyhow, though,
							** to guard against future changes to the code generator.
							**/
							Debug.Assert(pC.deferredMoveto == false);
							rc = sqlite3VdbeCursorMoveto(pC);
							if (NEVER(rc != SQLITE_OK))
								goto abort_due_to_error;
							sqlite3BtreeSetCachedRowid(pC.pCursor, 0);
							rc = sqlite3BtreeDelete(pC.pCursor);
							pC.cacheStatus = CACHE_STALE;

							/* Invoke the update-hook if required. */
							if (rc == SQLITE_OK && db.xUpdateCallback != null && pOp.p4.z != null)
							{
								string zDb = db.aDb[pC.iDb].zName;
								string zTbl = pOp.p4.z;
								db.xUpdateCallback(db.pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
								Debug.Assert(pC.iDb >= 0);
							}
							if ((pOp.p2 & OPFLAG_NCHANGE) != 0)
								p.nChange++;
							break;
						}

					/* Opcode: ResetCount P1 * *
					**
					** The value of the change counter is copied to the database handle
					** change counter (returned by subsequent calls to sqlite3_changes()).
					** Then the VMs internal change counter resets to 0.
					** This is used by trigger programs.
					*/
					case OP_ResetCount:
						{
							sqlite3VdbeSetChanges(db, p.nChange);
							p.nChange = 0;
							break;
						}

					/* Opcode: RowData P1 P2 * * *
					**
					** Write into register P2 the complete row data for cursor P1.
					** There is no interpretation of the data.
					** It is just copied onto the P2 register exactly as
					** it is found in the database file.
					**
					** If the P1 cursor must be pointing to a valid row (not a NULL row)
					** of a real table, not a pseudo-table.
					*/
					/* Opcode: RowKey P1 P2 * * *
					**
					** Write into register P2 the complete row key for cursor P1.
					** There is no interpretation of the data.
					** The key is copied onto the P3 register exactly as
					** it is found in the database file.
					**
					** If the P1 cursor must be pointing to a valid row (not a NULL row)
					** of a real table, not a pseudo-table.
					*/
					case OP_RowKey:
					case OP_RowData:
						{
							VdbeCursor pC;
							BtCursor pCrsr;
							u32 n;
							i64 n64;

							n = 0;
							n64 = 0;

							pOut = aMem[pOp.p2];
							memAboutToChange(p, pOut);

							/* Note that RowKey and RowData are really exactly the same instruction */
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC.isTable || pOp.opcode == OP_RowKey);
							Debug.Assert(pC.isIndex || pOp.opcode == OP_RowData);
							Debug.Assert(pC != null);
							Debug.Assert(pC.nullRow == false);
							Debug.Assert(pC.pseudoTableReg == 0);
							Debug.Assert(pC.pCursor != null);
							pCrsr = pC.pCursor;
							Debug.Assert(sqlite3BtreeCursorIsValid(pCrsr));

							/* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
							** OP_Rewind/Op_Next with no intervening instructions that might invalidate
							** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
							** a no-op and can never fail.  But we leave it in place as a safety.
							*/
							Debug.Assert(pC.deferredMoveto == false);
							rc = sqlite3VdbeCursorMoveto(pC);
							if (NEVER(rc != SQLITE_OK))
								goto abort_due_to_error;
							if (pC.isIndex)
							{
								Debug.Assert(!pC.isTable);
								rc = sqlite3BtreeKeySize(pCrsr, ref n64);
								Debug.Assert(rc == SQLITE_OK);    /* True because of CursorMoveto() call above */
								if (n64 > db.aLimit[SQLITE_LIMIT_LENGTH])
								{
									goto too_big;
								}
								n = (u32)n64;
							}
							else
							{
								rc = sqlite3BtreeDataSize(pCrsr, ref n);
								Debug.Assert(rc == SQLITE_OK);    /* DataSize() cannot fail */
								if (n > (u32)db.aLimit[SQLITE_LIMIT_LENGTH])
								{
									goto too_big;
								}
								if (sqlite3VdbeMemGrow(pOut, (int)n, 0) != 0)
								{
									goto no_mem;
								}
							}
							pOut.n = (int)n;
							if (pC.isIndex)
							{
								pOut.zBLOB = sqlite3Malloc((int)n);
								rc = sqlite3BtreeKey(pCrsr, 0, n, pOut.zBLOB);
							}
							else
							{
								pOut.zBLOB = sqlite3Malloc((int)pCrsr.info.nData);
								rc = sqlite3BtreeData(pCrsr, 0, (u32)n, pOut.zBLOB);
							}
							MemSetTypeFlag(pOut, MEM_Blob);
							pOut.enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pOut );
#endif
							break;
						}

					/* Opcode: Rowid P1 P2 * * *
					**
					** Store in register P2 an integer which is the key of the table entry that
					** P1 is currently point to.
					**
					** P1 can be either an ordinary table or a virtual table.  There used to
					** be a separate OP_VRowid opcode for use with virtual tables, but this
					** one opcode now works for both table types.
					*/
					case OP_Rowid:
						{                 /* out2-prerelease */
							VdbeCursor pC;
							i64 v;
							sqlite3_vtab pVtab;
							sqlite3_module pModule;

							v = 0;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							Debug.Assert(pC.pseudoTableReg == 0);
							if (pC.nullRow)
							{
								pOut.flags = MEM_Null;
								break;
							}
							else if (pC.deferredMoveto)
							{
								v = pC.movetoTarget;
#if !SQLITE_OMIT_VIRTUALTABLE
							}
							else if (pC.pVtabCursor != null)
							{
								pVtab = pC.pVtabCursor.pVtab;
								pModule = pVtab.pModule;
								Debug.Assert(pModule.xRowid != null);
								rc = pModule.xRowid(pC.pVtabCursor, out v);
								importVtabErrMsg(p, pVtab);
#endif //* SQLITE_OMIT_VIRTUALTABLE */
							}
							else
							{
								Debug.Assert(pC.pCursor != null);
								rc = sqlite3VdbeCursorMoveto(pC);
								if (rc != 0)
									goto abort_due_to_error;
								if (pC.rowidIsValid)
								{
									v = pC.lastRowid;
								}
								else
								{
									rc = sqlite3BtreeKeySize(pC.pCursor, ref v);
									Debug.Assert(rc == SQLITE_OK);  /* Always so because of CursorMoveto() above */
								}
							}
							pOut.u.i = (long)v;
							break;
						}

					/* Opcode: NullRow P1 * * * *
					**
					** Move the cursor P1 to a null row.  Any OP_Column operations
					** that occur while the cursor is on the null row will always
					** write a NULL.
					*/
					case OP_NullRow:
						{
							VdbeCursor pC;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							pC.nullRow = true;
							pC.rowidIsValid = false;
							if (pC.pCursor != null)
							{
								sqlite3BtreeClearCursor(pC.pCursor);
							}
							break;
						}

					/* Opcode: Last P1 P2 * * *
					**
					** The next use of the Rowid or Column or Next instruction for P1
					** will refer to the last entry in the database table or index.
					** If the table or index is empty and P2>0, then jump immediately to P2.
					** If P2 is 0 or if the table or index is not empty, fall through
					** to the following instruction.
					*/
					case OP_Last:
						{        /* jump */
							VdbeCursor pC;
							BtCursor pCrsr;
							int res = 0;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							pCrsr = pC.pCursor;
							if (pCrsr == null)
							{
								res = 1;
							}
							else
							{
								rc = sqlite3BtreeLast(pCrsr, ref res);
							}
							pC.nullRow = res == 1 ? true : false;
							pC.deferredMoveto = false;
							pC.rowidIsValid = false;
							pC.cacheStatus = CACHE_STALE;
							if (pOp.p2 > 0 && res != 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}


					/* Opcode: Sort P1 P2 * * *
					**
					** This opcode does exactly the same thing as OP_Rewind except that
					** it increments an undocumented global variable used for testing.
					**
					** Sorting is accomplished by writing records into a sorting index,
					** then rewinding that index and playing it back from beginning to
					** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
					** rewinding so that the global variable will be incremented and
					** regression tests can determine whether or not the optimizer is
					** correctly optimizing out sorts.
					*/
					case OP_Sort:
						{        /* jump */
#if SQLITE_TEST
#if !TCLSH
			  sqlite3_sort_count++;
			  sqlite3_search_count--;
#else
			  sqlite3_sort_count.iValue++;
			  sqlite3_search_count.iValue--;
#endif
#endif
							p.aCounter[SQLITE_STMTSTATUS_SORT - 1]++;
							/* Fall through into OP_Rewind */
							goto case OP_Rewind;
						}
					/* Opcode: Rewind P1 P2 * * *
					**
					** The next use of the Rowid or Column or Next instruction for P1
					** will refer to the first entry in the database table or index.
					** If the table or index is empty and P2>0, then jump immediately to P2.
					** If P2 is 0 or if the table or index is not empty, fall through
					** to the following instruction.
					*/
					case OP_Rewind:
						{        /* jump */
							VdbeCursor pC;
							BtCursor pCrsr;
							int res = 0;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							res = 1;
							if ((pCrsr = pC.pCursor) != null)
							{
								rc = sqlite3BtreeFirst(pCrsr, ref res);
								pC.atFirst = res == 0 ? true : false;
								pC.deferredMoveto = false;
								pC.cacheStatus = CACHE_STALE;
								pC.rowidIsValid = false;
							}
							pC.nullRow = res == 1 ? true : false;
							Debug.Assert(pOp.p2 > 0 && pOp.p2 < p.nOp);
							if (res != 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: Next P1 P2 * * P5
					**
					** Advance cursor P1 so that it points to the next key/data pair in its
					** table or index.  If there are no more key/value pairs then fall through
					** to the following instruction.  But if the cursor advance was successful,
					** jump immediately to P2.
					**
					** The P1 cursor must be for a real table, not a pseudo-table.
					**
					** See also: Prev
					*/
					/* Opcode: Prev P1 P2 * * *
					**
					** Back up cursor P1 so that it points to the previous key/data pair in its
					** table or index.  If there is no previous key/value pairs then fall through
					** to the following instruction.  But if the cursor backup was successful,
					** jump immediately to P2.
					**
					** The P1 cursor must be for a real table, not a pseudo-table.
					**
					** If P5 is positive and the jump is taken, then event counter
					** number P5-1 in the prepared statement is incremented.
					**
					*/
					case OP_Prev:          /* jump */
					case OP_Next:
						{        /* jump */
							VdbeCursor pC;
							BtCursor pCrsr;
							int res;

							if (db.u1.isInterrupted)
								goto abort_due_to_interrupt; //CHECK_FOR_INTERRUPT;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							Debug.Assert(pOp.p5 <= ArraySize(p.aCounter));
							pC = p.apCsr[pOp.p1];
							if (pC == null)
							{
								break;  /* See ticket #2273 */
							}
							pCrsr = pC.pCursor;
							if (pCrsr == null)
							{
								pC.nullRow = true;
								break;
							}
							res = 1;
							Debug.Assert(!pC.deferredMoveto);
							rc = pOp.opcode == OP_Next ? sqlite3BtreeNext(pCrsr, ref res) :
							sqlite3BtreePrevious(pCrsr, ref res);
							pC.nullRow = res == 1 ? true : false;
							pC.cacheStatus = CACHE_STALE;
							if (res == 0)
							{
								pc = pOp.p2 - 1;
								if (pOp.p5 != 0)
									p.aCounter[pOp.p5 - 1]++;
#if SQLITE_TEST
#if !TCLSH
				sqlite3_search_count++;
#else
				sqlite3_search_count.iValue++;
#endif
#endif
							}
							pC.rowidIsValid = false;
							break;
						}

					/* Opcode: IdxInsert P1 P2 P3 * P5
					**
					** Register P2 holds an SQL index key made using the
					** MakeRecord instructions.  This opcode writes that key
					** into the index P1.  Data for the entry is nil.
					**
					** P3 is a flag that provides a hint to the b-tree layer that this
					** insert is likely to be an append.
					**
					** This instruction only works for indices.  The equivalent instruction
					** for tables is OP_Insert.
					*/
					case OP_IdxInsert:
						{        /* in2 */
							VdbeCursor pC;
							BtCursor pCrsr;
							int nKey;
							byte[] zKey;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							pIn2 = aMem[pOp.p2];
							Debug.Assert((pIn2.flags & MEM_Blob) != 0);
							pCrsr = pC.pCursor;
							if (ALWAYS(pCrsr != null))
							{
								Debug.Assert(!pC.isTable);
								ExpandBlob(pIn2);
								if (rc == SQLITE_OK)
								{
									nKey = pIn2.n;
									zKey = (pIn2.flags & MEM_Blob) != 0 ? pIn2.zBLOB : Encoding.UTF8.GetBytes(pIn2.z);
									rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, null, 0, 0, (pOp.p3 != 0) ? 1 : 0,
									((pOp.p5 & OPFLAG_USESEEKRESULT) != 0 ? pC.seekResult : 0)
									);
									Debug.Assert(!pC.deferredMoveto);
									pC.cacheStatus = CACHE_STALE;
								}
							}
							break;
						}


					/* Opcode: IdxDelete P1 P2 P3 * *
					**
					** The content of P3 registers starting at register P2 form
					** an unpacked index key. This opcode removes that entry from the
					** index opened by cursor P1.
					*/
					case OP_IdxDelete:
						{
							VdbeCursor pC;
							BtCursor pCrsr;
							int res;
							UnpackedRecord r;

							res = 0;
							r = new UnpackedRecord();

							Debug.Assert(pOp.p3 > 0);
							Debug.Assert(pOp.p2 > 0 && pOp.p2 + pOp.p3 <= p.nMem + 1);
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							pCrsr = pC.pCursor;
							if (ALWAYS(pCrsr != null))
							{
								r.pKeyInfo = pC.pKeyInfo;
								r.nField = (u16)pOp.p3;
								r.flags = 0;
								r.aMem = new Mem[r.nField];
								for (int ra = 0; ra < r.nField; ra++)
								{
									r.aMem[ra] = aMem[pOp.p2 + ra];
#if SQLITE_DEBUG
				  Debug.Assert( memIsValid( r.aMem[ra] ) );
#endif
								}
								rc = sqlite3BtreeMovetoUnpacked(pCrsr, r, 0, 0, ref res);
								if (rc == SQLITE_OK && res == 0)
								{
									rc = sqlite3BtreeDelete(pCrsr);
								}
								Debug.Assert(!pC.deferredMoveto);
								pC.cacheStatus = CACHE_STALE;
							}
							break;
						}

					/* Opcode: IdxRowid P1 P2 * * *
					**
					** Write into register P2 an integer which is the last entry in the record at
					** the end of the index key pointed to by cursor P1.  This integer should be
					** the rowid of the table entry to which this index entry points.
					**
					** See also: Rowid, MakeRecord.
					*/
					case OP_IdxRowid:
						{              /* out2-prerelease */
							BtCursor pCrsr;
							VdbeCursor pC;
							i64 rowid;

							rowid = 0;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							pCrsr = pC.pCursor;
							pOut.flags = MEM_Null;
							if (ALWAYS(pCrsr != null))
							{
								rc = sqlite3VdbeCursorMoveto(pC);
								if (NEVER(rc != 0))
									goto abort_due_to_error;
								Debug.Assert(!pC.deferredMoveto);
								Debug.Assert(!pC.isTable);
								if (!pC.nullRow)
								{
									rc = sqlite3VdbeIdxRowid(db, pCrsr, ref rowid);
									if (rc != SQLITE_OK)
									{
										goto abort_due_to_error;
									}
									pOut.u.i = rowid;
									pOut.flags = MEM_Int;
								}
							}
							break;
						}

					/* Opcode: IdxGE P1 P2 P3 P4 P5
					**
					** The P4 register values beginning with P3 form an unpacked index
					** key that omits the ROWID.  Compare this key value against the index
					** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
					**
					** If the P1 index entry is greater than or equal to the key value
					** then jump to P2.  Otherwise fall through to the next instruction.
					**
					** If P5 is non-zero then the key value is increased by an epsilon
					** prior to the comparison.  This make the opcode work like IdxGT except
					** that if the key from register P3 is a prefix of the key in the cursor,
					** the result is false whereas it would be true with IdxGT.
					*/
					/* Opcode: IdxLT P1 P2 P3 P4 P5
					**
					** The P4 register values beginning with P3 form an unpacked index
					** key that omits the ROWID.  Compare this key value against the index
					** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
					**
					** If the P1 index entry is less than the key value then jump to P2.
					** Otherwise fall through to the next instruction.
					**
					** If P5 is non-zero then the key value is increased by an epsilon prior
					** to the comparison.  This makes the opcode work like IdxLE.
					*/
					case OP_IdxLT:          /* jump */
					case OP_IdxGE:
						{        /* jump */
							VdbeCursor pC;
							int res;
							UnpackedRecord r;

							res = 0;
							r = new UnpackedRecord();

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < p.nCursor);
							pC = p.apCsr[pOp.p1];
							Debug.Assert(pC != null);
							Debug.Assert(pC.isOrdered);
							if (ALWAYS(pC.pCursor != null))
							{
								Debug.Assert(pC.deferredMoveto == false);
								Debug.Assert(pOp.p5 == 0 || pOp.p5 == 1);
								Debug.Assert(pOp.p4type == P4_INT32);
								r.pKeyInfo = pC.pKeyInfo;
								r.nField = (u16)pOp.p4.i;
								if (pOp.p5 != 0)
								{
									r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
								}
								else
								{
									r.flags = UNPACKED_IGNORE_ROWID;
								}
								r.aMem = new Mem[r.nField];
								for (int rI = 0; rI < r.nField; rI++)
								{
									r.aMem[rI] = aMem[pOp.p3 + rI];// r.aMem = aMem[pOp.p3];
#if SQLITE_DEBUG
				  Debug.Assert( memIsValid( r.aMem[rI] ) );
#endif
								}
								rc = sqlite3VdbeIdxKeyCompare(pC, r, ref res);
								if (pOp.opcode == OP_IdxLT)
								{
									res = -res;
								}
								else
								{
									Debug.Assert(pOp.opcode == OP_IdxGE);
									res++;
								}
								if (res > 0)
								{
									pc = pOp.p2 - 1;
								}
							}
							break;
						}

					/* Opcode: Destroy P1 P2 P3 * *
					**
					** Delete an entire database table or index whose root page in the database
					** file is given by P1.
					**
					** The table being destroyed is in the main database file if P3==0.  If
					** P3==1 then the table to be clear is in the auxiliary database file
					** that is used to store tables create using CREATE TEMPORARY TABLE.
					**
					** If AUTOVACUUM is enabled then it is possible that another root page
					** might be moved into the newly deleted root page in order to keep all
					** root pages contiguous at the beginning of the database.  The former
					** value of the root page that moved - its value before the move occurred -
					** is stored in register P2.  If no page
					** movement was required (because the table being dropped was already
					** the last one in the database) then a zero is stored in register P2.
					** If AUTOVACUUM is disabled then a zero is stored in register P2.
					**
					** See also: Clear
					*/
					case OP_Destroy:
						{     /* out2-prerelease */
							int iMoved = 0;
							int iCnt;
							Vdbe pVdbe;
							int iDb;

#if !SQLITE_OMIT_VIRTUALTABLE
							iCnt = 0;
							for (pVdbe = db.pVdbe; pVdbe != null; pVdbe = pVdbe.pNext)
							{
								if (pVdbe.magic == VDBE_MAGIC_RUN && pVdbe.inVtabMethod < 2 && pVdbe.pc >= 0)
								{
									iCnt++;
								}
							}
#else
			  iCnt = db.activeVdbeCnt;
#endif
							pOut.flags = MEM_Null;
							if (iCnt > 1)
							{
								rc = SQLITE_LOCKED;
								p.errorAction = OE_Abort;
							}
							else
							{
								iDb = pOp.p3;
								Debug.Assert(iCnt == 1);
								Debug.Assert((p.btreeMask & (((yDbMask)1) << iDb)) != 0);
								rc = sqlite3BtreeDropTable(db.aDb[iDb].pBt, pOp.p1, ref iMoved);
								pOut.flags = MEM_Int;
								pOut.u.i = iMoved;
#if !SQLITE_OMIT_AUTOVACUUM
								if (rc == SQLITE_OK && iMoved != 0)
								{
									sqlite3RootPageMoved(db, iDb, iMoved, pOp.p1);
									/* All OP_Destroy operations occur on the same btree */
									Debug.Assert(resetSchemaOnFault == 0 || resetSchemaOnFault == iDb + 1);
									resetSchemaOnFault = (u8)(iDb + 1);
								}
#endif
							}
							break;
						}

					/* Opcode: Clear P1 P2 P3
					**
					** Delete all contents of the database table or index whose root page
					** in the database file is given by P1.  But, unlike Destroy, do not
					** remove the table or index from the database file.
					**
					** The table being clear is in the main database file if P2==0.  If
					** P2==1 then the table to be clear is in the auxiliary database file
					** that is used to store tables create using CREATE TEMPORARY TABLE.
					**
					** If the P3 value is non-zero, then the table referred to must be an
					** intkey table (an SQL table, not an index). In this case the row change
					** count is incremented by the number of rows in the table being cleared.
					** If P3 is greater than zero, then the value stored in register P3 is
					** also incremented by the number of rows in the table being cleared.
					**
					** See also: Destroy
					*/
					case OP_Clear:
						{
							int nChange;

							nChange = 0;
							Debug.Assert((p.btreeMask & (((yDbMask)1) << pOp.p2)) != 0);
							int iDummy0 = 0;
							if (pOp.p3 != 0)
								rc = sqlite3BtreeClearTable(db.aDb[pOp.p2].pBt, pOp.p1, ref nChange);
							else
								rc = sqlite3BtreeClearTable(db.aDb[pOp.p2].pBt, pOp.p1, ref iDummy0);
							if (pOp.p3 != 0)
							{
								p.nChange += nChange;
								if (pOp.p3 > 0)
								{
									Debug.Assert(memIsValid(aMem[pOp.p3]));
									memAboutToChange(p, aMem[pOp.p3]);
									aMem[pOp.p3].u.i += nChange;
								}
							}
							break;
						}

					/* Opcode: CreateTable P1 P2 * * *
					**
					** Allocate a new table in the main database file if P1==0 or in the
					** auxiliary database file if P1==1 or in an attached database if
					** P1>1.  Write the root page number of the new table into
					** register P2
					**
					** The difference between a table and an index is this:  A table must
					** have a 4-byte integer key and can have arbitrary data.  An index
					** has an arbitrary key but no data.
					**
					** See also: CreateIndex
					*/
					/* Opcode: CreateIndex P1 P2 * * *
					**
					** Allocate a new index in the main database file if P1==0 or in the
					** auxiliary database file if P1==1 or in an attached database if
					** P1>1.  Write the root page number of the new table into
					** register P2.
					**
					** See documentation on OP_CreateTable for additional information.
					*/
					case OP_CreateIndex:            /* out2-prerelease */
					case OP_CreateTable:
						{          /* out2-prerelease */
							int pgno;
							int flags;
							Db pDb;

							pgno = 0;
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << pOp.p1)) != 0);
							pDb = db.aDb[pOp.p1];
							Debug.Assert(pDb.pBt != null);
							if (pOp.opcode == OP_CreateTable)
							{
								/* flags = BTREE_INTKEY; */
								flags = BTREE_INTKEY;
							}
							else
							{
								flags = BTREE_BLOBKEY;
							}
							rc = sqlite3BtreeCreateTable(pDb.pBt, ref pgno, flags);
							pOut.u.i = pgno;
							break;
						}

					/* Opcode: ParseSchema P1 * * P4 *
					**
					** Read and parse all entries from the SQLITE_MASTER table of database P1
					** that match the WHERE clause P4. 
					**
					** This opcode invokes the parser to create a new virtual machine,
					** then runs the new virtual machine.  It is thus a re-entrant opcode.
					*/
					case OP_ParseSchema:
						{
							int iDb;
							string zMaster;
							string zSql;
							InitData initData;

							/* Any prepared statement that invokes this opcode will hold mutexes
							** on every btree.  This is a prerequisite for invoking
							** sqlite3InitCallback().
							*/
#if SQLITE_DEBUG
			  for ( iDb = 0; iDb < db.nDb; iDb++ )
			  {
				Debug.Assert( iDb == 1 || sqlite3BtreeHoldsMutex( db.aDb[iDb].pBt ) );
			  }
#endif

							iDb = pOp.p1;
							Debug.Assert(iDb >= 0 && iDb < db.nDb);
							Debug.Assert(DbHasProperty(db, iDb, DB_SchemaLoaded));
							/* Used to be a conditional */
							{
								zMaster = SCHEMA_TABLE(iDb);
								initData = new InitData();
								initData.db = db;
								initData.iDb = pOp.p1;
								initData.pzErrMsg = p.zErrMsg;
								zSql = sqlite3MPrintf(db,
								"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
								db.aDb[iDb].zName, zMaster, pOp.p4.z);
								if (String.IsNullOrEmpty(zSql))
								{
									rc = SQLITE_NOMEM;
								}
								else
								{
									Debug.Assert(0 == db.init.busy);
									db.init.busy = 1;
									initData.rc = SQLITE_OK;
									//Debug.Assert( 0 == db.mallocFailed );
									rc = sqlite3_exec(db, zSql, (dxCallback)sqlite3InitCallback, (object)initData, 0);
									if (rc == SQLITE_OK)
										rc = initData.rc;
									sqlite3DbFree(db, ref zSql);
									db.init.busy = 0;
								}
							}
							if (rc == SQLITE_NOMEM)
							{
								goto no_mem;
							}
							break;
						}

#if  !SQLITE_OMIT_ANALYZE
					/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table.  This will cause
** the analysis to be used when preparing all subsequent queries.
*/
					case OP_LoadAnalysis:
						{
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);
							rc = sqlite3AnalysisLoad(db, pOp.p1);
							break;
						}
#endif // * !SQLITE_OMIT_ANALYZE) */

					/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
					case OP_DropTable:
						{
							sqlite3UnlinkAndDeleteTable(db, pOp.p1, pOp.p4.z);
							break;
						}

					/* Opcode: DropIndex P1 * * P4 *
					**
					** Remove the internal (in-memory) data structures that describe
					** the index named P4 in database P1.  This is called after an index
					** is dropped in order to keep the internal representation of the
					** schema consistent with what is on disk.
					*/
					case OP_DropIndex:
						{
							sqlite3UnlinkAndDeleteIndex(db, pOp.p1, pOp.p4.z);
							break;
						}

					/* Opcode: DropTrigger P1 * * P4 *
					**
					** Remove the internal (in-memory) data structures that describe
					** the trigger named P4 in database P1.  This is called after a trigger
					** is dropped in order to keep the internal representation of the
					** schema consistent with what is on disk.
					*/
					case OP_DropTrigger:
						{
							sqlite3UnlinkAndDeleteTrigger(db, pOp.p1, pOp.p4.z);
							break;
						}


#if !SQLITE_OMIT_INTEGRITY_CHECK
					/* Opcode: IntegrityCk P1 P2 P3 * P5
**
** Do an analysis of the currently open database.  Store in
** register P1 the text of an error message describing any problems.
** If no problems are found, store a NULL in register P1.
**
** The register P3 contains the maximum number of allowed errors.
** At most reg(P3) errors will be reported.
** In other words, the analysis stops as soon as reg(P1) errors are
** seen.  Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integer
** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
** total.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
					case OP_IntegrityCk:
						{
							int nRoot;       /* Number of tables to check.  (Number of root pages.) */
							int[] aRoot = null;     /* Array of rootpage numbers for tables to be checked */
							int j;           /* Loop counter */
							int nErr = 0;    /* Number of errors reported */
							string z;        /* Text of the error report */
							Mem pnErr;       /* Register keeping track of errors remaining */

							nRoot = pOp.p2;
							Debug.Assert(nRoot > 0);
							aRoot = sqlite3Malloc(aRoot, (nRoot + 1));// sqlite3DbMallocRaw(db, sizeof(int) * (nRoot + 1));
							if (aRoot == null)
								goto no_mem;
							Debug.Assert(pOp.p3 > 0 && pOp.p3 <= p.nMem);
							pnErr = aMem[pOp.p3];
							Debug.Assert((pnErr.flags & MEM_Int) != 0);
							Debug.Assert((pnErr.flags & (MEM_Str | MEM_Blob)) == 0);
							pIn1 = aMem[pOp.p1];
							for (j = 0; j < nRoot; j++)
							{
								aRoot[j] = (int)sqlite3VdbeIntValue(p.aMem[pOp.p1 + j]); // pIn1[j]);
							}
							aRoot[j] = 0;
							Debug.Assert(pOp.p5 < db.nDb);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << pOp.p5)) != 0);
							z = sqlite3BtreeIntegrityCheck(db.aDb[pOp.p5].pBt, aRoot, nRoot,
							(int)pnErr.u.i, ref nErr);
							sqlite3DbFree(db, ref aRoot);
							pnErr.u.i -= nErr;
							sqlite3VdbeMemSetNull(pIn1);
							if (nErr == 0)
							{
								Debug.Assert(z == "");
							}
							else if (String.IsNullOrEmpty(z))
							{
								goto no_mem;
							}
							else
							{
								sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, null); //sqlite3_free );
							}
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pIn1 );
#endif
							sqlite3VdbeChangeEncoding(pIn1, encoding);
							break;
						}
#endif // * SQLITE_OMIT_INTEGRITY_CHECK */

					/* Opcode: RowSetAdd P1 P2 * * *
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
					case OP_RowSetAdd:
						{       /* in1, in2 */
							pIn1 = aMem[pOp.p1];
							pIn2 = aMem[pOp.p2];
							Debug.Assert((pIn2.flags & MEM_Int) != 0);
							if ((pIn1.flags & MEM_RowSet) == 0)
							{
								sqlite3VdbeMemSetRowSet(pIn1);
								if ((pIn1.flags & MEM_RowSet) == 0)
									goto no_mem;
							}
							sqlite3RowSetInsert(pIn1.u.pRowSet, pIn2.u.i);
							break;
						}
					/* Opcode: RowSetRead P1 P2 P3 * *
					**
					** Extract the smallest value from boolean index P1 and put that value into
					** register P3.  Or, if boolean index P1 is initially empty, leave P3
					** unchanged and jump to instruction P2.
					*/
					case OP_RowSetRead:
						{       /* jump, in1, ref3 */
							i64 val = 0;
							if (db.u1.isInterrupted)
								goto abort_due_to_interrupt; //CHECK_FOR_INTERRUPT;
							pIn1 = aMem[pOp.p1];
							if ((pIn1.flags & MEM_RowSet) == 0
							|| sqlite3RowSetNext(pIn1.u.pRowSet, ref val) == 0
							)
							{
								/* The boolean index is empty */
								sqlite3VdbeMemSetNull(pIn1);
								pc = pOp.p2 - 1;
							}
							else
							{
								/* A value was pulled from the index */
								sqlite3VdbeMemSetInt64(aMem[pOp.p3], val);
							}
							break;
						}

					/* Opcode: RowSetTest P1 P2 P3 P4
					**
					** Register P3 is assumed to hold a 64-bit integer value. If register P1
					** contains a RowSet object and that RowSet object contains
					** the value held in P3, jump to register P2. Otherwise, insert the
					** integer in P3 into the RowSet and continue on to the
					** next opcode.
					**
					** The RowSet object is optimized for the case where successive sets
					** of integers, where each set contains no duplicates. Each set
					** of values is identified by a unique P4 value. The first set
					** must have P4==0, the final set P4=-1.  P4 must be either -1 or
					** non-negative.  For non-negative values of P4 only the lower 4
					** bits are significant.
					**
					** This allows optimizations: (a) when P4==0 there is no need to test
					** the rowset object for P3, as it is guaranteed not to contain it,
					** (b) when P4==-1 there is no need to insert the value, as it will
					** never be tested for, and (c) when a value that is part of set X is
					** inserted, there is no need to search to see if the same value was
					** previously inserted as part of set X (only if it was previously
					** inserted as part of some other set).
					*/
					case OP_RowSetTest:
						{                     /* jump, in1, in3 */
							int iSet;
							int exists;

							pIn1 = aMem[pOp.p1];
							pIn3 = aMem[pOp.p3];
							iSet = pOp.p4.i;
							Debug.Assert((pIn3.flags & MEM_Int) != 0);

							/* If there is anything other than a rowset object in memory cell P1,
							** delete it now and initialize P1 with an empty rowset
							*/
							if ((pIn1.flags & MEM_RowSet) == 0)
							{
								sqlite3VdbeMemSetRowSet(pIn1);
								if ((pIn1.flags & MEM_RowSet) == 0)
									goto no_mem;
							}

							Debug.Assert(pOp.p4type == P4_INT32);
							Debug.Assert(iSet == -1 || iSet >= 0);
							if (iSet != 0)
							{
								exists = sqlite3RowSetTest(pIn1.u.pRowSet,
								(u8)(iSet >= 0 ? iSet & 0xf : 0xff),
								pIn3.u.i);
								if (exists != 0)
								{
									pc = pOp.p2 - 1;
									break;
								}
							}
							if (iSet >= 0)
							{
								sqlite3RowSetInsert(pIn1.u.pRowSet, pIn3.u.i);
							}
							break;
						}

#if !SQLITE_OMIT_TRIGGER

					/* Opcode: Program P1 P2 P3 P4 *
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 
**
** P1 contains the address of the memory cell that contains the first memory 
** cell in an array of values used as arguments to the sub-program. P2 
** contains the address to jump to if the sub-program throws an IGNORE 
** exception using the RAISE() function. Register P3 contains the address 
** of a memory cell in this (the parent) VM that is used to allocate the 
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
*/
					case OP_Program:
						{        /* jump */
							int nMem;              /* Number of memory registers for sub-program */
							int nByte;             /* Bytes of runtime space required for sub-program */
							Mem pRt;               /* Register to allocate runtime space */
							Mem pMem = null;       /* Used to iterate through memory cells */
							//Mem pEnd;            /* Last memory cell in new array */
							VdbeFrame pFrame;      /* New vdbe frame to execute in */
							SubProgram pProgram;   /* Sub-program to execute */
							int t;                 /* Token identifying trigger */

							pProgram = pOp.p4.pProgram;
							pRt = aMem[pOp.p3];
							Debug.Assert(memIsValid(pRt));
							Debug.Assert(pProgram.nOp > 0);

							/* If the p5 flag is clear, then recursive invocation of triggers is 
							** disabled for backwards compatibility (p5 is set if this sub-program
							** is really a trigger, not a foreign key action, and the flag set
							** and cleared by the "PRAGMA recursive_triggers" command is clear).
							** 
							** It is recursive invocation of triggers, at the SQL level, that is 
							** disabled. In some cases a single trigger may generate more than one 
							** SubProgram (if the trigger may be executed with more than one different 
							** ON CONFLICT algorithm). SubProgram structures associated with a
							** single trigger all have the same value for the SubProgram.token 
							** variable.  */
							if (pOp.p5 != 0)
							{
								t = pProgram.token;
								for (pFrame = p.pFrame; pFrame != null && pFrame.token != t; pFrame = pFrame.pParent)
									;
								if (pFrame != null)
									break;
							}

							if (p.nFrame >= db.aLimit[SQLITE_LIMIT_TRIGGER_DEPTH])
							{
								rc = SQLITE_ERROR;
								sqlite3SetString(ref p.zErrMsg, db, "too many levels of trigger recursion");
								break;
							}

							/* Register pRt is used to store the memory required to save the state
							** of the current program, and the memory required at runtime to execute
							** the trigger program. If this trigger has been fired before, then pRt 
							** is already allocated. Otherwise, it must be initialized.  */
							if ((pRt.flags & MEM_Frame) == 0)
							{
								/* SubProgram.nMem is set to the number of memory cells used by the 
								** program stored in SubProgram.aOp. As well as these, one memory
								** cell is required for each cursor used by the program. Set local
								** variable nMem (and later, VdbeFrame.nChildMem) to this value.
								*/
								nMem = pProgram.nMem + pProgram.nCsr;
								//nByte = ROUND8( sizeof( VdbeFrame ) )
								//+ nMem * sizeof( Mem )
								//+ pProgram.nCsr * sizeof( VdbeCursor* );
								pFrame = new VdbeFrame();// sqlite3DbMallocZero( db, nByte );
								//if ( !pFrame )
								//{
								//  goto no_mem;
								//}
								sqlite3VdbeMemRelease(pRt);
								pRt.flags = MEM_Frame;
								pRt.u.pFrame = pFrame;

								pFrame.v = p;
								pFrame.nChildMem = nMem;
								pFrame.nChildCsr = pProgram.nCsr;
								pFrame.pc = pc;
								pFrame.aMem = p.aMem;
								pFrame.nMem = p.nMem;
								pFrame.apCsr = p.apCsr;
								pFrame.nCursor = p.nCursor;
								pFrame.aOp = p.aOp;
								pFrame.nOp = p.nOp;
								pFrame.token = pProgram.token;

								// &VdbeFrameMem( pFrame )[pFrame.nChildMem];
								// aMem is 1 based, so allocate 1 extra cell under C#
								pFrame.aChildMem = new Mem[pFrame.nChildMem + 1];
								for (int i = 0; i < pFrame.aChildMem.Length; i++)//pMem = VdbeFrameMem( pFrame ) ; pMem != pEnd ; pMem++ )
								{
									//pFrame.aMem[i] = pFrame.aMem[pFrame.nMem+i];
									pMem = sqlite3Malloc(pMem);
									pMem.flags = MEM_Null;
									pMem.db = db;
									pFrame.aChildMem[i] = pMem;
								}
								pFrame.aChildCsr = new VdbeCursor[pFrame.nChildCsr];
								for (int i = 0; i < pFrame.nChildCsr; i++)
									pFrame.aChildCsr[i] = new VdbeCursor();
							}
							else
							{
								pFrame = pRt.u.pFrame;
								Debug.Assert(pProgram.nMem + pProgram.nCsr == pFrame.nChildMem);
								Debug.Assert(pProgram.nCsr == pFrame.nChildCsr);
								Debug.Assert(pc == pFrame.pc);
							}

							p.nFrame++;
							pFrame.pParent = p.pFrame;
							pFrame.lastRowid = lastRowid;
							pFrame.nChange = p.nChange;
							p.nChange = 0;
							p.pFrame = pFrame;
							p.aMem = aMem = pFrame.aChildMem; // &VdbeFrameMem( pFrame )[-1];
							p.nMem = pFrame.nChildMem;
							p.nCursor = (u16)pFrame.nChildCsr;
							p.apCsr = pFrame.aChildCsr;// (VdbeCursor *)&aMem[p->nMem+1];
							p.aOp = aOp = pProgram.aOp;
							p.nOp = pProgram.nOp;
							pc = -1;

							break;
						}

					/* Opcode: Param P1 P2 * * *
					**
					** This opcode is only ever present in sub-programs called via the 
					** OP_Program instruction. Copy a value currently stored in a memory 
					** cell of the calling (parent) frame to cell P2 in the current frames 
					** address space. This is used by trigger programs to access the new.* 
					** and old.* values.
					**
					** The address of the cell in the parent frame is determined by adding
					** the value of the P1 argument to the value of the P1 argument to the
					** calling OP_Program instruction.
					*/
					case OP_Param:
						{           /* out2-prerelease */
							VdbeFrame pFrame;
							Mem pIn;
							pFrame = p.pFrame;
							pIn = pFrame.aMem[pOp.p1 + pFrame.aOp[pFrame.pc].p1];
							sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
							break;
						}
#endif // * #if !SQLITE_OMIT_TRIGGER */

#if !SQLITE_OMIT_FOREIGN_KEY
					/* Opcode: FkCounter P1 P2 * * *
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented 
** (deferred foreign key constraints). Otherwise, if P1 is zero, the 
** statement counter is incremented (immediate foreign key constraints).
*/
					case OP_FkCounter:
						{
							if (pOp.p1 != 0)
							{
								db.nDeferredCons += pOp.p2;
							}
							else
							{
								p.nFkConstraint += pOp.p2;
							}
							break;
						}

					/* Opcode: FkIfZero P1 P2 * * *
					**
					** This opcode tests if a foreign key constraint-counter is currently zero.
					** If so, jump to instruction P2. Otherwise, fall through to the next 
					** instruction.
					**
					** If P1 is non-zero, then the jump is taken if the database constraint-counter
					** is zero (the one that counts deferred constraint violations). If P1 is
					** zero, the jump is taken if the statement constraint-counter is zero
					** (immediate foreign key constraint violations).
					*/
					case OP_FkIfZero:
						{         /* jump */
							if (pOp.p1 != 0)
							{
								if (db.nDeferredCons == 0)
									pc = pOp.p2 - 1;
							}
							else
							{
								if (p.nFkConstraint == 0)
									pc = pOp.p2 - 1;
							}
							break;
						}
#endif //* #if !SQLITE_OMIT_FOREIGN_KEY */

#if !SQLITE_OMIT_AUTOINCREMENT
					/* Opcode: MemMax P1 P2 * * *
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
** within a sub-program). Set the value of register P1 to the maximum of 
** its current value and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
					case OP_MemMax:
						{        /* in2 */
							Mem _pIn1;
							VdbeFrame pFrame;
							if (p.pFrame != null)
							{
								for (pFrame = p.pFrame; pFrame.pParent != null; pFrame = pFrame.pParent)
									;
								_pIn1 = pFrame.aMem[pOp.p1];
							}
							else
							{
								_pIn1 = aMem[pOp.p1];
							}
							Debug.Assert(memIsValid(_pIn1));
							sqlite3VdbeMemIntegerify(_pIn1);
							pIn2 = aMem[pOp.p2];
							sqlite3VdbeMemIntegerify(pIn2);
							if (_pIn1.u.i < pIn2.u.i)
							{
								_pIn1.u.i = pIn2.u.i;
							}
							break;
						}
#endif // * SQLITE_OMIT_AUTOINCREMENT */

					/* Opcode: IfPos P1 P2 * * *
**
** If the value of register P1 is 1 or greater, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An Debug.Assertion fault will result if you try.
*/
					case OP_IfPos:
						{        /* jump, in1 */
							pIn1 = aMem[pOp.p1];
							Debug.Assert((pIn1.flags & MEM_Int) != 0);
							if (pIn1.u.i > 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: IfNeg P1 P2 * * *
					**
					** If the value of register P1 is less than zero, jump to P2.
					**
					** It is illegal to use this instruction on a register that does
					** not contain an integer.  An Debug.Assertion fault will result if you try.
					*/
					case OP_IfNeg:
						{        /* jump, in1 */
							pIn1 = aMem[pOp.p1];
							Debug.Assert((pIn1.flags & MEM_Int) != 0);
							if (pIn1.u.i < 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: IfZero P1 P2 P3 * *
					**
					** The register P1 must contain an integer.  Add literal P3 to the
					** value in register P1.  If the result is exactly 0, jump to P2. 
					**
					** It is illegal to use this instruction on a register that does
					** not contain an integer.  An assertion fault will result if you try.
					*/
					case OP_IfZero:
						{        /* jump, in1 */
							pIn1 = aMem[pOp.p1];
							Debug.Assert((pIn1.flags & MEM_Int) != 0);
							pIn1.u.i += pOp.p3;
							if (pIn1.u.i == 0)
							{
								pc = pOp.p2 - 1;
							}
							break;
						}

					/* Opcode: AggStep * P2 P3 P4 P5
					**
					** Execute the step function for an aggregate.  The
					** function has P5 arguments.   P4 is a pointer to the FuncDef
					** structure that specifies the function.  Use register
					** P3 as the accumulator.
					**
					** The P5 arguments are taken from register P2 and its
					** successors.
					*/
					case OP_AggStep:
						{
							int n;
							int i;
							Mem pMem;
							Mem pRec;
							sqlite3_context ctx = new sqlite3_context();
							sqlite3_value[] apVal;

							n = pOp.p5;
							Debug.Assert(n >= 0);
							//pRec = aMem[pOp.p2];
							apVal = p.apArg;
							Debug.Assert(apVal != null || n == 0);
							for (i = 0; i < n; i++)//, pRec++)
							{
								pRec = aMem[pOp.p2 + i];
								Debug.Assert(memIsValid(pRec));
								apVal[i] = pRec;
								memAboutToChange(p, pRec);
								sqlite3VdbeMemStoreType(pRec);
							}
							ctx.pFunc = pOp.p4.pFunc;
							Debug.Assert(pOp.p3 > 0 && pOp.p3 <= p.nMem);
							ctx.pMem = pMem = aMem[pOp.p3];
							pMem.n++;
							ctx.s.flags = MEM_Null;
							ctx.s.z = null;
							//ctx.s.zMalloc = null;
							ctx.s.xDel = null;
							ctx.s.db = db;
							ctx.isError = 0;
							ctx.pColl = null;
							if ((ctx.pFunc.flags & SQLITE_FUNC_NEEDCOLL) != 0)
							{
								Debug.Assert(pc > 0);//pOp > p.aOp );
								Debug.Assert(p.aOp[pc - 1].p4type == P4_COLLSEQ); //pOp[-1].p4type == P4_COLLSEQ );
								Debug.Assert(p.aOp[pc - 1].opcode == OP_CollSeq); // pOp[-1].opcode == OP_CollSeq );
								ctx.pColl = p.aOp[pc - 1].p4.pColl;
								;// pOp[-1].p4.pColl;
							}
							ctx.pFunc.xStep(ctx, n, apVal); /* IMP: R-24505-23230 */
							if (ctx.isError != 0)
							{
								sqlite3SetString(ref p.zErrMsg, db, sqlite3_value_text(ctx.s));
								rc = ctx.isError;
							}
							sqlite3VdbeMemRelease(ctx.s);
							break;
						}

					/* Opcode: AggFinal P1 P2 * P4 *
					**
					** Execute the finalizer function for an aggregate.  P1 is
					** the memory location that is the accumulator for the aggregate.
					**
					** P2 is the number of arguments that the step function takes and
					** P4 is a pointer to the FuncDef for this function.  The P2
					** argument is not used by this opcode.  It is only there to disambiguate
					** functions that can take varying numbers of arguments.  The
					** P4 argument is only needed for the degenerate case where
					** the step function was not previously called.
					*/
					case OP_AggFinal:
						{
							Mem pMem;
							Debug.Assert(pOp.p1 > 0 && pOp.p1 <= p.nMem);
							pMem = aMem[pOp.p1];
							Debug.Assert((pMem.flags & ~(MEM_Null | MEM_Agg)) == 0);
							rc = sqlite3VdbeMemFinalize(pMem, pOp.p4.pFunc);
							p.aMem[pOp.p1] = pMem;
							if (rc != 0)
							{
								sqlite3SetString(ref p.zErrMsg, db, sqlite3_value_text(pMem));
							}
							sqlite3VdbeChangeEncoding(pMem, encoding);
#if SQLITE_TEST
			  UPDATE_MAX_BLOBSIZE( pMem );
#endif
							if (sqlite3VdbeMemTooBig(pMem))
							{
								goto too_big;
							}
							break;
						}


#if !SQLITE_OMIT_WAL
/* Opcode: Checkpoint P1 P2 P3 * *
**
** Checkpoint database P1. This is a no-op if P1 is not currently in
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
** SQLITE_BUSY or not, respectively.  Write the number of pages in the
** WAL after the checkpoint into mem[P3+1] and the number of pages
** in the WAL that have been checkpointed after the checkpoint
** completes into mem[P3+2].  However on an error, mem[P3+1] and
** mem[P3+2] are initialized to -1.
*/
cDebug.Ase OP_Checkpoint: {
  aRes[0] = 0;
  aRes[1] = aRes[2] = -1;
  Debug.Assert( pOp.p2==SQLITE_CHECKPOINT_PDebug.AsSIVE
	   || pOp.p2==SQLITE_CHECKPOINT_FULL
	   || pOp.p2==SQLITE_CHECKPOINT_RESTART
  );
  rc = sqlite3Checkpoint(db, pOp.p1, pOp.p2, ref aRes[1], ref aRes[2]);
  if( rc==SQLITE_BUSY ){
	rc = SQLITE_OK;
	aRes[0] = 1;
  }
  for(i=0, pMem = aMem[pOp.p3]; i<3; i++, pMem++){
	sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
  }
  break;
};  
#endif

#if !SQLITE_OMIT_PRAGMA
					/* Opcode: JournalMode P1 P2 P3 * P5
**
** Change the journal mode of database P1 to P3. P3 must be one of the
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
					case OP_JournalMode:
						{    /* out2-prerelease */
							Btree pBt;                      /* Btree to change journal mode of */
							Pager pPager;                   /* Pager associated with pBt */
							int eNew;                       /* New journal mode */
							int eOld;                       /* The old journal mode */
							string zFilename;               /* Name of database file for pPager */

							eNew = pOp.p3;
							Debug.Assert(eNew == PAGER_JOURNALMODE_DELETE
							|| eNew == PAGER_JOURNALMODE_TRUNCATE
							|| eNew == PAGER_JOURNALMODE_PERSIST
							|| eNew == PAGER_JOURNALMODE_OFF
							|| eNew == PAGER_JOURNALMODE_MEMORY
							|| eNew == PAGER_JOURNALMODE_WAL
							|| eNew == PAGER_JOURNALMODE_QUERY
							);
							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);

							pBt = db.aDb[pOp.p1].pBt;
							pPager = sqlite3BtreePager(pBt);
							eOld = sqlite3PagerGetJournalMode(pPager);
							if (eNew == PAGER_JOURNALMODE_QUERY)
								eNew = eOld;
							if (0 == sqlite3PagerOkToChangeJournalMode(pPager))
								eNew = eOld;

#if !SQLITE_OMIT_WAL
zFilename = sqlite3PagerFilename(pPager);

/* Do not allow a transition to journal_mode=WAL for a database
** in temporary storage or if the VFS does not support shared memory 
*/
if( eNew==PAGER_JOURNALMODE_WAL
&& (zFilename[0]==0                         /* Temp file */
|| !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
){
eNew = eOld;
}

if( (eNew!=eOld)
&& (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
){
if( null==db.autoCommit || db.activeVdbeCnt>1 ){
rc = SQLITE_ERROR;
sqlite3SetString(&p.zErrMsg, db, 
"cannot change %s wal mode from within a transaction",
(eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
);
break;
}else{

if( eOld==PAGER_JOURNALMODE_WAL ){
/* If leaving WAL mode, close the log file. If successful, the call
** to PagerCloseWal() checkpoints and deletes the write-ahead-log 
** file. An EXCLUSIVE lock may still be held on the database file 
** after a successful return. 
*/
rc = sqlite3PagerCloseWal(pPager);
if( rc==SQLITE_OK ){
sqlite3PagerSetJournalMode(pPager, eNew);
}
}else if( eOld==PAGER_JOURNALMODE_MEMORY ){
/* Cannot transition directly from MEMORY to WAL.  Use mode OFF
** as an intermediate */
sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
}

/* Open a transaction on the database file. Regardless of the journal
** mode, this transaction always uses a rollback journal.
*/
Debug.Assert( sqlite3BtreeIsInTrans(pBt)==0 );
if( rc==SQLITE_OK ){
rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
}
}
}
#endif //* ifndef SQLITE_OMIT_WAL */

							if (rc != 0)
							{
								eNew = eOld;
							}
							eNew = sqlite3PagerSetJournalMode(pPager, eNew);

							pOut = aMem[pOp.p2];
							pOut.flags = MEM_Str | MEM_Static | MEM_Term;
							pOut.z = sqlite3JournalModename(eNew);
							pOut.n = sqlite3Strlen30(pOut.z);
							pOut.enc = SQLITE_UTF8;
							sqlite3VdbeChangeEncoding(pOut, encoding);
							break;
						};
#endif //* SQLITE_OMIT_PRAGMA */

#if  !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH
					/* Opcode: Vacuum * * * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
					case OP_Vacuum:
						{
							rc = sqlite3RunVacuum(ref p.zErrMsg, db);
							break;
						}
#endif

#if  !SQLITE_OMIT_AUTOVACUUM
					/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
					case OP_IncrVacuum:
						{        /* jump */
							Btree pBt;

							Debug.Assert(pOp.p1 >= 0 && pOp.p1 < db.nDb);
							Debug.Assert((p.btreeMask & (((yDbMask)1) << pOp.p1)) != 0);
							pBt = db.aDb[pOp.p1].pBt;
							rc = sqlite3BtreeIncrVacuum(pBt);
							if (rc == SQLITE_DONE)
							{
								pc = pOp.p2 - 1;
								rc = SQLITE_OK;
							}
							break;
						}
#endif

					/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed
** (via sqlite3_step()).
**
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected.
*/
					case OP_Expire:
						{
							if (pOp.p1 == 0)
							{
								sqlite3ExpirePreparedStatements(db);
							}
							else
							{
								p.expired = true;
							}
							break;
						}

#if !SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
**
** P1 is the index of the database in sqlite3.aDb[] of the database
** on which the lock is acquired.  A readlock is obtained if P3==0 or
** a write lock if P3==1.
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock:
{
u8 isWriteLock = (u8)pOp.p3;
if( isWriteLock || 0==(db.flags&SQLITE_ReadUncommitted) ){
int p1 = pOp.p1; 
Debug.Assert( p1 >= 0 && p1 < db.nDb );
Debug.Assert( ( p.btreeMask & ( ((yDbMask)1) << p1 ) ) != 0 );
Debug.Assert( isWriteLock == 0 || isWriteLock == 1 );
rc = sqlite3BtreeLockTable( db.aDb[p1].pBt, pOp.p2, isWriteLock );
if ( ( rc & 0xFF ) == SQLITE_LOCKED )
{
string z = pOp.p4.z;
sqlite3SetString( ref p.zErrMsg, db, "database table is locked: ", z );
}
}
break;
}
#endif // * SQLITE_OMIT_SHARED_CACHE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VBegin * * * P4 *
**
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
** xBegin method for that table.
**
** Also, whether or not P4 is set, check that this is not being called from
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
					case OP_VBegin:
						{
							VTable pVTab;
							pVTab = pOp.p4.pVtab;
							rc = sqlite3VtabBegin(db, pVTab);
							if (pVTab != null)
								importVtabErrMsg(p, pVTab.pVtab);
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VCreate P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
					case OP_VCreate:
						{
							rc = sqlite3VtabCallCreate(db, pOp.p1, pOp.p4.z, ref p.zErrMsg);
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
					case OP_VDestroy:
						{
							p.inVtabMethod = 2;
							rc = sqlite3VtabCallDestroy(db, pOp.p1, pOp.p4.z);
							p.inVtabMethod = 0;
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
					case OP_VOpen:
						{
							VdbeCursor pCur;
							sqlite3_vtab_cursor pVtabCursor;
							sqlite3_vtab pVtab;
							sqlite3_module pModule;

							pCur = null;
							pVtab = pOp.p4.pVtab.pVtab;
							pModule = (sqlite3_module)pVtab.pModule;
							Debug.Assert(pVtab != null && pModule != null);
							rc = pModule.xOpen(pVtab, out pVtabCursor);
							importVtabErrMsg(p, pVtab);
							if (SQLITE_OK == rc)
							{
								/* Initialize sqlite3_vtab_cursor base class */
								pVtabCursor.pVtab = pVtab;

								/* Initialise vdbe cursor object */
								pCur = allocateCursor(p, pOp.p1, 0, -1, 0);
								if (pCur != null)
								{
									pCur.pVtabCursor = pVtabCursor;
									pCur.pModule = pVtabCursor.pVtab.pModule;
								}
								else
								{
									//db.mallocFailed = 1;
									pModule.xClose(ref pVtabCursor);
								}
							}
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VFilter P1 P2 P3 P4 *
**
** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
** the filtered result set is empty.
**
** P4 is either NULL or a string that was generated by the xBestIndex
** method of the module.  The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1.  The integer query plan parameter to xFilter is stored in register
** P3. Register P3+1 stores the argc parameter to be passed to the
** xFilter method. Registers P3+2..P3+1+argc are the argc
** additional parameters which are passed to
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
					case OP_VFilter:
						{   /* jump */
							int nArg;
							int iQuery;
							sqlite3_module pModule;
							Mem pQuery;
							Mem pArgc = null;
							sqlite3_vtab_cursor pVtabCursor;
							sqlite3_vtab pVtab;
							VdbeCursor pCur;
							int res;
							int i;
							Mem[] apArg;

							pQuery = aMem[pOp.p3];
							pArgc = aMem[pOp.p3 + 1];// pQuery[1];
							pCur = p.apCsr[pOp.p1];
							Debug.Assert(memIsValid(pQuery));
							REGISTER_TRACE(p, pOp.p3, pQuery);
							Debug.Assert(pCur.pVtabCursor != null);
							pVtabCursor = pCur.pVtabCursor;
							pVtab = pVtabCursor.pVtab;
							pModule = pVtab.pModule;

							/* Grab the index number and argc parameters */
							Debug.Assert((pQuery.flags & MEM_Int) != 0 && pArgc.flags == MEM_Int);
							nArg = (int)pArgc.u.i;
							iQuery = (int)pQuery.u.i;

							/* Invoke the xFilter method */
							{
								res = 0;
								apArg = p.apArg;
								for (i = 0; i < nArg; i++)
								{
									apArg[i] = aMem[(pOp.p3 + 1) + i + 1];//apArg[i] = pArgc[i + 1];
									sqlite3VdbeMemStoreType(apArg[i]);
								}

								p.inVtabMethod = 1;
								rc = pModule.xFilter(pVtabCursor, iQuery, pOp.p4.z, nArg, apArg);
								p.inVtabMethod = 0;
								importVtabErrMsg(p, pVtab);
								if (rc == SQLITE_OK)
								{
									res = pModule.xEof(pVtabCursor);
								}

								if (res != 0)
								{
									pc = pOp.p2 - 1;
								}
							}
							pCur.nullRow = false;
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VColumn P1 P2 P3 * *
**
** Store the value of the P2-th column of
** the row of the virtual-table that the
** P1 cursor is pointing to into register P3.
*/
					case OP_VColumn:
						{
							sqlite3_vtab pVtab;
							sqlite3_module pModule;
							Mem pDest;
							sqlite3_context sContext;

							VdbeCursor pCur = p.apCsr[pOp.p1];
							Debug.Assert(pCur.pVtabCursor != null);
							Debug.Assert(pOp.p3 > 0 && pOp.p3 <= p.nMem);
							pDest = aMem[pOp.p3];
							memAboutToChange(p, pDest);
							if (pCur.nullRow)
							{
								sqlite3VdbeMemSetNull(pDest);
								break;
							}
							pVtab = pCur.pVtabCursor.pVtab;
							pModule = pVtab.pModule;
							Debug.Assert(pModule.xColumn != null);
							sContext = new sqlite3_context();//memset( &sContext, 0, sizeof( sContext ) );

							/* The output cell may already have a buffer allocated. Move
							** the current contents to sContext.s so in case the user-function
							** can use the already allocated buffer instead of allocating a
							** new one.
							*/
							sqlite3VdbeMemMove(sContext.s, pDest);
							MemSetTypeFlag(sContext.s, MEM_Null);

							rc = pModule.xColumn(pCur.pVtabCursor, sContext, pOp.p2);
							importVtabErrMsg(p, pVtab);

							if (sContext.isError != 0)
							{
								rc = sContext.isError;
							}

							/* Copy the result of the function to the P3 register. We
							** do this regardless of whether or not an error occurred to ensure any
							** dynamic allocation in sContext.s (a Mem struct) is  released.
							*/
							sqlite3VdbeChangeEncoding(sContext.s, encoding);
							sqlite3VdbeMemMove(pDest, sContext.s);
							REGISTER_TRACE(p, pOp.p3, pDest);
							UPDATE_MAX_BLOBSIZE(pDest);
							if (sqlite3VdbeMemTooBig(pDest))
							{
								goto too_big;
							}
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VNext P1 P2 * * *
**
** Advance virtual table P1 to the next row in its result set and
** jump to instruction P2.  Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
					case OP_VNext:
						{   /* jump */
							sqlite3_vtab pVtab;
							sqlite3_module pModule;
							int res;
							VdbeCursor pCur;

							res = 0;
							pCur = p.apCsr[pOp.p1];
							Debug.Assert(pCur.pVtabCursor != null);
							if (pCur.nullRow)
							{
								break;
							}
							pVtab = pCur.pVtabCursor.pVtab;
							pModule = pVtab.pModule;
							Debug.Assert(pModule.xNext != null);

							/* Invoke the xNext() method of the module. There is no way for the
							** underlying implementation to return an error if one occurs during
							** xNext(). Instead, if an error occurs, true is returned (indicating that
							** data is available) and the error code returned when xColumn or
							** some other method is next invoked on the save virtual table cursor.
							*/
							p.inVtabMethod = 1;
							rc = pModule.xNext(pCur.pVtabCursor);
							p.inVtabMethod = 0;
							importVtabErrMsg(p, pVtab);
							if (rc == SQLITE_OK)
							{
								res = pModule.xEof(pCur.pVtabCursor);
							}

							if (0 == res)
							{
								/* If there is data, jump to P2 */
								pc = pOp.p2 - 1;
							}
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
					case OP_VRename:
						{
							sqlite3_vtab pVtab;
							Mem pName;

							pVtab = pOp.p4.pVtab.pVtab;
							pName = aMem[pOp.p1];
							Debug.Assert(pVtab.pModule.xRename != null);
							Debug.Assert(memIsValid(pName));
							REGISTER_TRACE(p, pOp.p1, pName);
							Debug.Assert((pName.flags & MEM_Str) != 0);
							rc = pVtab.pModule.xRename(pVtab, pName.z);
							importVtabErrMsg(p, pVtab);
							p.expired = false;
							break;
						}
#endif

#if !SQLITE_OMIT_VIRTUALTABLE
					/* Opcode: VUpdate P1 P2 P3 P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate
** invocation. The value in register (P3+P2-1) corresponds to the
** p2th element of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to memory cell P3)
** is the rowid of a row to delete.  If argv[0] is NULL then no
** deletion occurs.  The argv[1] element is the rowid of the new
** row.  This can be NULL to have the virtual table select the new
** rowid for itself.  The subsequent elements in the array are
** the values of columns in the new row.
**
** If P2==1 then no insert is performed.  argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
*/
					case OP_VUpdate:
						{
							sqlite3_vtab pVtab;
							sqlite3_module pModule;
							int nArg;
							int i;
							sqlite_int64 rowid = 0;
							Mem[] apArg;
							Mem pX;

							Debug.Assert(pOp.p2 == 1 || pOp.p5 == OE_Fail || pOp.p5 == OE_Rollback
								   || pOp.p5 == OE_Abort || pOp.p5 == OE_Ignore || pOp.p5 == OE_Replace
							  );
							pVtab = pOp.p4.pVtab.pVtab;
							pModule = (sqlite3_module)pVtab.pModule;
							nArg = pOp.p2;
							Debug.Assert(pOp.p4type == P4_VTAB);
							if (ALWAYS(pModule.xUpdate))
							{
								u8 vtabOnConflict = db.vtabOnConflict;
								apArg = p.apArg;
								//pX = aMem[pOp.p3];
								for (i = 0; i < nArg; i++)
								{
									pX = aMem[pOp.p3 + i];
									Debug.Assert(memIsValid(pX));
									memAboutToChange(p, pX);
									sqlite3VdbeMemStoreType(pX);
									apArg[i] = pX;
									//pX++;
								}
								db.vtabOnConflict = pOp.p5;
								rc = pModule.xUpdate(pVtab, nArg, apArg, out rowid);
								db.vtabOnConflict = vtabOnConflict;
								importVtabErrMsg(p, pVtab);
								if (rc == SQLITE_OK && pOp.p1 != 0)
								{
									Debug.Assert(nArg > 1 && apArg[0] != null && (apArg[0].flags & MEM_Null) != 0);
									db.lastRowid = lastRowid = rowid;
								}
								if (rc == SQLITE_CONSTRAINT && pOp.p4.pVtab.bConstraint != 0)
								{
									if (pOp.p5 == OE_Ignore)
									{
										rc = SQLITE_OK;
									}
									else
									{
										p.errorAction = ((pOp.p5 == OE_Replace) ? (byte)OE_Abort : (byte)pOp.p5);
									}
								}
								else
								{
									p.nChange++;
								}
							}
							break;
						}
#endif //* SQLITE_OMIT_VIRTUALTABLE */

#if !SQLITE_OMIT_PAGER_PRAGMAS
					/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
					case OP_Pagecount:
						{            /* out2-prerelease */
							pOut.u.i = sqlite3BtreeLastPage(db.aDb[pOp.p1].pBt);
							break;
						}
#endif


#if !SQLITE_OMIT_PAGER_PRAGMAS
					/* Opcode: MaxPgcnt P1 P2 P3 * *
**
** Try to set the maximum page count for database P1 to the value in P3.
** Do not let the maximum page count fall below the current page count and
** do not change the maximum page count value if P3==0.
**
** Store the maximum page count after the change in register P2.
*/
					case OP_MaxPgcnt:
						{            /* out2-prerelease */
							i64 newMax;
							Btree pBt;

							pBt = db.aDb[pOp.p1].pBt;
							newMax = 0;
							if (pOp.p3 != 0)
							{
								newMax = sqlite3BtreeLastPage(pBt);
								if (newMax < pOp.p3)
									newMax = pOp.p3;
							}
							pOut.u.i = (i64)sqlite3BtreeMaxPageCount(pBt, (int)newMax);
							break;
						}
#endif

#if !SQLITE_OMIT_TRACE
					/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
					case OP_Trace:
						{
							string zTrace;
							string z;

							if (db.xTrace != null && !String.IsNullOrEmpty(zTrace = (pOp.p4.z != null ? pOp.p4.z : p.zSql)))
							{
								z = sqlite3VdbeExpandSql(p, zTrace);
								db.xTrace(db.pTraceArg, z);
								//sqlite3DbFree( db, ref z );
							}
#if SQLITE_DEBUG
			  if ( ( db.flags & SQLITE_SqlTrace ) != 0
				&& ( zTrace = ( pOp.p4.z != null ? pOp.p4.z : p.zSql ) ) != "" )
			  {
				sqlite3DebugPrintf( "SQL-trace: %s\n", zTrace );
			  }
#endif // * SQLITE_DEBUG */
							break;
						}
#endif


					/* Opcode: Noop * * * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
					/*
					** The magic Explain opcode are only inserted when explain==2 (which
					** is to say when the EXPLAIN QUERY PLAN syntax is used.)
					** This opcode records information from the optimizer.  It is the
					** the same as a no-op.  This opcodesnever appears in a real VM program.
					*/
					default:
						{          /* This is really OP_Noop and OP_Explain */
							Debug.Assert(pOp.opcode == OP_Noop || pOp.opcode == OP_Explain);
							break;
						}

					/*****************************************************************************
					** The cases of the switch statement above this line should all be indented
					** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
					** readability.  From this point on down, the normal indentation rules are
					** restored.
					*****************************************************************************/
				}

#if VDBE_PROFILE
{
u64 elapsed = sqlite3Hwtime() - start;
pOp.cycles += elapsed;
pOp.cnt++;
#if  FALSE
fprintf(stdout, "%10llu ", elapsed);
sqlite3VdbePrintOp(stdout, origPc, aOp[origPc]);
#endif
}
#endif

				/* The following code adds nothing to the actual functionality
** of the program.  It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop.  So we can leave it out when NDEBUG is defined.
*/
#if !NDEBUG
		Debug.Assert( pc >= -1 && pc < p.nOp );

#if SQLITE_DEBUG
		if ( p.trace != null )
		{
		  if ( rc != 0 )
			fprintf( p.trace, "rc=%d\n", rc );
		  if ( ( pOp.opflags & ( OPFLG_OUT2_PRERELEASE | OPFLG_OUT2 ) ) != 0 )
		  {
			registerTrace( p.trace, pOp.p2, aMem[pOp.p2] );
		  }
		  if ( ( pOp.opflags & OPFLG_OUT3 ) != 0 )
		  {
			registerTrace( p.trace, pOp.p3, aMem[pOp.p3] );
		  }
		}
#endif  // * SQLITE_DEBUG */
#endif  // * NDEBUG */

			}  /* The end of the for(;;) loop the loops through opcodes */

		/* If we reach this point, it means that execution is finished with
		** an error of some kind.
		*/
		vdbe_error_halt:
			Debug.Assert(rc != 0);
			p.rc = rc;
			testcase(sqlite3GlobalConfig.xLog != null);
			sqlite3_log(rc, "statement aborts at %d: [%s] %s",
			pc, p.zSql, p.zErrMsg);
			sqlite3VdbeHalt(p);
			//if ( rc == SQLITE_IOERR_NOMEM ) db.mallocFailed = 1;
			rc = SQLITE_ERROR;
			if (resetSchemaOnFault > 0)
			{
				sqlite3ResetInternalSchema(db, resetSchemaOnFault - 1);
			}
		/* This is the only way out of this procedure.  We have to
		** release the mutexes on btrees that were acquired at the
		** top. */
		vdbe_return:
			db.lastRowid = lastRowid;
			sqlite3VdbeLeave(p);
			return rc;

			/* Jump to here if a string or blob larger than db.aLimit[SQLITE_LIMIT_LENGTH]
			** is encountered.
			*/
		too_big:
			sqlite3SetString(ref p.zErrMsg, db, "string or blob too big");
			rc = SQLITE_TOOBIG;
			goto vdbe_error_halt;

			/* Jump to here if a malloc() fails.
			*/
		no_mem:
			//db.mallocFailed = 1;
			sqlite3SetString(ref p.zErrMsg, db, "out of memory");
			rc = SQLITE_NOMEM;
			goto vdbe_error_halt;

			/* Jump to here for any other kind of fatal error.  The "rc" variable
			** should hold the error number.
			*/
		abort_due_to_error:
			//Debug.Assert( p.zErrMsg); /// Not needed in C#
			//if ( db.mallocFailed != 0 ) rc = SQLITE_NOMEM;
			if (rc != SQLITE_IOERR_NOMEM)
			{
				sqlite3SetString(ref p.zErrMsg, db, "%s", sqlite3ErrStr(rc));
			}
			goto vdbe_error_halt;

			/* Jump to here if the sqlite3_interrupt() API sets the interrupt
			** flag.
			*/
		abort_due_to_interrupt:
			Debug.Assert(db.u1.isInterrupted);
			rc = SQLITE_INTERRUPT;
			p.rc = rc;
			sqlite3SetString(ref p.zErrMsg, db, sqlite3ErrStr(rc));
			goto vdbe_error_halt;
		}
	}
Example #2
0
 /*
 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
 ** is used, for example, when a trigger sub-program is halted to restore
 ** control to the main program.
 */
 static int sqlite3VdbeFrameRestore( VdbeFrame pFrame )
 {
   Vdbe v = pFrame.v;
   v.aOp = pFrame.aOp;
   v.nOp = pFrame.nOp;
   v.aMem = pFrame.aMem;
   v.nMem = pFrame.nMem;
   v.apCsr = pFrame.apCsr;
   v.nCursor = pFrame.nCursor;
   v.db.lastRowid = pFrame.lastRowid;
   v.nChange = pFrame.nChange;
   return pFrame.pc;
 }
Example #3
0
 /*
 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
 */
 static void sqlite3VdbeFrameDelete( VdbeFrame p )
 {
   int i;
   //Mem[] aMem = VdbeFrameMem(p);
   VdbeCursor[] apCsr = p.aChildCsr;// (VdbeCursor)aMem[p.nChildMem];
   for ( i = 0; i < p.nChildCsr; i++ )
   {
     sqlite3VdbeFreeCursor( p.v, apCsr[i] );
   }
   releaseMemArray( p.aChildMem, p.nChildMem );
   p = null;// sqlite3DbFree( p.v.db, p );
 }
Example #4
0
        public RC Exec()
        {
            VdbeOp[] ops = Ops.data; // Copy of p.aOp
            VdbeOp op; // Current operation
            RC rc = RC.OK; // Value to return
            Context ctx = Ctx; // The database
            byte resetSchemaOnFault = 0; // Reset schema after an error if positive
            TEXTENCODE encoding = E.CTXENCODE(ctx); // The database encoding
            Mem[] mems = Mems.data; // Copy of p.mems
            Mem in1 = null; // 1st input operand
            Mem in2 = null; // 2nd input operand
            Mem in3 = null; // 3rd input operand
            Mem out_ = null; // Output operand
            int compare = 0;  // Result of last OP_Compare operation
            int[] permutes = null; // Permutation of columns for OP_Compare
            long lastRowid = ctx.LastRowID; // Saved value of the last insert ROWID

            //// INSERT STACK UNION HERE ////
            Debug.Assert(Magic == VDBE_MAGIC_RUN); // sqlite3_step() verifies this
            Enter();
            if (RC_ == RC.NOMEM)
                goto no_mem; // This happens if a malloc() inside a call to sqlite3_column_text() or sqlite3_column_text16() failed.
            Debug.Assert(RC_ == RC.OK || RC_ == RC.BUSY);
            RC_ = RC.OK;
            Debug.Assert(HasExplain == 0);
            ResultSet = null;
            ctx.BusyHandler.Busys = 0;
            if (ctx.u1.IsInterrupted) goto abort_due_to_interrupt; //CHECK_FOR_INTERRUPT;
#if !OMIT_TRACE && ENABLE_IOTRACE
            IOTraceSql();
#endif
#if !OMIT_PROGRESS_CALLBACK
            bool checkProgress = (ctx.Progress != null); // True if progress callbacks are enabled
            int progressOps = 0; // Opcodes executed since progress callback.
#endif
#if DEBUG
            C._benignalloc_begin();
            if (PC == 0 && (ctx.Flags & Context.FLAG.VdbeListing) != 0)
            {
                Console.Write("VDBE Program Listing:\n");
                PrintSql();
                for (int i = 0; i < Ops.length; i++)
                    PrintOp(Console.Out, i, Ops[i]);
            }
            C._benignalloc_end();
#endif
            int pc = 0; // The program counter
            for (pc = PC; rc == RC.OK; pc++)
            {
                Debug.Assert(pc >= 0 && pc < Ops.length);
                if (ctx.MallocFailed) goto no_mem;
#if VDBE_PROFILE
                int origPc = pc; // Program counter at start of opcode
                ulong start = _hwtime(); // CPU clock count at start of opcode
#endif
                op = ops[pc];

#if DEBUG
                // Only allow tracing if SQLITE_DEBUG is defined.
                if (Trace != null)
                {
                    if (pc == 0)
                    {
                        Console.Write("VDBE Execution Trace:\n");
                        PrintSql();
                    }
                    PrintOp(Trace, pc, op);
                }
#endif

#if TEST
                // Check to see if we need to simulate an interrupt.  This only happens if we have a special test build.
                if (g_interrupt_count > 0)
                {
                    g_interrupt_count--;
                    if (g_interrupt_count == 0)
                        Main.Interrupt(ctx);
                }
#endif

#if !OMIT_PROGRESS_CALLBACK
                // Call the progress callback if it is configured and the required number of VDBE ops have been executed (either since this invocation of
                // sqlite3VdbeExec() or since last time the progress callback was called). If the progress callback returns non-zero, exit the virtual machine with
                // a return code SQLITE_ABORT.
                if (checkProgress)
                {
                    if (ctx.ProgressOps == progressOps)
                    {
                        int prc = ctx.Progress(ctx.ProgressArg);
                        if (prc != 0)
                        {
                            rc = RC.INTERRUPT;
                            goto vdbe_error_halt;
                        }
                        progressOps = 0;
                    }
                    progressOps++;
                }
#endif

                // On any opcode with the "out2-prerelease" tag, free any external allocations out of mem[p2] and set mem[p2] to be
                // an undefined integer.  Opcodes will either fill in the integer value or convert mem[p2] to a different type.
                Debug.Assert(op.Opflags == g_opcodeProperty[op.Opcode]);
                if ((op.Opflags & OPFLG.OUT2_PRERELEASE) != 0)
                {
                    Debug.Assert(op.P2 > 0);
                    Debug.Assert(op.P2 <= Mems.length);
                    out_ = mems[op.P2];
                    MemAboutToChange(this, out_);
                    MemRelease(out_);
                    out_.Flags = MEM.Int;
                }

#if DEBUG
                // Sanity checking on other operands
                if ((op.Opflags & OPFLG.IN1) != 0)
                {
                    Debug.Assert(op.P1 > 0);
                    Debug.Assert(op.P1 <= Mems.length);
                    Debug.Assert(E.MemIsValid(mems[op.P1]));
                    REGISTER_TRACE(this, op.P1, mems[op.P1]);
                }
                if ((op.Opflags & OPFLG.IN2) != 0)
                {
                    Debug.Assert(op.P2 > 0);
                    Debug.Assert(op.P2 <= Mems.length);
                    Debug.Assert(E.MemIsValid(mems[op.P2]));
                    REGISTER_TRACE(this, op.P2, mems[op.P2]);
                }
                if ((op.Opflags & OPFLG.IN3) != 0)
                {
                    Debug.Assert(op.P3 > 0);
                    Debug.Assert(op.P3 <= Mems.length);
                    Debug.Assert(E.MemIsValid(mems[op.P3]));
                    REGISTER_TRACE(this, op.P3, mems[op.P3]);
                }
                if ((op.Opflags & OPFLG.OUT2) != 0)
                {
                    Debug.Assert(op.P2 > 0);
                    Debug.Assert(op.P2 <= Mems.length);
                    MemAboutToChange(this, mems[op.P2]);
                }
                if ((op.Opflags & OPFLG.OUT3) != 0)
                {
                    Debug.Assert(op.P3 > 0);
                    Debug.Assert(op.P3 <= Mems.length);
                    MemAboutToChange(this, mems[op.P3]);
                }
#endif

                // What follows is a massive switch statement where each case implements a separate instruction in the virtual machine.  If we follow the usual
                // indentation conventions, each case should be indented by 6 spaces.  But that is a lot of wasted space on the left margin.  So the code within
                // the switch statement will break with convention and be flush-left. Another big comment (similar to this one) will mark the point in the code where
                // we transition back to normal indentation.
                //
                // The formatting of each case is important.  The makefile for SQLite generates two C files "opcodes.h" and "opcodes.c" by scanning this
                // file looking for lines that begin with "case OP_".  The opcodes.h files will be filled with #defines that give unique integer values to each
                // opcode and the opcodes.c file is filled with an array of strings where each string is the symbolic name for the corresponding opcode.  If the
                // case statement is followed by a comment of the form "/# same as ... #/" that comment is used to determine the particular value of the opcode.
                //
                // Other keywords in the comment that follows each case are used to construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
                // Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See the mkopcodeh.awk script for additional information.
                //
                // Documentation about VDBE opcodes is generated by scanning this file for lines of that contain "Opcode:".  That line and all subsequent
                // comment lines are used in the generation of the opcode.html documentation file.
                //
                // SUMMARY:
                //
                //     Formatting is important to scripts that scan this file.
                //     Do not deviate from the formatting style currently in use.
                switch (op.Opcode)
                {
                    case OP.Goto: // jump
                        {
                            // Opcode:  Goto * P2 * * *
                            //
                            // An unconditional jump to address P2. The next instruction executed will be 
                            // the one at index P2 from the beginning of the program.
                            if (ctx.u1.IsInterrupted) goto abort_due_to_interrupt; //CHECK_FOR_INTERRUPT;
                            pc = op.P2 - 1;
                            break;
                        }
                    case OP.Gosub: // jump
                        {
                            // Opcode:  Gosub P1 P2 * * *
                            //
                            // Write the current address onto register P1 and then jump to address P2.
                            in1 = mems[op.P1];
                            Debug.Assert((in1.Flags & MEM.Dyn) == 0);
                            MemAboutToChange(this, in1);
                            in1.Flags = MEM.Int;
                            in1.u.I = pc;
                            REGISTER_TRACE(this, op.P1, in1);
                            pc = op.P2 - 1;
                            break;
                        }
                    case OP.Return:  // in1
                        {
                            // Opcode:  Return P1 * * * *
                            //
                            // Jump to the next instruction after the address in register P1.
                            in1 = mems[op.P1];
                            Debug.Assert((in1.Flags & MEM.Int) != 0);
                            pc = (int)in1.u.I;
                            break;
                        }
                    case OP.Yield: // in1
                        {
                            // Opcode:  Yield P1 * * * *
                            //
                            // Swap the program counter with the value in register P1.
                            in1 = mems[op.P1];
                            Debug.Assert((in1.Flags & MEM.Dyn) == 0);
                            in1.Flags = MEM.Int;
                            int pcDest = (int)in1.u.I;
                            in1.u.I = pc;
                            REGISTER_TRACE(this, op.P1, in1);
                            pc = pcDest;
                            break;
                        }
                    case OP.HaltIfNull: // in3
                        {
                            // Opcode:  HaltIfNull  P1 P2 P3 P4 *
                            //
                            // Check the value in register P3.  If it is NULL then Halt using parameter P1, P2, and P4 as if this were a Halt instruction.  If the
                            // value in register P3 is not NULL, then this routine is a no-op.
                            in3 = mems[op.P3];
                            if ((in3.Flags & MEM.Null) == 0) break;
                            goto case OP.Halt;
                        }
                    // Fall through into OP_Halt
                    case OP.Halt:
                        {
                            // Opcode:  Halt P1 P2 * P4 *
                            //
                            // Exit immediately.  All open cursors, etc are closed automatically.
                            //
                            // P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
                            // For errors, it can be some other value.  If P1!=0 then P2 will determine whether or not to rollback the current transaction.  Do not rollback
                            // if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort, then back out all changes that have occurred during this execution of the
                            // VDBE, but do not rollback the transaction. 
                            //
                            // If P4 is not null then it is an error message string.
                            //
                            // There is an implied "Halt 0 0 0" instruction inserted at the very end of every program.  So a jump past the last instruction of the program
                            // is the same as executing Halt.
                            if (op.P1 == (int)RC.OK && Frames != null)
                            {
                                in3 = mems[op.P3];
                                // Halt the sub-program. Return control to the parent frame.
                                VdbeFrame frame = Frames;
                                Frames = frame.Parent;
                                FramesLength--;
                                SetChanges(ctx, Changes);
                                pc = FrameRestore(frame);
                                lastRowid = ctx.LastRowID;
                                if (op.P2 == (int)OE.Ignore)
                                {
                                    // Instruction pc is the OP_Program that invoked the sub-program currently being halted. If the p2 instruction of this OP_Halt
                                    // instruction is set to OE_Ignore, then the sub-program is throwing an IGNORE exception. In this case jump to the address specified
                                    // as the p2 of the calling OP_Program.
                                    pc = Ops[pc].P2 - 1;
                                }
                                ops = Ops.data;
                                mems = Mems.data;
                                break;
                            }

                            RC_ = (RC)op.P1;
                            ErrorAction = (OE)op.P2;
                            PC = pc;
                            if (op.P4.Z != null)
                            {
                                Debug.Assert(RC_ != RC.OK);
                                C._setstring(ref ErrMsg, ctx, "%s", op.P4.Z);
                                C.ASSERTCOVERAGE(SysEx._GlobalStatics.Log != null);
                                SysEx.LOG((RC)op.P1, "abort at %d in [%s]: %s", pc, Sql_, op.P4.Z);
                            }
                            else if (RC_ != 0)
                            {
                                C.ASSERTCOVERAGE(SysEx._GlobalStatics.Log != null);
                                SysEx.LOG((RC)op.P1, "constraint failed at %d in [%s]", pc, Sql_);
                            }
                            rc = Halt();
                            Debug.Assert(rc == RC.BUSY || rc == RC.OK || rc == RC.ERROR);
                            if (rc == RC.BUSY)
                                RC_ = rc = RC.BUSY;
                            else
                            {
                                Debug.Assert(rc == RC.OK || RC_ == RC.CONSTRAINT);
                                Debug.Assert(rc == RC.OK || ctx.DeferredCons > 0);
                                rc = (RC_ != 0 ? RC.ERROR : RC.DONE);
                            }
                            goto vdbe_return;
                        }
                    case OP.Integer: // out2-prerelease
                        {
                            // Opcode: Integer P1 P2 * * *
                            //
                            // The 32-bit integer value P1 is written into register P2.
                            out_.u.I = op.P1;
                            break;
                        }
                    case OP.Int64: // out2-prerelease
                        {
                            // Opcode: Int64 * P2 * P4 *
                            //
                            // P4 is a pointer to a 64-bit integer value. Write that value into register P2.
                            Debug.Assert(op.P4.I64 != 0);
                            out_.u.I = op.P4.I64;
                            break;
                        }
#if !OMIT_FLOATING_POINT
                    case OP.Real: // same as TK_FLOAT, out2-prerelease
                        {
                            // Opcode: Real * P2 * P4 *
                            //
                            // P4 is a pointer to a 64-bit floating point value. Write that value into register P2.
                            out_.Flags = MEM.Real;
                            Debug.Assert(!double.IsNaN(op.P4.Real));
                            out_.R = op.P4.Real;
                            break;
                        }
#endif
                    case OP.String8:// same as TK_STRING, out2-prerelease
                        {
                            // Opcode: String8 * P2 * P4 *
                            //
                            // P4 points to a nul terminated UTF-8 string. This opcode is transformed into an OP_String before it is executed for the first time.
                            Debug.Assert(op.P4.Z != null);
                            op.Opcode = OP.String;
                            op.P1 = op.P4.Z.Length;
#if !OMIT_UTF16
                            if (encoding != TEXTENCODE.UTF8)
                            {
                                rc = MemSetStr(out_, op.P4.Z, -1, TEXTENCODE.UTF8, C.DESTRUCTOR_STATIC);
                                if (rc == RC.TOOBIG) goto too_big;
                                if (ChangeEncoding(out_, encoding) != RC.OK) goto no_mem;
                                Debug.Assert(out_.Malloc == out_.Z);
                                Debug.Assert((out_.Flags & MEM.Dyn) != 0);
                                out_.Malloc = null;
                                out_.Flags |= MEM.Static;
                                out_.Flags &= ~MEM.Dyn;
                                if (op.P4Type == Vdbe.P4T.DYNAMIC)
                                    C._tagfree(ctx, ref op.P4.Z);
                                op.P4Type = P4T.DYNAMIC;
                                op.P4.Z = out_.Z;
                                op.P1 = out_.N;
                            }
#endif
                            if (op.P1 > ctx.Limits[(int)LIMIT.LENGTH])
                                goto too_big;
                            goto case OP.String;
                        }
                    // Fall through to the next case, OP_String
                    case OP.String: // out2-prerelease
                        {
                            // Opcode: String P1 P2 * P4 *
                            //
                            // The string value P4 of length P1 (bytes) is stored in register P2.
                            C._free(ref out_.Z_);
                            Debug.Assert(op.P4.Z != null);
                            out_.Flags = MEM.Str | MEM.Static | MEM.Term;
                            out_.Z = op.P4.Z;
                            out_.N = op.P1;
                            out_.Encode = encoding;
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }
                    case OP.Null: // out2-prerelease
                        {
                            // Opcode: Null P1 P2 P3 * *
                            //
                            // Write a NULL into registers P2.  If P3 greater than P2, then also write NULL into register P3 and every register in between P2 and P3.  If P3
                            // is less than P2 (typically P3 is zero) then only register P2 is set to NULL.
                            //
                            // If the P1 value is non-zero, then also set the MEM_Cleared flag so that NULL values will not compare equal even if SQLITE_NULLEQ is set on OP_Ne or OP_Eq.
                            int cnt = op.P3 - op.P2;
                            Debug.Assert(op.P3 <= Mems.length);
                            MEM nullFlag;
                            out_.Flags = nullFlag = (op.P1 != 0 ? (MEM.Null | MEM.Cleared) : MEM.Null);
                            while (cnt > 0)
                            {
                                out_++;
                                MemAboutToChange(this, out_);
                                MemRelease(out_);
                                out_.Flags = nullFlag;
                                cnt--;
                            }
                            break;
                        }
                    case OP.Blob:  // out2-prerelease
                        {
                            // Opcode: Blob P1 P2 * P4
                            //
                            // P4 points to a blob of data P1 bytes long.  Store this blob in register P2.
                            Debug.Assert(op.P1 <= CORE_MAX_LENGTH);
                            MemSetStr(out_, op.P4.Z, op.P1, 0, null);
                            out_.Encode = encoding;
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }
                    case OP.Variable: // out2-prerelease
                        {
                            // Opcode: Variable P1 P2 * P4 *
                            //
                            // Transfer the values of bound parameter P1 into register P2
                            //
                            // If the parameter is named, then its name appears in P4 and P3==1. The P4 value is used by sqlite3_bind_parameter_name().
                            Debug.Assert(op.P1 >= 0 && op.P1 <= Vars.length);
                            Debug.Assert(op.P4.Z == null || op.P4.Z == p.VarNames[op.P1 - 1]);
                            Mem var = Vars[op.P1 - 1]; // Value being transferred
                            if (MemTooBig(var))
                                goto too_big;
                            MemShallowCopy(out_, var, MEM.Static);
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }
                    // Opcode: Move P1 P2 P3 * *
                    //
                    // Move the values in register P1..P1+P3 over into registers P2..P2+P3.  Registers P1..P1+P3 are
                    // left holding a NULL.  It is an error for register ranges P1..P1+P3 and P2..P2+P3 to overlap.
                    case OP.Move:
                        {
                            int n = op.P3; // Number of registers left to copy
                            int p1 = op.P1; // Register to copy from
                            int p2 = op.P2; // Register to copy to
                            Debug.Assert(n > 0 && p1 > 0 && p2 > 0);
                            Debug.Assert(p1 + n <= p2 || p2 + n <= p1);

                            in1 = mems[op.P1];
                            out_ = mems[op.P2];
                            while (n-- != 0)
                            {
                                in1 = mems[p1 + op.P3 - n - 1];
                                out_ = mems[p2];
                                //Debug.Assert(out_ <= mems[Mems.length]);
                                //Debug.Assert(in1 <= mems[Mems.length]);
                                Debug.Assert(E.MemIsValid(in1));
                                MemAboutToChange(this, out_);
                                //byte[] malloc = out_.Malloc; // Holding variable for allocated memory
                                //out_.Malloc = null;
                                MemMove(out_, in1);
#if DEBUG
                                //if (out_.ScopyFrom >= mems[p1] && out_.ScopyFrom < mems[p1 + op.P3])
                                //    out_.ScopyFrom += p1 - op.P2;
#endif
                                //in1.Malloc = malloc;
                                REGISTER_TRACE(p2++, out_);
                            }
                            break;
                        }
                    case OP.Copy:
                        {
                            // Opcode: Copy P1 P2 P3 * *
                            //
                            // Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
                            //
                            // This instruction makes a deep copy of the value.  A duplicate is made of any string or blob constant.  See also OP_SCopy.
                            int n = op.P3;
                            in1 = mems[op.P1];
                            out_ = mems[op.P2];
                            Debug.Assert(out_ != in1);
                            int x = 0; // C#
                            while (true)
                            {
                                in1 = mems[op.P1 + x];
                                out_ = mems[op.P2 + x];
                                MemShallowCopy(out_, in1, MEM.Ephem);
                                Deephemeralize(out_);
#if DEBUG
                                out_.ScopyFrom = null;
#endif
                                REGISTER_TRACE(op.P2 + op.P3 - n, out_);
                                if ((n--) == 0) break;
                                x++; // C#
                            }
                            break;
                        }
                    case OP.SCopy:  // in1, out2
                        {
                            // Opcode: SCopy P1 P2 * * *
                            //
                            // Make a shallow copy of register P1 into register P2.
                            //
                            // This instruction makes a shallow copy of the value.  If the value is a string or blob, then the copy is only a pointer to the
                            // original and hence if the original changes so will the copy. Worse, if the original is deallocated, the copy becomes invalid.
                            // Thus the program must guarantee that the original will not change during the lifetime of the copy.  Use OP_Copy to make a complete copy.
                            in1 = mems[op.P1];
                            out_ = mems[op.P2];
                            Debug.Assert(out_ != in1);
                            MemShallowCopy(out_, in1, MEM.Ephem);
#if DEBUG
                            if (out_.ScopyFrom == null) out_.ScopyFrom = in1;
#endif
                            REGISTER_TRACE(op.P2, out_);
                            break;
                        }
                    case OP.ResultRow:
                        {
                            // Opcode: ResultRow P1 P2 * * *
                            //
                            // The registers P1 through P1+P2-1 contain a single row of results. This opcode causes the sqlite3_step() call to terminate
                            // with an SQLITE_ROW return code and it sets up the sqlite3_stmt structure to provide access to the top P1 values as the result row.
                            Debug.Assert(ResColumns == op.P2);
                            Debug.Assert(op.P1 > 0);
                            Debug.Assert(op.P1 + op.P2 <= Mems.length + 1);

                            // If this statement has violated immediate foreign key constraints, do not return the number of rows modified. And do not RELEASE the statement
                            // transaction. It needs to be rolled back.
                            if ((rc = CheckFk(false)) != RC.OK)
                            {
                                Debug.Assert((ctx.Flags & Context.FLAG.CountRows) != 0);
                                Debug.Assert(UsesStmtJournal);
                                break;
                            }

                            // If the SQLITE_CountRows flag is set in sqlite3.flags mask, then DML statements invoke this opcode to return the number of rows 
                            // modified to the user. This is the only way that a VM that opens a statement transaction may invoke this opcode.
                            //
                            // In case this is such a statement, close any statement transaction opened by this VM before returning control to the user. This is to
                            // ensure that statement-transactions are always nested, not overlapping. If the open statement-transaction is not closed here, then the user
                            // may step another VM that opens its own statement transaction. This may lead to overlapping statement transactions.
                            //
                            // The statement transaction is never a top-level transaction.  Hence the RELEASE call below can never fail.
                            Debug.Assert(StatementID == 0 || (ctx.Flags & Context.FLAG.CountRows) != 0);
                            rc = CloseStatement(IPager.SAVEPOINT.RELEASE);
                            if (C._NEVER(rc != RC.OK))
                                break;

                            // Invalidate all ephemeral cursor row caches
                            CacheCtr = (CacheCtr + 2) | 1;

                            // Make sure the results of the current row are \000 terminated and have an assigned type.  The results are de-ephemeralized as a side effect.
                            //Mem[] mems2 = ResultSet = mems[op.P1];
                            ResultSet = new Mem[op.P2];
                            for (int i = 0; i < op.P2; i++)
                            {
                                ResultSet[i] = mems[op.P1 + i];
                                Debug.Assert(E.MemIsValid(ResultSet[i]));
                                Deephemeralize(ResultSet[i]);
                                Debug.Assert((ResultSet[i].Flags & MEM.Ephem) == 0 || (ResultSet[i].Flags & (MEM.Str | MEM.Blob)) == 0);
                                MemNulTerminate(ResultSet[i]);
                                MemStoreType(ResultSet[i]);
                                REGISTER_TRACE(op.P1 + i, ResultSet[i]);
                            }
                            if (ctx.MallocFailed) goto no_mem;

                            // Return SQLITE_ROW
                            PC = pc + 1;
                            rc = RC.ROW;
                            goto vdbe_return;
                        }
                    case OP.Concat: // same as TK_CONCAT, in1, in2, out3
                        {
                            // Opcode: Concat P1 P2 P3 * *
                            //
                            // Add the text in register P1 onto the end of the text in register P2 and store the result in register P3.
                            // If either the P1 or P2 text are NULL then store NULL in P3.
                            //
                            //   P3 = P2 || P1
                            //
                            // It is illegal for P1 and P3 to be the same register. Sometimes, if P3 is the same register as P2, the implementation is able to avoid a memcpy().
                            in1 = mems[op.P1];
                            in2 = mems[op.P2];
                            out_ = mems[op.P3];
                            Debug.Assert(in1 != out_);
                            if (((in1.Flags | in2.Flags) & MEM.Null) != 0)
                            {
                                MemSetNull(out_);
                                break;
                            }
                            if (E.ExpandBlob(in1) != 0 || E.ExpandBlob(in2) != 0) goto no_mem;
                            if (((in1.Flags & (MEM.Str | MEM.Blob)) == 0) && MemStringify(in1, encoding) != 0) goto no_mem; // Stringify(in1, encoding);
                            if (((in2.Flags & (MEM.Str | MEM.Blob)) == 0) && MemStringify(in2, encoding) != 0) goto no_mem; // Stringify(in2, encoding);
                            long bytes = in1.N + in2.N;
                            if (bytes > ctx.Limits[(int)LIMIT.LENGTH])
                                goto too_big;
                            E.MemSetTypeFlag(out_, MEM.Str);
                            //:if (MemGrow(out_, (int)bytes + 2, out_ == in2))
                            //:    goto no_mem;
                            //:if (out_ != in2)
                            //:    _memcpy(out_.Z, in2.Z, in2.N);
                            //:_memcpy(out_.Z[in2.N], in1.Z, in1.N);
                            if (in2.Z != null && in2.Z.Length >= in2.N)
                                if (in1.Z != null)
                                    out_.Z = in2.Z.Substring(0, in2.N) + (in1.N < in1.Z.Length ? in1.Z.Substring(0, in1.N) : in1.Z);
                                else
                                {
                                    if ((in1.Flags & MEM.Blob) == 0) // String as Blob
                                    {
                                        StringBuilder sb = new StringBuilder(in1.N);
                                        for (int i = 0; i < in1.N; i++)
                                            sb.Append((byte)in1.Z_[i]);
                                        out_.Z = in2.Z.Substring(0, in2.N) + sb.ToString();
                                    }
                                    else // UTF-8 Blob
                                        out_.Z = in2.Z.Substring(0, in2.N) + Encoding.UTF8.GetString(in1.Z_, 0, in1.Z_.Length);
                                }
                            else
                            {
                                out_.Z_ = C._alloc(in1.N + in2.N);
                                Buffer.BlockCopy(in2.Z_, 0, out_.Z_, 0, in2.N);
                                if (in1.Z_ != null)
                                    Buffer.BlockCopy(in1.Z_, 0, out_.Z_, in2.N, in1.N);
                                else
                                    for (int i = 0; i < in1.N; i++)
                                        out_.Z_[in2.N + i] = (byte)in1.Z[i];
                            }
                            //out_.Z[byte] = 0;
                            //out_.Z[byte + 1] = 0;
                            out_.Flags |= MEM.Term;
                            out_.N = (int)bytes;
                            out_.Encode = encoding;
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }
                    case OP.Add: // same as TK_PLUS, in1, in2, ref3
                    case OP.Subtract: // same as TK_MINUS, in1, in2, ref3
                    case OP.Multiply: // same as TK_STAR, in1, in2, ref3
                    case OP.Divide: // same as TK_SLASH, in1, in2, ref3
                    case OP.Remainder: // same as TK_REM, in1, in2, ref3
                        {
                            // Opcode: Add P1 P2 P3 * *
                            //
                            // Add the value in register P1 to the value in register P2 and store the result in register P3.
                            // If either input is NULL, the result is NULL.
                            //
                            // Opcode: Multiply P1 P2 P3 * *
                            //
                            //
                            // Multiply the value in register P1 by the value in register P2 and store the result in register P3.
                            // If either input is NULL, the result is NULL.
                            //
                            // Opcode: Subtract P1 P2 P3 * *
                            //
                            // Subtract the value in register P1 from the value in register P2 and store the result in register P3.
                            // If either input is NULL, the result is NULL.
                            //
                            // Opcode: Divide P1 P2 P3 * *
                            //
                            // Divide the value in register P1 by the value in register P2 and store the result in register P3 (P3=P2/P1). If the value in 
                            // register P1 is zero, then the result is NULL. If either input is NULL, the result is NULL.
                            //
                            // Opcode: Remainder P1 P2 P3 * *
                            //
                            // Compute the remainder after integer division of the value in register P1 by the value in register P2 and store the result in P3.
                            // If the value in register P2 is zero the result is NULL. If either operand is NULL, the result is NULL.
                            bool intint; // Started out as two integer operands
                            long iA; // Integer value of left operand
                            long iB = 0; // Integer value of right operand
                            double rA; // Real value of left operand
                            double rB; // Real value of right operand
                            in1 = mems[op.P1];
                            ApplyNumericAffinity(in1);
                            in2 = mems[op.P2];
                            ApplyNumericAffinity(in2);
                            out_ = mems[op.P3];
                            MEM flags = (in1.Flags | in2.Flags); // Combined MEM_* flags from both inputs
                            if ((flags & MEM.Null) != 0) goto arithmetic_result_is_null;
                            bool fp_math = false;
                            if ((in1.Flags & in2.Flags & MEM.Int) == MEM.Int)
                            {
                                iA = in1.u.I;
                                iB = in2.u.I;
                                intint = true;
                                switch (op.Opcode)
                                {
                                    case OP.Add: if (MathEx.Add(ref iB, iA)) fp_math = true; break; // goto fp_math
                                    case OP.Subtract: if (MathEx.Sub(ref iB, iA)) fp_math = true; break; // goto fp_math
                                    case OP.Multiply: if (MathEx.Mul(ref iB, iA)) fp_math = true; break; // goto fp_math
                                    case OP.Divide:
                                        {
                                            if (iA == 0) goto arithmetic_result_is_null;
                                            if (iA == -1 && iB == long.MinValue) { fp_math = true; break; } // goto fp_math
                                            iB /= iA;
                                            break;
                                        }
                                    default:
                                        {
                                            if (iA == 0) goto arithmetic_result_is_null;
                                            if (iA == -1) iA = 1;
                                            iB %= iA;
                                            break;
                                        }
                                }
                            }
                            if (!fp_math)
                            {
                                out_.u.I = iB;
                                E.MemSetTypeFlag(out_, MEM.Int);
                            }
                            else
                            {
                                //fp_math:
                                rA = Vdbe.RealValue(in1);
                                rB = Vdbe.RealValue(in2);
                                switch (op.Opcode)
                                {
                                    case OP.Add: rB += rA; break;
                                    case OP.Subtract: rB -= rA; break;
                                    case OP.Multiply: rB *= rA; break;
                                    case OP.Divide:
                                        {
                                            // (double)0 In case of SQLITE_OMIT_FLOATING_POINT...
                                            if (rA == (double)0) goto arithmetic_result_is_null;
                                            rB /= rA;
                                            break;
                                        }
                                    default:
                                        {
                                            iA = (long)rA;
                                            iB = (long)rB;
                                            if (iA == 0) goto arithmetic_result_is_null;
                                            if (iA == -1) iA = 1;
                                            rB = (double)(iB % iA);
                                            break;
                                        }
                                }
#if OMIT_FLOATING_POINT
                                out_->u.I = rB;
                                MemSetTypeFlag(out_, MEM.Int);
#else
                                if (double.IsNaN(rB))
                                    goto arithmetic_result_is_null;
                                out_.R = rB;
                                E.MemSetTypeFlag(out_, MEM.Real);
                                if ((flags & MEM.Real) == 0)
                                    IntegerAffinity(out_);
#endif
                            }
                            break;
                        arithmetic_result_is_null:
                            MemSetNull(out_);
                            break;
                        }
                    case OP.CollSeq:
                        {
                            // Opcode: CollSeq P1 * * P4
                            //
                            // P4 is a pointer to a CollSeq struct. If the next call to a user function or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
                            // be returned. This is used by the built-in min(), max() and nullif() functions.
                            //
                            // If P1 is not zero, then it is a register that a subsequent min() or max() aggregate will set to 1 if the current row is not the minimum or
                            // maximum.  The P1 register is initialized to 0 by this instruction.
                            //
                            // The interface used by the implementation of the aforementioned functions to retrieve the collation sequence set by this opcode is not available
                            // publicly, only to user functions defined in func.c.
                            Debug.Assert(op.P4Type == Vdbe.P4T.COLLSEQ);
                            if (op.P1 != 0)
                                MemSetInt64(mems[op.P1], 0);
                            break;
                        }
                    case OP.Function:
                        {
                            // Opcode: Function P1 P2 P3 P4 P5
                            //
                            // Invoke a user function (P4 is a pointer to a Function structure that defines the function) with P5 arguments taken from register P2 and
                            // successors.  The result of the function is stored in register P3. Register P3 must not be one of the function inputs.
                            //
                            // P1 is a 32-bit bitmask indicating whether or not each argument to the function was determined to be constant at compile time. If the first
                            // argument was constant then bit 0 of P1 is set. This is used to determine whether meta data associated with a user function argument using the
                            // sqlite3_set_auxdata() API may be safely retained until the next invocation of this opcode.
                            //
                            // See also: AggStep and AggFinal
                            int n = op.P5;

                            Mem[] vals = Args;
                            Debug.Assert(vals != null || n == 0);
                            Debug.Assert(op.P3 > 0 && op.P3 <= Mems.length);
                            out_ = mems[op.P3];
                            MemAboutToChange(this, out_);

                            Debug.Assert(n == 0 || (op.P2 > 0 && op.P2 + n <= Mems.length + 1));
                            Debug.Assert(op.P3 < op.P2 || op.P3 >= op.P2 + n);
                            Mem arg;
                            for (int i = 0; i < n; i++)
                            {
                                arg = mems[op.P2 + i];
                                Debug.Assert(E.MemIsValid(arg));
                                vals[i] = arg;
                                Deephemeralize(arg);
                                MemStoreType(arg);
                                REGISTER_TRACE(op.P2 + i, arg);
                            }

                            Debug.Assert(op.P4Type == Vdbe.P4T.FUNCDEF || op.P4Type == Vdbe.P4T.VDBEFUNC);
                            FuncContext fctx = new FuncContext();
                            if (op.P4Type == Vdbe.P4T.FUNCDEF)
                            {
                                fctx.Func = op.P4.Func;
                                fctx.VdbeFunc = null;
                            }
                            else
                            {
                                fctx.VdbeFunc = (VdbeFunc)op.P4.VdbeFunc;
                                fctx.Func = fctx.VdbeFunc.Func;
                            }

                            fctx.S.Flags = MEM.Null;
                            fctx.S.Ctx = ctx;
                            fctx.S.Del = null;
                            //: fctx.S.Malloc = null;

                            // The output cell may already have a buffer allocated. Move the pointer to fctx.s so in case the user-function can use
                            // the already allocated buffer instead of allocating a new one.
                            MemMove(fctx.S, out_);
                            E.MemSetTypeFlag(fctx.S, MEM.Null);

                            fctx.IsError = (RC)0;
                            if ((fctx.Func.Flags & FUNC.NEEDCOLL) != 0)
                            {
                                //Debug.Assert(op > ops);
                                Debug.Assert(ops[pc - 1].P4Type == Vdbe.P4T.COLLSEQ);
                                Debug.Assert(ops[pc - 1].Opcode == OP.CollSeq);
                                fctx.Coll = Ops[pc - 1].P4.Coll;
                            }
                            ctx.LastRowID = lastRowid;
                            fctx.Func.Func(fctx, n, vals); // IMP: R-24505-23230
                            lastRowid = ctx.LastRowID;

                            // If any auxiliary data functions have been called by this user function, immediately call the destructor for any non-static values.
                            if (fctx.VdbeFunc != null)
                            {
                                DeleteAuxData(fctx.VdbeFunc, op.P1);
                                op.P4.VdbeFunc = fctx.VdbeFunc;
                                op.P4Type = Vdbe.P4T.VDBEFUNC;
                            }

                            if (ctx.MallocFailed)
                            {
                                // Even though a malloc() has failed, the implementation of the user function may have called an sqlite3_result_XXX() function
                                // to return a value. The following call releases any resources associated with such a value.
                                MemRelease(fctx.S);
                                goto no_mem;
                            }

                            // If the function returned an error, throw an exception
                            if (fctx.IsError != 0)
                            {
                                C._setstring(ref ErrMsg, ctx, Vdbe.Value_Text(fctx.S));
                                rc = fctx.IsError;
                            }

                            // Copy the result of the function into register P3
                            ChangeEncoding(fctx.S, encoding);
                            MemMove(out_, fctx.S);
                            if (MemTooBig(out_))
                                goto too_big;
#if false
                            // The app-defined function has done something that as caused this statement to expire.  (Perhaps the function called sqlite3_exec()
                            // with a CREATE TABLE statement.)
                            if (Expired) rc = RC.ABORT;
#endif
                            REGISTER_TRACE(op.P3, out_);
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }


                    case OP.BitAnd: // same as TK_BITAND, in1, in2, ref3
                    case OP.BitOr: // same as TK_BITOR, in1, in2, ref3
                    case OP.ShiftLeft: // same as TK_LSHIFT, in1, in2, ref3
                    case OP.ShiftRight: // same as TK_RSHIFT, in1, in2, ref3
                        {
                            // Opcode: BitAnd P1 P2 P3 * *
                            //
                            // Take the bit-wise AND of the values in register P1 and P2 and store the result in register P3.
                            // If either input is NULL, the result is NULL.
                            //
                            // Opcode: BitOr P1 P2 P3 * *
                            //
                            // Take the bit-wise OR of the values in register P1 and P2 and store the result in register P3.
                            // If either input is NULL, the result is NULL.
                            //
                            // Opcode: ShiftLeft P1 P2 P3 * *
                            //
                            // Shift the integer value in register P2 to the left by the number of bits specified by the integer in register P1.
                            // Store the result in register P3. If either input is NULL, the result is NULL.
                            //
                            // Opcode: ShiftRight P1 P2 P3 * *
                            //
                            // Shift the integer value in register P2 to the right by the number of bits specified by the integer in register P1.
                            // Store the result in register P3. If either input is NULL, the result is NULL.
                            in1 = mems[op.P1];
                            in2 = mems[op.P2];
                            out_ = mems[op.P3];
                            if (((in1.Flags | in2.Flags) & MEM.Null) != 0)
                            {
                                MemSetNull(out_);
                                break;
                            }
                            long iA = IntValue(in2);
                            long iB = IntValue(in1);
                            OP op2 = op.Opcode;
                            if (op2 == OP.BitAnd)
                                iA &= iB;
                            else if (op2 == OP.BitOr)
                                iA |= iB;
                            else if (iB != 0)
                            {
                                Debug.Assert(op2 == OP.ShiftRight || op2 == OP.ShiftLeft);

                                // If shifting by a negative amount, shift in the other direction
                                if (iB < 0)
                                {
                                    Debug.Assert(OP.ShiftRight == OP.ShiftLeft + 1);
                                    op2 = (OP)(2 * (int)OP.ShiftLeft + 1 - op2);
                                    iB = (iB > -64 ? -iB : 64);
                                }

                                if (iB >= 64)
                                    iA = (iA >= 0 || op2 == OP.ShiftLeft ? 0 : -1);
                                else
                                {
                                    ulong uA;
                                    if (op2 == OP.ShiftLeft)
                                        iA = iA << (int)iB; //: uA = (ulong)(iA << 0); //: memcpy(uA, iA, sizeof(uA));
                                    else
                                    {
                                        iA = iA >> (int)iB; //: uA = (ulong)(iA << 0); //: memcpy(uA, iA, sizeof(uA));
                                        // Sign-extend on a right shift of a negative number
                                        //:if (iA < 0) uA |= (((0xffffffff) << (byte)32) | 0xffffffff) << (byte)(64 - iB);
                                    }
                                    //: iA = (long)(uA << 0); //: memcpy(iA, uA, sizeof(iA));
                                }
                            }
                            out_.u.I = iA;
                            E.MemSetTypeFlag(out_, MEM.Int);
                            break;
                        }
                    case OP.AddImm: // in1
                        {
                            // Opcode: AddImm  P1 P2 * * *
                            //
                            // Add the constant P2 to the value in register P1. The result is always an integer.
                            //
                            // To force any register to be an integer, just add 0.
                            in1 = mems[op.P1];
                            MemAboutToChange(this, in1);
                            MemIntegerify(in1);
                            in1.u.I += op.P2;
                            break;
                        }
                    case OP.MustBeInt: // jump, in1
                        {
                            // Opcode: MustBeInt P1 P2 * * *
                            // 
                            // Force the value in register P1 to be an integer.  If the value in P1 is not an integer and cannot be converted into an integer
                            // without data loss, then jump immediately to P2, or if P2==0 raise an SQLITE_MISMATCH exception.
                            in1 = mems[op.P1];
                            ApplyAffinity(in1, AFF.NUMERIC, encoding);
                            if ((in1.Flags & MEM.Int) == 0)
                            {
                                if (op.P2 == 0)
                                {
                                    rc = RC.MISMATCH;
                                    goto abort_due_to_error;
                                }
                                else
                                    pc = op.P2 - 1;
                            }
                            else
                                E.MemSetTypeFlag(in1, MEM.Int);
                            break;
                        }
#if !OMIT_FLOATING_POINT
                    case OP.RealAffinity: // in1
                        {
                            // Opcode: RealAffinity P1 * * * *
                            //
                            // If register P1 holds an integer convert it to a real value.
                            //
                            // This opcode is used when extracting information from a column that has REAL affinity.  Such column values may still be stored as
                            // integers, for space efficiency, but after extraction we want them to have only a real value.
                            in1 = mems[op.P1];
                            if ((in1.Flags & MEM.Int) != 0)
                                MemRealify(in1);
                            break;
                        }
#endif
#if !OMIT_CAST
                    case OP.ToText: // same as TK_TO_TEXT, in1
                        {
                            // Opcode: ToText P1 * * * *
                            //
                            // Force the value in register P1 to be text. If the value is numeric, convert it to a string using the
                            // equivalent of printf().  Blob values are unchanged and are afterwards simply interpreted as text.
                            //
                            // A NULL value is not changed by this routine.  It remains NULL.
                            in1 = mems[op.P1];
                            MemAboutToChange(this, in1);
                            if ((in1.Flags & MEM.Null) != 0) break;
                            Debug.Assert(MEM.Str == (MEM)((int)MEM.Blob >> 3));
                            in1.Flags |= (MEM)((int)(in1.Flags & MEM.Blob) >> 3);
                            ApplyAffinity(in1, AFF.TEXT, encoding);
                            rc = E.ExpandBlob(in1);
                            Debug.Assert((in1.Flags & MEM.Str) != 0 || ctx.MallocFailed);
                            in1.Flags &= ~(MEM.Int | MEM.Real | MEM.Blob | MEM.Zero);
                            UPDATE_MAX_BLOBSIZE(in1);
                            break;
                        }
                    case OP.ToBlob: // same as TK_TO_BLOB, in1
                        {
                            // Opcode: ToBlob P1 * * * *
                            //
                            // Force the value in register P1 to be a BLOB. If the value is numeric, convert it to a string first.
                            // Strings are simply reinterpreted as blobs with no change to the underlying data.
                            //
                            // A NULL value is not changed by this routine.  It remains NULL.
                            in1 = mems[op.P1];
                            if ((in1.Flags & MEM.Null) != 0) break;
                            if ((in1.Flags & MEM.Blob) == 0)
                            {
                                ApplyAffinity(in1, AFF.TEXT, encoding);
                                Debug.Assert((in1.Flags & MEM.Str) != 0 || ctx.MallocFailed);
                                E.MemSetTypeFlag(in1, MEM.Blob);
                            }
                            else
                                in1.Flags &= ~(MEM.TypeMask & ~MEM.Blob);
                            UPDATE_MAX_BLOBSIZE(in1);
                            break;
                        }
                    case OP.ToNumeric: // same as TK_TO_NUMERIC, in1
                        {
                            // Opcode: ToNumeric P1 * * * *
                            //
                            // Force the value in register P1 to be numeric (either an integer or a floating-point number.)
                            // If the value is text or blob, try to convert it to an using the equivalent of atoi() or atof() and store 0 if no such conversion is possible.
                            //
                            // A NULL value is not changed by this routine.  It remains NULL.
                            in1 = mems[op.P1];
                            MemNumerify(in1);
                            break;
                        }
#endif
                    case OP.ToInt:// same as TK_TO_INT, in1
                        {
                            // Opcode: ToInt P1 * * * *
                            //
                            // Force the value in register P1 to be an integer.  If The value is currently a real number, drop its fractional part.
                            // If the value is text or blob, try to convert it to an integer using the equivalent of atoi() and store 0 if no such conversion is possible.
                            //
                            // A NULL value is not changed by this routine.  It remains NULL.
                            in1 = mems[op.P1];
                            if ((in1.Flags & MEM.Null) == 0)
                                MemIntegerify(in1);
                            break;
                        }
#if !OMIT_CAST && !OMIT_FLOATING_POINT
                    case OP.ToReal: // same as TK_TO_REAL, in1
                        {
                            // Opcode: ToReal P1 * * * *
                            //
                            // Force the value in register P1 to be a floating point number. If The value is currently an integer, convert it.
                            // If the value is text or blob, try to convert it to an integer using the equivalent of atoi() and store 0.0 if no such conversion is possible.
                            //
                            // A NULL value is not changed by this routine.  It remains NULL.
                            in1 = mems[op.P1];
                            MemAboutToChange(this, in1);
                            if ((in1.Flags & MEM.Null) == 0)
                                MemRealify(in1);
                            break;
                        }
#endif
                    case OP.Eq: // same as TK_EQ, jump, in1, in3
                    case OP.Ne: // same as TK_NE, jump, in1, in3
                    case OP.Lt: // same as TK_LT, jump, in1, in3
                    case OP.Le: // same as TK_LE, jump, in1, in3
                    case OP.Gt: // same as TK_GT, jump, in1, in3
                    case OP.Ge: // same as TK_GE, jump, in1, in3
                        {
                            // Opcode: Lt P1 P2 P3 P4 P5
                            //
                            // Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then jump to address P2.  
                            //
                            // If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
                            // bit is clear then fall through if either operand is NULL.
                            //
                            // The SQLITE_AFF_MASK portion of P5 must be an affinity character - SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
                            // to coerce both inputs according to this affinity before the comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
                            // affinity is used. Note that the affinity conversions are stored back into the input registers P1 and P3.  So this opcode can cause
                            // persistent changes to registers P1 and P3.
                            //
                            // Once any conversions have taken place, and neither value is NULL, the values are compared. If both values are blobs then memcmp() is
                            // used to determine the results of the comparison.  If both values are text, then the appropriate collating function specified in
                            // P4 is  used to do the comparison.  If P4 is not specified then memcmp() is used to compare text string.  If both values are
                            // numeric, then a numeric comparison is used. If the two values are of different types, then numbers are considered less than
                            // strings and strings are considered less than blobs.
                            //
                            // If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead, store a boolean result (either 0, or 1, or NULL) in register P2.
                            //
                            // If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered equal to one another, provided that they do not have their MEM_Cleared
                            // bit set.
                            //
                            // Opcode: Ne P1 P2 P3 P4 P5
                            //
                            // This works just like the Lt opcode except that the jump is taken if the operands in registers P1 and P3 are not equal.  See the Lt opcode for
                            // additional information.
                            //
                            // If SQLITE_NULLEQ is set in P5 then the result of comparison is always either true or false and is never NULL.  If both operands are NULL then the result
                            // of comparison is false.  If either operand is NULL then the result is true. If neither operand is NULL the result is the same as it would be if
                            // the SQLITE_NULLEQ flag were omitted from P5.
                            //
                            // Opcode: Eq P1 P2 P3 P4 P5
                            //
                            // This works just like the Lt opcode except that the jump is taken if the operands in registers P1 and P3 are equal.
                            // See the Lt opcode for additional information.
                            //
                            // If SQLITE_NULLEQ is set in P5 then the result of comparison is always either true or false and is never NULL.  If both operands are NULL then the result
                            // of comparison is true.  If either operand is NULL then the result is false. If neither operand is NULL the result is the same as it would be if
                            // the SQLITE_NULLEQ flag were omitted from P5.
                            //
                            // Opcode: Le P1 P2 P3 P4 P5
                            //
                            // This works just like the Lt opcode except that the jump is taken if the content of register P3 is less than or equal to the content of
                            // register P1.  See the Lt opcode for additional information.
                            //
                            // Opcode: Gt P1 P2 P3 P4 P5
                            //
                            // This works just like the Lt opcode except that the jump is taken if the content of register P3 is greater than the content of
                            // register P1.  See the Lt opcode for additional information.
                            //
                            // Opcode: Ge P1 P2 P3 P4 P5
                            //
                            // This works just like the Lt opcode except that the jump is taken if the content of register P3 is greater than or equal to the content of
                            // register P1.  See the Lt opcode for additional information.
                            in1 = mems[op.P1];
                            in3 = mems[op.P3];
                            MEM flags1 = in1.Flags; // Copy of initial value of in1->flags
                            MEM flags3 = in3.Flags; // Copy of initial value of in3->flags
                            int res = 0; // Result of the comparison of in1 against in3
                            if (((flags1 | flags3) & MEM.Null) != 0)
                            {
                                // One or both operands are NULL
                                if (((AFF)op.P5 & AFF.BIT_NULLEQ) != 0)
                                {
                                    // If SQLITE_NULLEQ is set (which will only happen if the operator is OP_Eq or OP_Ne) then take the jump or not depending on whether or not both operands are null.
                                    Debug.Assert(op.Opcode == OP.Eq || op.Opcode == OP.Ne);
                                    Debug.Assert((flags1 & MEM.Cleared) == 0);
                                    res = ((flags1 & flags3 & MEM.Null) == 0 ? 1 : 0); // Results are equal/not equal
                                }
                                else
                                {
                                    // SQLITE_NULLEQ is clear and at least one operand is NULL, then the result is always NULL. The jump is taken if the SQLITE_JUMPIFNULL bit is set.
                                    if (((AFF)op.P5 & AFF.BIT_STOREP2) != 0)
                                    {
                                        out_ = mems[op.P2];
                                        E.MemSetTypeFlag(out_, MEM.Null);
                                        REGISTER_TRACE(this, op.P2, out_);
                                    }
                                    else if (((AFF)op.P5 & AFF.BIT_JUMPIFNULL) != 0)
                                        pc = op.P2 - 1;
                                    break;
                                }
                            }
                            else
                            {
                                // Neither operand is NULL.  Do a comparison.
                                AFF affinity = ((AFF)op.P5 & AFF.MASK); // Affinity to use for comparison
                                if (affinity != 0)
                                {
                                    ApplyAffinity(in1, affinity, encoding);
                                    ApplyAffinity(in3, affinity, encoding);
                                    if (ctx.MallocFailed) goto no_mem;
                                }

                                Debug.Assert(op.P4Type == Vdbe.P4T.COLLSEQ || op.P4.Coll == null);
                                E.ExpandBlob(in1);
                                E.ExpandBlob(in3);
                                res = MemCompare(in3, in1, op.P4.Coll);
                            }
                            switch (op.Opcode)
                            {
                                case OP.Eq: res = (res == 0 ? 1 : 0); break;
                                case OP.Ne: res = (res != 0 ? 1 : 0); break;
                                case OP.Lt: res = (res < 0 ? 1 : 0); break;
                                case OP.Le: res = (res <= 0 ? 1 : 0); break;
                                case OP.Gt: res = (res > 0 ? 1 : 0); break;
                                default: res = (res >= 0 ? 1 : 0); break;
                            }

                            if (((AFF)op.P5 & AFF.BIT_STOREP2) != 0)
                            {
                                out_ = mems[op.P2];
                                MemAboutToChange(this, out_);
                                E.MemSetTypeFlag(out_, MEM.Int);
                                out_.u.I = res;
                                REGISTER_TRACE(p, op.P2, out_);
                            }
                            else if (res != 0)
                                pc = op.P2 - 1;

                            // Undo any changes made by applyAffinity() to the input registers.
                            in1.Flags = (in1.Flags & ~MEM.TypeMask) | (flags1 & MEM.TypeMask);
                            in3.Flags = (in3.Flags & ~MEM.TypeMask) | (flags3 & MEM.TypeMask);
                            break;
                        }
                    case OP.Permutation:
                        {
                            // Opcode: Permutation * * * P4 *
                            //
                            // Set the permutation used by the OP_Compare operator to be the array of integers in P4.
                            //
                            // The permutation is only valid until the next OP_Compare that has the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
                            // occur immediately prior to the OP_Compare.
                            Debug.Assert(op.P4Type == Vdbe.P4T.INTARRAY);
                            Debug.Assert(op.P4.Is != null);
                            permutes = op.P4.Is;
                            break;
                        }
                    case OP.Compare:
                        {
                            // Opcode: Compare P1 P2 P3 P4 P5
                            //
                            // Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
                            // the comparison for use by the next OP_Jump instruct.
                            //
                            // If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is determined by the most recent OP_Permutation operator.  If the
                            // OPFLAG_PERMUTE bit is clear, then register are compared in sequential order.
                            //
                            // P4 is a KeyInfo structure that defines collating sequences and sort orders for the comparison.  The permutation applies to registers
                            // only.  The KeyInfo elements are used sequentially.
                            //
                            // The comparison is a sort comparison, so NULLs compare equal, NULLs are less than numbers, numbers are less than strings,
                            // and strings are less than blobs.
                            if (((OPFLAG)op.P5 & OPFLAG.PERMUTE) == 0) permutes = null;
                            int n = op.P3;
                            KeyInfo keyInfo = op.P4.KeyInfo;
                            Debug.Assert(n > 0);
                            Debug.Assert(keyInfo != null);
                            int p1 = op.P1;
                            int p2 = op.P2;
#if DEBUG
                            if (permutes != null)
                            {
                                int k, max = 0;
                                for (k = 0; k < n; k++) if (permutes[k] > max) max = permutes[k];
                                Debug.Assert(p1 > 0 && p1 + max <= Mems.length + 1);
                                Debug.Assert(p2 > 0 && p2 + max <= Mems.length + 1);
                            }
                            else
                            {
                                Debug.Assert(p1 > 0 && p1 + n <= Mems.length + 1);
                                Debug.Assert(p2 > 0 && p2 + n <= Mems.length + 1);
                            }
#endif
                            for (int i = 0; i < n; i++)
                            {
                                int idx = (permutes != null ? permutes[i] : i);
                                Debug.Assert(E.MemIsValid(mems[p1 + idx]));
                                Debug.Assert(E.MemIsValid(mems[p2 + idx]));
                                REGISTER_TRACE(p1 + idx, mems[p1 + idx]);
                                REGISTER_TRACE(p2 + idx, mems[p2 + idx]);
                                Debug.Assert(i < keyInfo.Fields);
                                CollSeq coll = keyInfo.Colls[i]; // Collating sequence to use on this term
                                SO rev = keyInfo.SortOrders[i]; // True for DESCENDING sort order
                                compare = sqlite3MemCompare(mems[p1 + idx], mems[p2 + idx], coll);
                                if (compare != 0)
                                {
                                    if (rev != 0)
                                        compare = -compare;
                                    break;
                                }
                            }
                            permutes = null;
                            break;
                        }
                    case OP.Jump: // jump
                        {
                            // Opcode: Jump P1 P2 P3 * *
                            //
                            // Jump to the instruction at address P1, P2, or P3 depending on whether in the most recent OP_Compare instruction the P1 vector was less than
                            // equal to, or greater than the P2 vector, respectively.
                            if (compare < 0) pc = op.P1 - 1;
                            else if (compare == 0) pc = op.P2 - 1;
                            else pc = op.P3 - 1;
                            break;
                        }
                    case OP.And: // same as TK_AND, in1, in2, ref3
                    case OP.Or: // same as TK_OR, in1, in2, ref3
                        {
                            // Opcode: And P1 P2 P3 * *
                            //
                            // Take the logical AND of the values in registers P1 and P2 and write the result into register P3.
                            //
                            // If either P1 or P2 is 0 (false) then the result is 0 even if the other input is NULL.  A NULL and true or two NULLs give
                            // a NULL output.
                            //
                            // Opcode: Or P1 P2 P3 * *
                            //
                            // Take the logical OR of the values in register P1 and P2 and store the answer in register P3.
                            //
                            // If either P1 or P2 is nonzero (true) then the result is 1 (true) even if the other input is NULL.  A NULL and false or two NULLs
                            // give a NULL output.
                            in1 = mems[op.P1];
                            int v1 = ((in1.Flags & MEM.Null) != 0 ? 2 : (IntValue(in1) != 0 ? 1 : 0)); // Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL
                            in2 = mems[op.P2];
                            int v2 = ((in2.Flags & MEM.Null) != 0 ? 2 : (IntValue(in2) != 0 ? 1 : 0)); // Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL
                            if (op.Opcode == OP.And)
                            {
                                byte[] and_logic = new byte[] { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
                                v1 = and_logic[v1 * 3 + v2];
                            }
                            else
                            {
                                byte[] or_logic = new byte[] { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
                                v1 = or_logic[v1 * 3 + v2];
                            }
                            out_ = mems[op.P3];
                            if (v1 == 2)
                                E.MemSetTypeFlag(out_, MEM.Null);
                            else
                            {
                                out_.u.I = v1;
                                E.MemSetTypeFlag(out_, MEM.Int);
                            }
                            break;
                        }
                    case OP.Not: // same as TK_NOT, in1
                        {
                            // Opcode: Not P1 P2 * * *
                            //
                            // Interpret the value in register P1 as a boolean value.  Store the boolean complement in register P2.  If the value in register P1 is
                            // NULL, then a NULL is stored in P2.
                            in1 = mems[op.P1];
                            out_ = mems[op.P2];
                            if ((in1.Flags & MEM.Null) != 0)
                                MemSetNull(out_);
                            else
                                MemSetInt64(out_, IntValue(in1) == 0 ? 1 : 0);
                            break;
                        }
                    case OP.BitNot: // same as TK_BITNOT, in1
                        {
                            // Opcode: BitNot P1 P2 * * *
                            //
                            // Interpret the content of register P1 as an integer.  Store the ones-complement of the P1 value into register P2.  If P1 holds
                            // a NULL then store a NULL in P2.
                            in1 = mems[op.P1];
                            out_ = mems[op.P2];
                            if ((in1.Flags & MEM.Null) != 0)
                                MemSetNull(out_);
                            else
                                MemSetInt64(out_, ~IntValue(in1));
                            break;
                        }
                    case OP.If:
                    case OP.IfNot:
                        {
                            // Opcode: If P1 P2 P3 * *
                            //
                            // Jump to P2 if the value in register P1 is true.  The value is considered true if it is numeric and non-zero.  If the value
                            // in P1 is NULL then take the jump if P3 is non-zero.
                            //
                            // Opcode: IfNot P1 P2 P3 * *
                            //
                            // Jump to P2 if the value in register P1 is False.  The value is considered false if it has a numeric value of zero.  If the value
                            // in P1 is NULL then take the jump if P3 is zero.
                            int c;
                            in1 = mems[op.P1];
                            if ((in1.Flags & MEM.Null) != 0)
                                c = op.P3;
                            else
                            {
#if OMIT_FLOATING_POINT
                                c = (IntValue(in1) != 0 ? 1 : 0);
#else
                                c = (RealValue(in1) != 0.0 ? 1 : 0);
#endif
                                if (op.Opcode == OP.IfNot) c = !c;
                            }
                            if (c != 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.IsNull: // same as TK_ISNULL, jump, in1
                        {
                            // Opcode: IsNull P1 P2 * * *
                            //
                            // Jump to P2 if the value in register P1 is NULL.
                            in1 = mems[op.P1];
                            if ((in1.Flags & MEM.Null) != 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.NotNull: // same as TK_NOTNULL, jump, in1
                        {
                            // Opcode: NotNull P1 P2 * * *
                            //
                            // Jump to P2 if the value in register P1 is not NULL.  
                            in1 = mems[op.P1];
                            if ((in1.Flags & MEM.Null) == 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.Column:
                        {
                            // Opcode: Column P1 P2 P3 P4 P5
                            //
                            // Interpret the data that cursor P1 points to as a structure built using the MakeRecord instruction.  (See the MakeRecord opcode for additional
                            // information about the format of the data.)  Extract the P2-th column from this record.  If there are less that (P2+1) 
                            // values in the record, extract a NULL.
                            //
                            // The value extracted is stored in register P3.
                            //
                            // If the column contains fewer than P2 fields, then extract a NULL.  Or, if the P4 argument is a P4_MEM use the value of the P4 argument as
                            // the result.
                            //
                            // If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, then the cache of the cursor is reset prior to extracting the column.
                            // The first OP_Column against a pseudo-table after the value of the content register has changed should have this bit set.
                            //
                            // If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when the result is guaranteed to only be used as the argument of a length()
                            // or typeof() function, respectively.  The loading of large blobs can be skipped for length() and all content loading can be skipped for typeof().
                            int p1 = op.P1; // P1 value of the opcode
                            int p2 = op.P2; // column number to retrieve
                            Mem sMem = C._alloc(sMem); // For storing the record being decoded
                            Debug.Assert(p1 < Cursors.length);
                            Debug.Assert(op.P3 > 0 && op.P3 <= Mems.length);
                            Mem dest = mems[op.P3]; // Where to write the extracted value
                            MemAboutToChange(this, dest);

                            // This block sets the variable payloadSize to be the total number of bytes in the record.
                            //
                            // zRec is set to be the complete text of the record if it is available. The complete record text is always available for pseudo-tables
                            // If the record is stored in a cursor, the complete record text might be available in the  pC->aRow cache.  Or it might not be.
                            // If the data is unavailable,  zRec is set to NULL.
                            //
                            // We also compute the number of columns in the record.  For cursors, the number of columns is stored in the VdbeCursor.Fields element.
                            VdbeCursor c = Cursors[p1]; // The VDBE cursor
                            Debug.Assert(c != null);
#if !OMIT_VIRTUALTABLE
                            Debug.Assert(c.VtabCursor == null);
#endif

                            Btree.BtCursor crsr = c.Cursor; // The BTree cursor
                            uint payloadSize = 0; // Number of bytes in the record
                            long payloadSize64 = 0; // Number of bytes in the record
                            byte[] rec = null; // Pointer to complete record-data
                            if (crsr != null)
                            {
                                // The record is stored in a B-Tree
                                rc = CursorMoveto(c);
                                if (rc != 0) goto abort_due_to_error;
                                if (c.NullRow)
                                    payloadSize = 0;
                                else if (c.CacheStatus == CacheCtr)
                                {
                                    payloadSize = (uint)c.PayloadSize;
                                    rec = C._alloc((int)payloadSize);
                                    Buffer.BlockCopy(crsr.Info.Cell, c.Rows, rec, 0, (int)payloadSize);
                                }
                                else if (c.IsIndex)
                                {
                                    Debug.Assert(Btree.CursorIsValid(crsr));
                                    rc = Btree.KeySize(crsr, ref payloadSize64);
                                    Debug.Assert(rc == RC.OK); // True because of CursorMoveto() call above
                                    // sqlite3BtreeParseCellPtr() uses getVarint32() to extract the payload size, so it is impossible for payloadSize64 to be larger than 32 bits.
                                    Debug.Assert(((ulong)payloadSize64 & uint.MaxValue) == (ulong)payloadSize64);
                                    payloadSize = (uint)payloadSize64;
                                }
                                else
                                {
                                    Debug.Assert(Btree.CursorIsValid(crsr));
                                    rc = Btree.DataSize(crsr, ref payloadSize);
                                    Debug.Assert(rc == RC.OK); // DataSize() cannot fail
                                }
                            }
                            else if (c.PseudoTableReg > 0)
                            {
                                // The record is the sole entry of a pseudo-table
                                Mem reg = mems[c.PseudoTableReg]; // PseudoTable input register
                                if (c.MultiPseudo)
                                {
                                    MemShallowCopy(dest, reg + p2, MEM.Ephem);
                                    Deephemeralize(dest);
                                    goto op_column_out;
                                }
                                Debug.Assert((reg.Flags & MEM.Blob) != 0);
                                Debug.Assert(E.MemIsValid(reg));
                                payloadSize = (uint)reg.N;
                                rec = reg.Z_;
                                c.CacheStatus = (((OPFLAG)op.P5 & OPFLAG.CLEARCACHE) != 0 ? E.CACHE_STALE : CacheCtr);
                                Debug.Assert(payloadSize == 0 || rec != null);
                            }
                            else
                                payloadSize = 0; // Consider the row to be NULL

                            // If payloadSize is 0, then just store a NULL.  This can happen because of nullRow or because of a corrupt database.
                            if (payloadSize == 0)
                            {
                                E.MemSetTypeFlag(dest, MEM.Null);
                                goto op_column_out;
                            }
                            Debug.Assert(ctx.Limits[(int)LIMIT.LENGTH] >= 0);
                            if (payloadSize > (uint)ctx.Limits[(int)LIMIT.LENGTH])
                                goto too_big;

                            int fields = c.Fields; // number of fields in the record
                            Debug.Assert(p2 < fields);

                            // Read and parse the table header.  Store the results of the parse into the record header cache fields of the cursor.
                            uint[] types = c.Types; // aType[i] holds the numeric type of the i-th column
                            uint[] offsets; // aOffset[i] is offset to start of data for i-th column
                            byte[] data = null; // Part of the record being decoded
                            int len; // The length of the serialized data for the column
                            uint t; // A type code from the record header
                            if (c.CacheStatus == CacheCtr)
                                offsets = c.Offsets;
                            else
                            {
                                Debug.Assert(types != null);
                                int avail = 0; // Number of bytes of available data
                                //: c.Offsets = offsets = types[fields];
                                offsets = new uint[fields];
                                c.Offsets = offsets;
                                c.PayloadSize = (int)payloadSize;
                                c.CacheStatus = CacheCtr;

                                // Figure out how many bytes are in the header
                                if (rec != null)
                                    data = rec;
                                else
                                {
                                    data = (c.IsIndex ? Btree.KeyFetch(crsr, ref avail, ref c.Rows) : Btree.DataFetch(crsr, ref avail, ref c.Rows));
                                    // If KeyFetch()/DataFetch() managed to get the entire payload, save the payload in the pC->aRow cache.  That will save us from
                                    // having to make additional calls to fetch the content portion of the record.
                                    Debug.Assert(avail >= 0);
                                    if (payloadSize <= (uint)avail)
                                    {
                                        rec = data;
                                        //c.Rows = data;
                                    }
                                    else
                                        c.Rows = -1; //: c.Rows = null;
                                }
                                // The following assert is true in all cases except when the database file has been corrupted externally.
                                //Debug.Assert(rec != 0 || avail >= payloadSize || avail >= 9);
                                uint offset; // Offset into the data
                                int sizeHdr = ConvertEx.GetVarint32(data, out offset); // Size of the header size field at start of record

                                // Make sure a corrupt database has not given us an oversize header. Do this now to avoid an oversize memory allocation.
                                //
                                // Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte types use so much data space that there can only be 4096 and 32 of
                                // them, respectively.  So the maximum header length results from a 3-byte type for each of the maximum of 32768 columns plus three
                                // extra bytes for the header length itself.  32768*3 + 3 = 98307.
                                if (offset > 98307)
                                {
                                    rc = SysEx.CORRUPT_BKPT();
                                    goto op_column_out;
                                }

                                // Compute in len the number of bytes of data we need to read in order to get nField type values.  offset is an upper bound on this.  But
                                // nField might be significantly less than the true number of columns in the table, and in that case, 5*nField+3 might be smaller than offset.
                                // We want to minimize len in order to limit the size of the memory allocation, especially if a corrupt database file has caused offset
                                // to be oversized. Offset is limited to 98307 above.  But 98307 might still exceed Robson memory allocation limits on some configurations.
                                // On systems that cannot tolerate large memory allocations, nField*5+3 will likely be much smaller since nField will likely be less than
                                // 20 or so.  This insures that Robson memory allocation limits are not exceeded even for corrupt database files.
                                len = fields * 5 + 3;
                                if (len > (int)offset) len = (int)offset;

                                // The KeyFetch() or DataFetch() above are fast and will get the entire record header in most cases.  But they will fail to get the complete
                                // record header if the record header does not fit on a single page in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
                                // acquire the complete header text.
                                if (rec == null && avail < len)
                                {
                                    sMem.Flags = 0;
                                    sMem.Ctx = null;
                                    rc = MemFromBtree(crsr, 0, len, c.IsIndex, sMem);
                                    if (rc != RC.OK)
                                        goto op_column_out;
                                    data = sMem.Z_;
                                }
                                int endHdr = len; //: data[len]; // Pointer to first byte after the header
                                int idx = sizeHdr; //: data[sizeHdr]; // Index into header

                                // Scan the header and use it to fill in the aType[] and aOffset[] arrays.  aType[i] will contain the type integer for the i-th
                                // column and aOffset[i] will contain the offset from the beginning of the record to the start of the data for the i-th column
                                for (int i = 0; i < fields; i++)
                                {
                                    if (idx < endHdr)
                                    {
                                        offsets[i] = offset;
                                        if (data[idx] < 0x80)
                                        {
                                            t = data[idx];
                                            idx++;
                                        }
                                        else
                                            idx += ConvertEx.GetVarint32(data, idx, out t);
                                        types[i] = t;
                                        uint sizeField = SerialTypeLen(t); // Number of bytes in the content of a field
                                        offset += sizeField;
                                        if (offset < sizeField) // True if offset overflows
                                        {
                                            idx = int.MaxValue; // Forces SQLITE_CORRUPT return below
                                            break;
                                        }
                                    }
                                    else
                                        // If i is less that nField, then there are fewer fields in this record than SetNumColumns indicated there are columns in the
                                        // table. Set the offset for any extra columns not present in the record to 0. This tells code below to store the default value
                                        // for the column instead of deserializing a value from the record.
                                        offsets[i] = 0;
                                }
                                MemRelease(sMem);
                                sMem.Flags = MEM.Null;

                                // If we have read more header data than was contained in the header, or if the end of the last field appears to be past the end of the
                                // record, or if the end of the last field appears to be before the end of the record (when all fields present), then we must be dealing 
                                // with a corrupt database.
                                if ((idx > endHdr) || (offset > payloadSize) || (idx == endHdr && offset != payloadSize))
                                {
                                    rc = SysEx.CORRUPT_BKPT();
                                    goto op_column_out;
                                }
                            }

                            // Get the column information. If aOffset[p2] is non-zero, then deserialize the value from the record. If aOffset[p2] is zero,
                            // then there are not enough fields in the record to satisfy the request.  In this case, set the value NULL or to P4 if P4 is
                            // a pointer to a Mem object.
                            if (offsets[p2] != 0)
                            {
                                Debug.Assert(rc == RC.OK);
                                if (rec != null)
                                {
                                    E.VdbeMemRelease(dest);
                                    SerialGet(rec, (int)offsets[p2], types[p2], dest);
                                }
                                else
                                {
                                    // This branch happens only when the row overflows onto multiple pages
                                    t = types[p2];
                                    if (((OPFLAG)op.P5 & (OPFLAG.LENGTHARG | OPFLAG.TYPEOFARG)) != 0 && ((t >= 12 && (t & 1) == 0) || ((OPFLAG)op.P5 & OPFLAG.TYPEOFARG) != 0))
                                    {
                                        // Content is irrelevant for the typeof() function and for the length(X) function if X is a blob.  So we might as well use
                                        // bogus content rather than reading content from disk.  NULL works for text and blob and whatever is in the payloadSize64 variable
                                        // will work for everything else.
                                        data = (t < 12 ? BitConverter.GetBytes(payloadSize64) : null);
                                    }
                                    else
                                    {
                                        len = (int)SerialTypeLen(types[p2]);
                                        MemMove(sMem, dest);
                                        rc = MemFromBtree(crsr, (int)offsets[p2], len, c.IsIndex, sMem);
                                        if (rc != RC.OK)
                                            goto op_column_out;
                                        data = sMem.Z_;
                                        sMem.Z_ = null;
                                    }
                                    SerialGet(data, types[p2], dest);
                                }
                                dest.Encode = encoding;
                            }
                            else
                            {
                                if (op.P4Type == P4T.MEM)
                                    MemShallowCopy(dest, op.P4.Mem, MEM.Static);
                                else
                                    E.MemSetTypeFlag(dest, MEM.Null);
                            }

                            // If we dynamically allocated space to hold the data (in the sqlite3VdbeMemFromBtree() call above) then transfer control of that
                            // dynamically allocated space over to the pDest structure. This prevents a memory copy.
                            //: if (sMem.Malloc != null)
                            //: {
                            //:     Debug.Assert(sMem.Z == sMem.Malloc);
                            //:     Debug.Assert(sMem.Del == null);
                            //:     Debug.Assert((dest.Flags & MEM.Dyn) == 0);
                            //:     Debug.Assert((dest.Flags & (MEM.Blob | MEM.Str)) == 0 || dest.Z == sMem.Z);
                            //:     dest.Flags &= ~(MEM.Ephem | MEM.Static);
                            //:     dest.Flags |= MEM.Term;
                            //:     dest.Z = sMem.Z;
                            //:     dest.Malloc = sMem.zMalloc;
                            //: }

                            rc = MemMakeWriteable(dest);

                        op_column_out:
                            UPDATE_MAX_BLOBSIZE(dest);
                            REGISTER_TRACE(op.P3, dest);
                            break;
                        }
                    case OP.Affinity:
                        {
                            // Opcode: Affinity P1 P2 * P4 *
                            //
                            // Apply affinities to a range of P2 registers starting with P1.
                            //
                            // P4 is a string that is P2 characters long. The nth character of the string indicates the column affinity that should be used for the nth
                            // memory cell in the range.
                            string affinity = op.P4.Z; // The affinity to be applied
                            Debug.Assert(affinity != null);
                            Debug.Assert(affinity.Length <= op.P2); //: affinity[op.P2] == 0
                            //: in1 = mems[op.P1];
                            AFF aff; // A single character of affinity
                            for (int aIdx = 0; aIdx < affinity.Length; aIdx++) //: while ((aff = *(affinity++)) != 0)
                            {
                                aff = (AFF)affinity[aIdx];
                                in1 = mems[op.P1 + aIdx];
                                //: Debug.Assert( in1 <= mems[Mems.length]);
                                Debug.Assert(E.MemIsValid(in1));
                                E.ExpandBlob(in1);
                                ApplyAffinity(in1, aff, encoding);
                                //: in1++;
                            }
                            break;
                        }
                    case OP.MakeRecord:
                        {
                            // Opcode: MakeRecord P1 P2 P3 P4 *
                            //
                            // Convert P2 registers beginning with P1 into the [record format] use as a data record in a database table or as a key
                            // in an index.  The OP_Column opcode can decode the record later.
                            //
                            // P4 may be a string that is P2 characters long.  The nth character of the string indicates the column affinity that should be used for the nth
                            // field of the index key.
                            //
                            // The mapping from character to affinity is given by the SQLITE_AFF_ macros defined in sqliteInt.h.
                            //
                            // If P4 is NULL then all index fields have the affinity NONE.

                            // Assuming the record contains N fields, the record format looks like this:
                            //
                            // ------------------------------------------------------------------------
                            // | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
                            // ------------------------------------------------------------------------
                            //
                            // Data(0) is taken from register P1.  Data(1) comes from register P1+1 and so froth.
                            //
                            // Each type field is a varint representing the serial type of the corresponding data element (see sqlite3VdbeSerialType()). The
                            // hdr-size field is also a varint which is the offset from the beginning of the record to data0.
                            ulong dataLength = 0; // Number of bytes of data space
                            int hdrLength = 0; // Number of bytes of header space
                            int zeros = 0; // Number of zero bytes at the end of the record
                            int fields = op.P1; // Number of fields in the record
                            string affinity = (op.P4.Z ?? string.Empty); // The affinity string for the record
                            Debug.Assert(fields > 0 && op.P2 > 0 && op.P2 + fields <= Mems.length + 1);
                            //: Mem data0 = mems[fields]; // First field to be combined into the record
                            fields = op.P2;
                            //: Mem last =  data0[fields - 1]; // Last field of the record
                            int fileFormat = MinWriteFileFormat; // File format to use for encoding

                            // Identify the output register
                            Debug.Assert(op.P3 < op.P1 || op.P3 >= op.P1 + op.P2);
                            out_ = mems[op.P3];
                            MemAboutToChange(this, out_);

                            // Loop through the elements that will make up the record to figure out how much space is required for the new record.

                            Mem rec; // The new record
                            uint serialType; // Type field
                            for (int d0 = 0; d0 < fields; d0++)
                            {
                                rec = mems[op.P1 + d0];
                                Debug.Assert(E.MemIsValid(rec));
                                if (d0 < affinity.Length && affinity[d0] != '\0')
                                    ApplyAffinity(rec, (AFF)affinity[d0], encoding);
                                if ((rec.Flags & MEM.Zero) != 0 && rec.N > 0)
                                    MemExpandBlob(rec);
                                serialType = SerialType(rec, fileFormat);
                                int len = (int)SerialTypeLen(serialType); // Length of a field
                                dataLength += (ulong)len;
                                hdrLength += ConvertEx.GetVarintLength(serialType);
                                if ((rec.Flags & MEM.Zero) != 0)
                                    zeros += rec.u.Zeros; // Only pure zero-filled BLOBs can be input to this Opcode. We do not allow blobs with a prefix and a zero-filled tail.
                                else if (len != 0)
                                    zeros = 0;
                            }

                            // Add the initial header varint and total the size
                            int varintLength; // Number of bytes in a varint
                            hdrLength += varintLength = ConvertEx.GetVarintLength((ulong)hdrLength);
                            if (varintLength < ConvertEx.GetVarintLength((ulong)hdrLength))
                                hdrLength++;
                            long bytes = (long)((ulong)hdrLength + dataLength - (ulong)zeros); // Data space required for this record
                            if (bytes > ctx.Limits[(int)LIMIT.LENGTH])
                                goto too_big;

                            // Make sure the output register has a buffer large enough to store the new record. The output register (op->P3) is not allowed to
                            // be one of the input registers (because the following call to sqlite3VdbeMemGrow() could clobber the value before it is used).
                            //: if (MemGrow(out_, (int)bytes, 0) != 0)
                            //:     goto no_mem;
                            byte[] newRecord = C._alloc((int)bytes); //: out_.Z; // A buffer to hold the data for the new record

                            // Write the record
                            int i = ConvertEx.PutVarint32(newRecord, hdrLength); // Space used in zNewRecord[]
                            for (int d0 = 0; d0 < fields; d0++)
                            {
                                rec = mems[op.P1 + d0];
                                serialType = SerialType(rec, fileFormat);
                                i += ConvertEx.PutVarint32(newRecord, i, (int)serialType); // serial type
                            }
                            for (int d0 = 0; d0 < fields; d0++) // serial data
                            {
                                rec = mems[op.P1 + d0];
                                i += (int)SerialPut(newRecord, i, (int)bytes - i, rec, fileFormat);
                            }
                            Debug.Assert(i == bytes);

                            Debug.Assert(op.P3 > 0 && op.P3 <= Mems.length);
                            out_.Z_ = newRecord;
                            out_.Z = null;
                            out_.N = (int)bytes;
                            out_.Flags = MEM.Blob | MEM.Dyn;
                            out_.Del = null;
                            if (zeros != 0)
                            {
                                out_.u.Zeros = zeros;
                                out_.Flags |= MEM.Zero;
                            }
                            out_.Encode = TEXTENCODE.UTF8; // In case the blob is ever converted to text
                            REGISTER_TRACE(p, op.P3, out_);
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }
#if !OMIT_BTREECOUNT
                    case OP.Count: // out2-prerelease
                        {
                            // Opcode: Count P1 P2 * * *
                            //
                            // Store the number of entries (an integer value) in the table or index opened by cursor P1 in register P2
                            long entrys = 0;
                            Btree.BtCursor crsr = p.apCsr[op.P1].pCursor;
                            if (crsr != null)
                                rc = Btree.Count(crsr, ref entrys);
                            else
                                entrys = 0;
                            out_.u.I = entrys;
                            break;
                        }
#endif
                    case OP.Savepoint:
                        {
                            // Opcode: Savepoint P1 * * P4 *
                            //
                            // Open, release or rollback the savepoint named by parameter P4, depending on the value of P1. To open a new savepoint, P1==0. To release (commit) an
                            // existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
                            IPager.SAVEPOINT p1 = (IPager.SAVEPOINT)op.P1; // Value of P1 operand 
                            string name = op.P4.Z; // Name of savepoint

                            // Assert that the p1 parameter is valid. Also that if there is no open transaction, then there cannot be any savepoints.
                            Debug.Assert(ctx.Savepoints == null || ctx.AutoCommit == 0);
                            Debug.Assert(p1 == IPager.SAVEPOINT.BEGIN || p1 == IPager.SAVEPOINT.RELEASE || p1 == IPager.SAVEPOINT.ROLLBACK);
                            Debug.Assert(ctx.Savepoints != null || ctx.IsTransactionSavepoint == 0);
                            Debug.Assert(CheckSavepointCount(ctx) != 0);

                            if (p1 == IPager.SAVEPOINT.BEGIN)
                            {
                                if (ctx.WriteVdbeCnt > 0)
                                {
                                    // A new savepoint cannot be created if there are active write statements (i.e. open read/write incremental blob handles).
                                    C._setstring(ref ErrMsg, ctx, "cannot open savepoint - SQL statements in progress");
                                    rc = RC.BUSY;
                                }
                                else
                                {
                                    int nameLength = name.Length;

#if !OMIT_VIRTUALTABLE
                                    // This call is Ok even if this savepoint is actually a transaction savepoint (and therefore should not prompt xSavepoint()) callbacks.
                                    // If this is a transaction savepoint being opened, it is guaranteed that the ctx->aVTrans[] array is empty.
                                    Debug.Assert(ctx.AutoCommit == 0 || ctx.VTrans.length == 0);
                                    rc = VTable.Savepoint(ctx, IPager.SAVEPOINT.BEGIN, ctx.Statements + ctx.SavepointsLength);
                                    if (rc != RC.OK) goto abort_due_to_error;
#endif

                                    // Create a new savepoint structure.
                                    Savepoint newSavepoint = new Savepoint();
                                    if (newSavepoint != null)
                                    {
                                        newSavepoint.Name = name;

                                        // If there is no open transaction, then mark this as a special "transaction savepoint".
                                        if (ctx.AutoCommit != 0)
                                        {
                                            ctx.AutoCommit = 0;
                                            ctx.IsTransactionSavepoint = 1;
                                        }
                                        else
                                            ctx.SavepointsLength++;

                                        // Link the new savepoint into the database handle's list.
                                        newSavepoint.Next = ctx.Savepoints;
                                        ctx.Savepoints = newSavepoint;
                                        newSavepoint.DeferredCons = ctx.DeferredCons;
                                    }
                                }
                            }
                            else
                            {
                                // Find the named savepoint. If there is no such savepoint, then an an error is returned to the user.
                                int savepointId = 0;
                                Savepoint savepoint; for (savepoint = ctx.Savepoints; savepoint != null && !string.Equals(savepoint.Name, name, StringComparison.OrdinalIgnoreCase); savepoint = savepoint.Next)
                                    savepointId++;
                                if (savepoint == null)
                                {
                                    C._setstring(ref ErrMsg, ctx, "no such savepoint: %s", name);
                                    rc = RC.ERROR;
                                }
                                else if (ctx.WriteVdbeCnt > 0 || (p1 == IPager.SAVEPOINT.ROLLBACK && ctx.ActiveVdbeCnt > 1))
                                {
                                    // It is not possible to release (commit) a savepoint if there are active write statements.
                                    C._setstring(ref ErrMsg, ctx, "cannot %s savepoint - SQL statements in progress");
                                    rc = RC.BUSY;
                                }
                                else
                                {
                                    // Determine whether or not this is a transaction savepoint. If so, and this is a RELEASE command, then the current transaction is committed. 
                                    int isTransaction = (savepoint.Next == null && ctx.IsTransactionSavepoint != 0 ? 1 : 0);
                                    if (isTransaction != 0 && p1 == IPager.SAVEPOINT.RELEASE)
                                    {
                                        if ((rc = CheckFk(true)) != RC.OK)
                                            goto vdbe_return;
                                        ctx.AutoCommit = 1;
                                        if (Halt() == RC.BUSY)
                                        {
                                            PC = pc;
                                            ctx.AutoCommit = 0;
                                            RC_ = rc = RC.BUSY;
                                            goto vdbe_return;
                                        }
                                        ctx.IsTransactionSavepoint = 0;
                                        rc = RC_;
                                    }
                                    else
                                    {
                                        savepointId = ctx.SavepointsLength - savepointId - 1;
                                        int ii;
                                        if (p1 == IPager.SAVEPOINT.ROLLBACK)
                                            for (ii = 0; ii < ctx.DBs.length; ii++)
                                                ctx.DBs[ii].Bt.TripAllCursors(RC.ABORT);
                                        for (ii = 0; ii < ctx.DBs.length; ii++)
                                        {
                                            rc = ctx.DBs[ii].Bt.Savepoint(p1, savepointId);
                                            if (rc != RC.OK)
                                                goto abort_due_to_error;
                                        }
                                        if (p1 == IPager.SAVEPOINT.ROLLBACK && (ctx.Flags & Context.FLAG.InternChanges) != 0)
                                        {
                                            ExpirePreparedStatements(ctx);
                                            Parse.ResetAllSchemasOfConnection(ctx);
                                            ctx.Flags = (ctx.Flags | Context.FLAG.InternChanges);
                                        }
                                    }

                                    // Regardless of whether this is a RELEASE or ROLLBACK, destroy all savepoints nested inside of the savepoint being operated on.
                                    while (ctx.Savepoints != savepoint)
                                    {
                                        Savepoint tmp = ctx.Savepoints;
                                        ctx.Savepoints = tmp.Next;
                                        C._tagfree(ctx, ref tmp);
                                        ctx.SavepointsLength--;
                                    }

                                    // If it is a RELEASE, then destroy the savepoint being operated on too. If it is a ROLLBACK TO, then set the number of deferred 
                                    // constraint violations present in the database to the value stored when the savepoint was created.
                                    if (p1 == IPager.SAVEPOINT.RELEASE)
                                    {
                                        Debug.Assert(savepoint == ctx.Savepoints);
                                        ctx.Savepoints = savepoint.Next;
                                        C._tagfree(ctx, ref savepoint);
                                        if (isTransaction == 0)
                                            ctx.SavepointsLength--;
                                    }
                                    else
                                        ctx.DeferredCons = savepoint.DeferredCons;

                                    if (isTransaction == 0)
                                    {
                                        rc = VTable.Savepoint(ctx, p1, savepointId);
                                        if (rc != RC.OK) goto abort_due_to_error;
                                    }
                                }
                            }
                            break;
                        }
                    case OP.AutoCommit:
                        {
                            int desiredAutoCommit = (byte)op.P1;
                            int rollbackId = op.P2;
                            bool turnOnAC = (desiredAutoCommit != 0 && ctx.AutoCommit == 0);
                            Debug.Assert(desiredAutoCommit != 0 || desiredAutoCommit == 0);
                            Debug.Assert(desiredAutoCommit != 0 || rollbackId == 0);
                            Debug.Assert(ctx.ActiveVdbeCnt > 0); // At least this one VM is active
#if false
                            if (turnOnAC && rollbackId != 0 && ctx.ActiveVdbeCnt > 1)
                            {
                                // If this instruction implements a ROLLBACK and other VMs are still running, and a transaction is active, return an error indicating
                                // that the other VMs must complete first. 
                                C._setstring(ref ErrMsg, ctx, "cannot rollback transaction - SQL statements in progress");
                                rc = RC.BUSY;
                            }
                            else
#endif
                            if (turnOnAC && 0 == rollbackId && ctx.WriteVdbeCnt > 0)
                            {
                                // If this instruction implements a COMMIT and other VMs are writing return an error indicating that the other VMs must complete first. 
                                C._setstring(ref ErrMsg, ctx, "cannot commit transaction - SQL statements in progress");
                                rc = RC.BUSY;
                            }
                            else if (desiredAutoCommit != ctx.AutoCommit)
                            {
                                if (rollbackId != 0)
                                {
                                    Debug.Assert(desiredAutoCommit != 0);
                                    Main.RollbackAll(ctx, RC.ABORT_ROLLBACK);
                                    ctx.AutoCommit = 1;
                                }
                                else if ((rc = CheckFk(true)) != RC.OK)
                                    goto vdbe_return;
                                else
                                {
                                    ctx.AutoCommit = (byte)desiredAutoCommit;
                                    if (Halt() == RC.BUSY)
                                    {
                                        PC = pc;
                                        ctx.AutoCommit = (byte)(desiredAutoCommit == 0 ? 1 : 0);
                                        RC_ = rc = RC.BUSY;
                                        goto vdbe_return;
                                    }
                                }
                                Debug.Assert(ctx.Statements == 0);
                                Main.CloseSavepoints(ctx);
                                rc = (RC_ == RC.OK ? RC.DONE : RC.ERROR);
                                goto vdbe_return;
                            }
                            else
                            {
                                C._setstring(ref ErrMsg, ctx, (desiredAutoCommit == 0 ? "cannot start a transaction within a transaction" : (rollbackId != 0 ? "cannot rollback - no transaction is active" : "cannot commit - no transaction is active")));
                                rc = RC.ERROR;
                            }
                            break;
                        }
                    case OP.Transaction:
                        {
                            // Opcode: Transaction P1 P2 * * *
                            //
                            // Begin a transaction.  The transaction ends when a Commit or Rollback opcode is encountered.  Depending on the ON CONFLICT setting, the
                            // transaction might also be rolled back if an error is encountered.
                            //
                            // P1 is the index of the database file on which the transaction is started.  Index 0 is the main database file and index 1 is the
                            // file used for temporary tables.  Indices of 2 or more are used for attached databases.
                            //
                            // If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is obtained on the database file when a write-transaction is started.  No
                            // other process can start another write transaction while this transaction is underway.  Starting a write transaction also creates a rollback journal. A
                            // write transaction must be started before any changes can be made to the database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
                            // on the file.
                            //
                            // If a write-transaction is started and the Vdbe.usesStmtJournal flag is true (this flag is set if the Vdbe may modify more than one row and may
                            // throw an ABORT exception), a statement transaction may also be opened. More specifically, a statement transaction is opened iff the database
                            // connection is currently not in autocommit mode, or if there are other active statements. A statement transaction allows the changes made by this
                            // VDBE to be rolled back after an error without having to roll back the entire transaction. If no error is encountered, the statement transaction
                            // will automatically commit when the VDBE halts.
                            //
                            // If P2 is zero, then a read-lock is obtained on the database file.
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.DBs.length);
                            Debug.Assert((BtreeMask & (((yDbMask)1) << op.P1)) != 0);
                            Btree bt = ctx.DBs[op.P1].Bt;
                            if (bt != null)
                            {
                                rc = bt.BeginTrans(op.P2);
                                if (rc == RC.BUSY)
                                {
                                    PC = pc;
                                    RC_ = rc = RC.BUSY;
                                    goto vdbe_return;
                                }
                                if (rc != RC.OK)
                                    goto abort_due_to_error;
                                if (op.P2 != 0 && UsesStmtJournal && (ctx.AutoCommit == 0 || ctx.ActiveVdbeCnt > 1))
                                {
                                    Debug.Assert(bt.IsInTrans());
                                    if (StatementID == 0)
                                    {
                                        Debug.Assert(ctx.Statements >= 0 && ctx.SavepointsLength >= 0);
                                        ctx.Statements++;
                                        StatementID = ctx.SavepointsLength + ctx.Statements;
                                    }
                                    rc = VTable.Savepoint(ctx, IPager.SAVEPOINT.BEGIN, StatementID - 1);
                                    if (rc == RC.OK)
                                        rc = bt.BeginStmt(StatementID);
                                    // Store the current value of the database handles deferred constraint counter. If the statement transaction needs to be rolled back,
                                    // the value of this counter needs to be restored too.
                                    StmtDefCons = ctx.DeferredCons;
                                }
                            }
                            break;
                        }
                    case OP.ReadCookie: // out2-prerelease
                        {
                            // Opcode: ReadCookie P1 P2 P3 * *
                            //
                            // Read cookie number P3 from database P1 and write it into register P2. P3==1 is the schema version.  P3==2 is the database format.
                            // P3==3 is the recommended pager cache size, and so forth.  P1==0 is the main database file and P1==1 is the database file used to store
                            // temporary tables.
                            //
                            // There must be a read-lock on the database (either a transaction must be started or there must be an open cursor) before
                            // executing this instruction.
                            int db = op.P1;
                            Btree.META cookie = (Btree.META)op.P3;
                            Debug.Assert(op.P3 < Btree.N_BTREE_META);
                            Debug.Assert(db >= 0 && db < ctx.DBs.length);
                            Debug.Assert(ctx.DBs[db].Bt != null);
                            Debug.Assert((BtreeMask & (((yDbMask)1) << db)) != 0);
                            uint meta = 0;
                            ctx.DBs[db].Bt.GetMeta(cookie, ref meta);
                            out_.u.I = (int)meta;
                            break;
                        }
                    case OP.SetCookie: // in3
                        {
                            Debug.Assert(op.P2 < Btree.N_BTREE_META);
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.DBs.length);
                            Debug.Assert((BtreeMask & (((yDbMask)1) << op.P1)) != 0);
                            Context.DB db = ctx.DBs[op.P1];
                            Debug.Assert(db.Bt != null);
                            Debug.Assert(Btree.SchemaMutexHeld(ctx, op.P1, null));
                            in3 = mems[op.P3];
                            MemIntegerify(in3);
                            // See note about index shifting on OP_ReadCookie
                            rc = db.Bt.UpdateMeta((Btree.META)op.P2, (uint)in3.u.I);
                            if ((Btree.META)op.P2 == Btree.META.SCHEMA_VERSION)
                            {
                                // When the schema cookie changes, record the new cookie internally
                                db.Schema.SchemaCookie = (int)in3.u.I;
                                ctx.Flags |= Context.FLAG.InternChanges;
                            }
                            else if ((Btree.META)op.P2 == Btree.META.FILE_FORMAT)
                                // Record changes in the file format
                                db.Schema.FileFormat = (byte)in3.u.I;
                            if (op.P1 == 1)
                            {
                                // Invalidate all prepared statements whenever the TEMP database schema is changed.  Ticket #1644
                                ExpirePreparedStatements(ctx);
                                Expired = false;
                            }
                            break;
                        }
                    case OP.VerifyCookie:
                        {
                            // Opcode: VerifyCookie P1 P2 P3 * *
                            //
                            // Check the value of global database parameter number 0 (the schema version) and make sure it is equal to P2 and that the
                            // generation counter on the local schema parse equals P3.
                            //
                            // P1 is the database number which is 0 for the main database file and 1 for the file holding temporary tables and some higher number
                            // for auxiliary databases.
                            //
                            // The cookie changes its value whenever the database schema changes. This operation is used to detect when that the cookie has changed
                            // and that the current process needs to reread the schema.
                            //
                            // Either a transaction needs to have been started or an OP_Open needs to be executed (to establish a read lock) before this opcode is
                            // invoked.
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.DBs.length);
                            Debug.Assert((BtreeMask & ((yDbMask)1 << op.P1)) != 0);
                            Debug.Assert(Btree.SchemaMutexHeld(ctx, op.P1, null));
                            Btree bt = ctx.DBs[op.P1].Bt;
                            uint meta = 0;
                            uint gen;
                            if (bt != null)
                            {
                                bt.GetMeta(Btree.META.SCHEMA_VERSION, ref meta);
                                gen = (uint)ctx.DBs[op.P1].Schema.Generation;
                            }
                            else
                                gen = meta = 0;
                            if (meta != op.P2 || gen != op.P3)
                            {
                                C._tagfree(ctx, ref ErrMsg);
                                ErrMsg = "database schema has changed";
                                // If the schema-cookie from the database file matches the cookie stored with the in-memory representation of the schema, do
                                // not reload the schema from the database file.
                                //
                                // If virtual-tables are in use, this is not just an optimization. Often, v-tables store their data in other SQLite tables, which
                                // are queried from within xNext() and other v-table methods using prepared queries. If such a query is out-of-date, we do not want to
                                // discard the database schema, as the user code implementing the v-table would have to be ready for the sqlite3_vtab structure itself
                                // to be invalidated whenever sqlite3_step() is called from within a v-table method.
                                if (ctx.DBs[op.P1].Schema.SchemaCookie != meta)
                                    Parse.ResetOneSchema(ctx, op.P1);

                                Expired = true;
                                rc = RC.SCHEMA;
                            }
                            break;
                        }
                    case OP.OpenRead:
                    case OP.OpenWrite:
                        {
                            // Opcode: OpenRead P1 P2 P3 P4 P5
                            //
                            // Open a read-only cursor for the database table whose root page is P2 in a database file.  The database file is determined by P3. 
                            // P3==0 means the main database, P3==1 means the database used for temporary tables, and P3>1 means used the corresponding attached
                            // database.  Give the new cursor an identifier of P1.  The P1 values need not be contiguous but all P1 values should be small integers.
                            // It is an error for P1 to be negative.
                            //
                            // If P5!=0 then use the content of register P2 as the root page, not the value of P2 itself.
                            //
                            // There will be a read lock on the database whenever there is an open cursor.  If the database was unlocked prior to this instruction
                            // then a read lock is acquired as part of this instruction.  A read lock allows other processes to read the database but prohibits
                            // any other process from modifying the database.  The read lock is released when all cursors are closed.  If this instruction attempts
                            // to get a read lock but fails, the script terminates with an SQLITE_BUSY error code.
                            //
                            // The P4 value may be either an integer (P4_INT32) or a pointer to a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
                            // structure, then said structure defines the content and collating sequence of the index being opened. Otherwise, if P4 is an integer 
                            // value, it is set to the number of columns in the table.
                            //
                            // See also OpenWrite.
                            //
                            // Opcode: OpenWrite P1 P2 P3 P4 P5
                            //
                            // Open a read/write cursor named P1 on the table or index whose root page is P2.  Or if P5!=0 use the content of register P2 to find the
                            // root page.
                            //
                            // The P4 value may be either an integer (P4_INT32) or a pointer to a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
                            // structure, then said structure defines the content and collating sequence of the index being opened. Otherwise, if P4 is an integer 
                            // value, it is set to the number of columns in the table, or to the largest index of any column of the table that is actually used.
                            //
                            // This instruction works just like OpenRead except that it opens the cursor in read/write mode.  For a given table, there can be one or more read-only
                            // cursors or a single read/write cursor but not both.
                            //
                            // See also OpenRead.
                            Debug.Assert(((OPFLAG)op.P5 & (OPFLAG.P2ISREG | OPFLAG.BULKCSR)) == (OPFLAG)op.P5);
                            Debug.Assert(op.Opcode == OP.OpenWrite || op.P5 == 0);
                            if (Expired)
                            {
                                rc = RC.ABORT;
                                break;
                            }

                            int fields = 0;
                            KeyInfo keyInfo = null;
                            int p2 = op.P2;
                            int db = op.P3;
                            Debug.Assert(db >= 0 && db < ctx.DBs.length);
                            Debug.Assert((BtreeMask & (((yDbMask)1) << db)) != 0);
                            Context.DB dbAsObj = ctx.DBs[db];
                            Btree x = dbAsObj.Bt;
                            Debug.Assert(x != null);
                            int wrFlag;
                            if (op.Opcode == OP.OpenWrite)
                            {
                                wrFlag = 1;
                                Debug.Assert(Btree.SchemaMutexHeld(ctx, db, null));
                                if (dbAsObj.Schema.FileFormat < MinWriteFileFormat)
                                    MinWriteFileFormat = dbAsObj.Schema.FileFormat;
                            }
                            else
                                wrFlag = 0;
                            if (((OPFLAG)op.P5 & OPFLAG.P2ISREG) != 0)
                            {
                                Debug.Assert(p2 > 0);
                                Debug.Assert(p2 <= Mems.length);
                                in2 = mems[p2];
                                Debug.Assert(E.MemIsValid(in2));
                                Debug.Assert((in2.Flags & MEM.Int) != 0);
                                MemIntegerify(in2);
                                p2 = (int)in2.u.I;
                                // The p2 value always comes from a prior OP_CreateTable opcode and that opcode will always set the p2 value to 2 or more or else fail.
                                // If there were a failure, the prepared statement would have halted before reaching this instruction.
                                if (C._NEVER(p2 < 2))
                                {
                                    rc = SysEx.CORRUPT_BKPT();
                                    goto abort_due_to_error;
                                }
                            }
                            if (op.P4Type == P4T.KEYINFO)
                            {
                                keyInfo = op.P4.KeyInfo;
                                keyInfo.Encode = E.CTXENCODE(ctx);
                                fields = keyInfo.Fields + 1;
                            }
                            else if (op.P4Type == P4T.INT32)
                                fields = op.P4.I;
                            Debug.Assert(op.P1 >= 0);
                            VdbeCursor cur = AllocateCursor(this, op.P1, fields, db, true);
                            if (cur == null) goto no_mem;
                            cur.NullRow = true;
                            cur.IsOrdered = true;
                            rc = x.Cursor(p2, wrFlag, keyInfo, cur.Cursor);
                            cur.KeyInfo = keyInfo;
                            Debug.Assert(OPFLAG.BULKCSR == BTREE_BULKLOAD);

                            // Since it performs no memory allocation or IO, the only value that sqlite3BtreeCursor() may return is SQLITE_OK.
                            Debug.Assert(rc == RC.OK);

                            // Set the VdbeCursor.isTable and isIndex variables. Previous versions of SQLite used to check if the root-page flags were sane at this point
                            // and report database corruption if they were not, but this check has since moved into the btree layer.
                            cur.IsTable = (op.P4Type != P4T.KEYINFO);
                            cur.IsIndex = !cur.IsTable;
                            break;
                        }
                    case OP.OpenAutoindex:
                    case OP.OpenEphemeral:
                        {
                            // Opcode: OpenEphemeral P1 P2 * P4 P5
                            //
                            // Open a new cursor P1 to a transient table. The cursor is always opened read/write even if 
                            // the main database is read-only.  The ephemeral table is deleted automatically when the cursor is closed.
                            //
                            // P2 is the number of columns in the ephemeral table. The cursor points to a BTree table if P4==0 and to a BTree index
                            // if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure that defines the format of keys in the index.
                            //
                            // This opcode was once called OpenTemp.  But that created confusion because the term "temp table", might refer either
                            // to a TEMP table at the SQL level, or to a table opened by this opcode.  Then this opcode was call OpenVirtual.  But
                            // that created confusion with the whole virtual-table idea.
                            //
                            // The P5 parameter can be a mask of the BTREE_* flags defined in btree.h.  These flags control aspects of the operation of
                            // the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are added automatically.
                            //
                            // Opcode: OpenAutoindex P1 P2 * P4 *
                            //
                            // This opcode works the same as OP_OpenEphemeral.  It has a different name to distinguish its use.  Tables created using
                            // by this opcode will be used for automatically created transient indices in joins.
                            const VSystem.OPEN vfsFlags = VSystem.OPEN.READWRITE | VSystem.OPEN.CREATE | VSystem.OPEN.EXCLUSIVE | VSystem.OPEN.DELETEONCLOSE | VSystem.OPEN.TRANSIENT_DB;
                            Debug.Assert(op.P1 >= 0);
                            VdbeCursor cx = AllocateCursor(this, op.P1, op.P2, -1, true);
                            if (cx == null)
                                goto no_mem;
                            cx.NullRow = true;
                            rc = Btree.Open(ctx.Vfs, null, ctx, ref cx.Bt, Btree.OPEN.OMIT_JOURNAL | Btree.OPEN.SINGLE | (Btree.OPEN)op.P5, vfsFlags);
                            if (rc == RC.OK)
                                rc = cx.Bt.BeginTrans(1);
                            if (rc == RC.OK)
                            {
                                // If a transient index is required, create it by calling sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
                                // opening it. If a transient table is required, just use the automatically created table with root-page 1 (an BLOB_INTKEY table).
                                if (op.P4.KeyInfo != null)
                                {
                                    Debug.Assert(op.P4Type == P4T.KEYINFO);
                                    int pgno = 0;
                                    rc = Btree.CreateTable(cx.Bt, ref pgno, BTREE_BLOBKEY);
                                    if (rc == RC.OK)
                                    {
                                        Debug.Assert(pgno == MASTER_ROOT + 1);
                                        rc = cx.Bt.Cursor(pgno, 1, op.P4.KeyInfo, cx.Cursor);
                                        cx.KeyInfo = op.P4.KeyInfo;
                                        cx.KeyInfo.Encode = E.CTXENCODE(ctx);
                                    }
                                    cx.IsTable = false;
                                }
                                else
                                {
                                    rc = cx.Bt.Cursor(MASTER_ROOT, 1, null, cx.Cursor);
                                    cx.IsTable = true;
                                }
                            }
                            cx.IsOrdered = (op.P5 != BTREE_UNORDERED);
                            cx.IsIndex = !cx.IsTable;
                            break;
                        }
                    case OP.SorterOpen:
                        {
                            // Opcode: SorterOpen P1 P2 * P4 *
                            //
                            // This opcode works like OP_OpenEphemeral except that it opens a transient index that is specifically designed to sort large
                            // tables using an external merge-sort algorithm.
                            VdbeCursor cur = AllocateCursor(this, op.P1, op.P2, -1, true);
                            if (cur == null) goto no_mem;
                            cur.KeyInfo = op.P4.KeyInfo;
                            cur.KeyInfo.Encode = E.CTXENCODE(ctx);
                            cur.IsSorter = true;
                            rc = SorterInit(ctx, cur);
                            break;
                        }
                    case OP.OpenPseudo:
                        {
                            // Opcode: OpenPseudo P1 P2 P3 * P5
                            //
                            // Open a new cursor that points to a fake table that contains a single row of data.  The content of that one row in the content of memory
                            // register P2 when P5==0.  In other words, cursor P1 becomes an alias for the MEM_Blob content contained in register P2.  When P5==1, then the
                            // row is represented by P3 consecutive registers beginning with P2.
                            //
                            // A pseudo-table created by this opcode is used to hold a single row output from the sorter so that the row can be decomposed into
                            // individual columns using the OP_Column opcode.  The OP_Column opcode is the only cursor opcode that works with a pseudo-table.
                            //
                            // P3 is the number of fields in the records that will be stored by the pseudo-table.
                            Debug.Assert(op.P1 >= 0);
                            VdbeCursor cur = AllocateCursor(this, op.P1, op.P3, -1, false);
                            if (cur == null) goto no_mem;
                            cur.NullRow = true;
                            cur.PseudoTableReg = op.P2;
                            cur.IsTable = true;
                            cur.IsIndex = false;
                            cur.MultiPseudo = op.P5;
                            break;
                        }
                    case OP.Close:
                        {
                            // Opcode: Close P1 * * * *
                            //
                            // Close a cursor previously opened as P1.  If P1 is not currently open, this instruction is a no-op.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            FreeCursor(Cursors[op.P1]);
                            Cursors[op.P1] = null;
                            break;
                        }
                    case OP.SeekLt: // jump, in3
                    case OP.SeekLe: // jump, in3
                    case OP.SeekGe: // jump, in3
                    case OP.SeekGt: // jump, in3
                        {
                            // Opcode: SeekGe P1 P2 P3 P4 *
                            //
                            // If cursor P1 refers to an SQL table (B-Tree that uses integer keys), use the value in register P3 as the key.  If cursor P1 refers 
                            // to an SQL index, then P3 is the first in an array of P4 registers that are used as an unpacked index key. 
                            //
                            // Reposition cursor P1 so that  it points to the smallest entry that is greater than or equal to the key value. If there are no records 
                            // greater than or equal to the key and P2 is not zero, then jump to P2.
                            //
                            // See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
                            //
                            // Opcode: SeekGt P1 P2 P3 P4 *
                            //
                            // If cursor P1 refers to an SQL table (B-Tree that uses integer keys), use the value in register P3 as a key. If cursor P1 refers 
                            // to an SQL index, then P3 is the first in an array of P4 registers that are used as an unpacked index key. 
                            //
                            // Reposition cursor P1 so that  it points to the smallest entry that is greater than the key value. If there are no records greater than 
                            // the key and P2 is not zero, then jump to P2.
                            //
                            // See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
                            //
                            // Opcode: SeekLt P1 P2 P3 P4 * 
                            //
                            // If cursor P1 refers to an SQL table (B-Tree that uses integer keys), use the value in register P3 as a key. If cursor P1 refers 
                            // to an SQL index, then P3 is the first in an array of P4 registers that are used as an unpacked index key. 
                            //
                            // Reposition cursor P1 so that  it points to the largest entry that is less than the key value. If there are no records less than 
                            // the key and P2 is not zero, then jump to P2.
                            //
                            // See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
                            //
                            // Opcode: SeekLe P1 P2 P3 P4 *
                            //
                            // If cursor P1 refers to an SQL table (B-Tree that uses integer keys), use the value in register P3 as a key. If cursor P1 refers 
                            // to an SQL index, then P3 is the first in an array of P4 registers that are used as an unpacked index key. 
                            //
                            // Reposition cursor P1 so that it points to the largest entry that is less than or equal to the key value. If there are no records 
                            // less than or equal to the key and P2 is not zero, then jump to P2.
                            //
                            // See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
                            int res = 0;
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            Debug.Assert(op.P2 != 0);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.PseudoTableReg == 0);
                            Debug.Assert(OP.SeekLe == OP.SeekLt + 1);
                            Debug.Assert(OP.SeekGe == OP.SeekLt + 2);
                            Debug.Assert(OP.SeekGt == OP.SeekLt + 3);
                            Debug.Assert(cur.IsOrdered);
                            UnpackedRecord r = new UnpackedRecord();
                            if (cur.Cursor != null)
                            {
                                OP oc = op.Opcode;
                                cur.NullRow = false;
                                if (cur.IsTable)
                                {
                                    // The input value in P3 might be of any type: integer, real, string, blob, or NULL.  But it needs to be an integer before we can do the seek, so covert it.
                                    in3 = mems[op.P3];
                                    ApplyNumericAffinity(in3);
                                    long keyId = IntValue(in3); // The rowid we are to seek to
                                    cur.RowidIsValid = false;

                                    // If the P3 value could not be converted into an integer without loss of information, then special processing is required...
                                    if ((in3.Flags & MEM.Int) == 0)
                                    {
                                        if ((in3.Flags & MEM.Real) == 0)
                                        {
                                            // If the P3 value cannot be converted into any kind of a number, then the seek is not possible, so jump to P2
                                            pc = op.P2 - 1;
                                            break;
                                        }
                                        // If we reach this point, then the P3 value must be a floating point number.
                                        Debug.Assert((in3.Flags & MEM.Real) != 0);

                                        if (keyId == long.MinValue && (in3.R < (double)keyId || in3.R > 0))
                                        {
                                            // The P3 value is too large in magnitude to be expressed as an integer.
                                            res = 1;
                                            if (in3.R < 0)
                                            {
                                                if (oc >= OP.SeekGe)
                                                {
                                                    Debug.Assert(oc == OP.SeekGe || oc == OP.SeekGt);
                                                    rc = Btree.First(cur.Cursor, ref res);
                                                    if (rc != RC.OK)
                                                        goto abort_due_to_error;
                                                }
                                            }
                                            else
                                            {
                                                if (oc <= OP.SeekLe)
                                                {
                                                    Debug.Assert(oc == OP.SeekLt || oc == OP.SeekLe);
                                                    rc = Btree.Last(cur.Cursor, ref res);
                                                    if (rc != RC.OK)
                                                        goto abort_due_to_error;
                                                }
                                            }
                                            if (res != 0)
                                                pc = op.P2 - 1;
                                            break;
                                        }
                                        else if (oc == OP.SeekLt || oc == OP.SeekGe)
                                        {
                                            // Use the ceiling() function to convert real.int
                                            if (in3.R > (double)keyId) keyId++;
                                        }
                                        else
                                        {
                                            // Use the floor() function to convert real.int
                                            Debug.Assert(oc == OP.SeekLe || oc == OP.SeekGt);
                                            if (in3.R < (double)keyId) keyId--;
                                        }
                                    }
                                    rc = Btree.MovetoUnpacked(cur.Cursor, null, keyId, 0, ref res);
                                    if (rc != RC.OK)
                                        goto abort_due_to_error;
                                    if (res == 0)
                                    {
                                        cur.RowidIsValid = true;
                                        cur.LastRowid = keyId;
                                    }
                                }
                                else
                                {
                                    int fields = op.P4.I;
                                    Debug.Assert(op.P4Type == P4T.INT32);
                                    Debug.Assert(fields > 0);
                                    r.KeyInfo = cur.KeyInfo;
                                    r.Fields = (ushort)fields;

                                    // The next line of code computes as follows, only faster:
                                    //   r.Flags = (oc == OP_SeekGt || oc == OP_SeekLe ? UNPACKED_INCRKEY : 0);
                                    r.Flags = (UNPACKED)((int)UNPACKED.INCRKEY * (1 & ((int)oc - (int)OP.SeekLt)));
                                    Debug.Assert(oc != OP.SeekGt || r.Flags == UNPACKED.INCRKEY);
                                    Debug.Assert(oc != OP.SeekLe || r.Flags == UNPACKED.INCRKEY);
                                    Debug.Assert(oc != OP.SeekGe || r.Flags == 0);
                                    Debug.Assert(oc != OP.SeekLt || r.Flags == 0);

                                    r.Mems = new Mem[r.Fields]; for (int i = 0; i < r.Fields; i++)
                                    {
                                        r.Mems[i] = mems[op.P3 + i]; //: r.mems = mems[op.P3];
#if DEBUG
                                        Debug.Assert(E.MemIsValid(r.Mems[i]));
#endif
                                    }
                                    E.ExpandBlob(r.Mems[0]);
                                    rc = Btree.MovetoUnpacked(cur.Cursor, r, 0, 0, ref res);
                                    if (rc != RC.OK)
                                        goto abort_due_to_error;
                                    cur.RowidIsValid = false;
                                }
                                cur.DeferredMoveto = false;
                                cur.CacheStatus = CACHE_STALE;
#if TEST
                                f_search_count++;
#endif
                                if (oc >= OP.SeekGe)
                                {
                                    Debug.Assert(oc == OP.SeekGe || oc == OP.SeekGt);
                                    if (res < 0 || (res == 0 && oc == OP.SeekGt))
                                    {
                                        rc = Btree.Next(cur.Cursor, ref res);
                                        if (rc != Rc.OK) goto abort_due_to_error;
                                        cur.RowidIsValid = false;
                                    }
                                    else
                                        res = 0;
                                }
                                else
                                {
                                    Debug.Assert(oc == OP.SeekLt || oc == OP.SeekLe);
                                    if (res > 0 || (res == 0 && oc == OP.SeekLt))
                                    {
                                        rc = Btree.Previous(cur.Cursor, ref res);
                                        if (rc != RC.OK) goto abort_due_to_error;
                                        cur.RowidIsValid = false;
                                    }
                                    else
                                        res = (Btree.Eof(cur.Cursor) ? 1 : 0); // res might be negative because the table is empty.  Check to see if this is the case.
                                }
                                Debug.Assert(op.P2 > 0);
                                if (res != 0)
                                    pc = op.P2 - 1;
                            }
                            else
                                // This happens when attempting to open the sqlite3_master table for read access returns SQLITE_EMPTY. In this case always
                                // take the jump (since there are no records in the table).
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.Seek: // in2
                        {
                            // Opcode: Seek P1 P2 * * *
                            //
                            // P1 is an open table cursor and P2 is a rowid integer.  Arrange for P1 to move so that it points to the rowid given by P2.
                            //
                            // This is actually a deferred seek.  Nothing actually happens until the cursor is used to read a record.  That way, if no reads
                            // occur, no unnecessary I/O happens.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(C._ALWAYS(cur != null));
                            if (cur.Cursor != null)
                            {
                                Debug.Assert(cur.IsTable);
                                cur.NullRow = false;
                                in2 = mems[op.P2];
                                cur.MovetoTarget = IntValue(in2);
                                cur.RowidIsValid = false;
                                cur.DeferredMoveto = true;
                            }
                            break;
                        }
                    case OP.NotFound: // jump, in3
                    case OP.Found: // jump, in3
                        {
                            // Opcode: Found P1 P2 P3 P4 *
                            //
                            // If P4==0 then register P3 holds a blob constructed by MakeRecord.  If P4>0 then register P3 is the first of P4 registers that form an unpacked record.
                            //
                            // Cursor P1 is on an index btree.  If the record identified by P3 and P4 is a prefix of any entry in P1 then a jump is made to P2 and
                            // P1 is left pointing at the matching entry.
                            //
                            // Opcode: NotFound P1 P2 P3 P4 *
                            //
                            // If P4==0 then register P3 holds a blob constructed by MakeRecord.  If P4>0 then register P3 is the first of P4 registers that form an unpacked record.
                            // 
                            // Cursor P1 is on an index btree.  If the record identified by P3 and P4 is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
                            // does contain an entry whose prefix matches the P3/P4 record then control falls through to the next instruction and P1 is left pointing at the matching entry.
                            //
                            // See also: Found, NotExists, IsUnique
                            int res = 0;
#if TEST
                            g_found_count++;
#endif
                            bool alreadyExists = false;
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            Debug.Assert(op.P4Type == Vdbe.P4T.INT32);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            in3 = mems[op.P3];
                            if (C._ALWAYS(cur.Cursor != null))
                            {
                                Debug.Assert(!cur.IsTable);
                                UnpackedRecord idxKey;
                                UnpackedRecord r = new UnpackedRecord();
                                if (op.P4.I > 0)
                                {
                                    r.KeyInfo = cur.KeyInfo;
                                    r.Fields = (ushort)op.P4.I;
                                    r.Mems = new Mem[r.Fields]; for (int i = 0; i < r.Mems.Length; i++)
                                    {
                                        r.Mems[i] = mems[op.P3 + i]; //: r.mems = mems[op.P3];
#if DEBUG
                                        Debug.Assert(E.MemIsValid(r.Mems[i]));
#endif
                                    }
                                    r.Flags = UNPACKED.PREFIX_MATCH;
                                    idxKey = r;
                                }
                                else
                                {
                                    //UnpackedRecord tempRecs = new UnpackedRecord();
                                    idxKey = AllocUnpackedRecord(cur.KeyInfo);
                                    if (idxKey == null) goto no_mem;
                                    Debug.Assert((in3.Flags & MEM.Blob) != 0);
                                    Debug.Assert((in3.Flags & MEM.Zero) == 0); // zeroblobs already expanded
                                    idxKey = RecordUnpack(cur.KeyInfo, in3.N, in3.Z_, idxKey);
                                    idxKey.Flags |= UNPACKED.PREFIX_MATCH;
                                }
                                rc = Btree.MovetoUnpacked(cur.Cursor, idxKey, 0, 0, ref res);
                                //if (op.P4.I == 0)
                                //    DeleteUnpackedRecord(idxKey);
                                if (rc != RC.OK)
                                    break;
                                alreadyExists = (res == 0);
                                cur.DeferredMoveto = false;
                                cur.CacheStatus = CACHE_STALE;
                            }
                            if (op.Opcode == OP.Found)
                            {
                                if (alreadyExists) pc = op.P2 - 1;
                            }
                            else
                            {
                                if (!alreadyExists) pc = op.P2 - 1;
                            }
                            break;
                        }
                    case OP.IsUnique: // jump, in3
                        {
                            // Opcode: IsUnique P1 P2 P3 P4 *
                            //
                            // Cursor P1 is open on an index b-tree - that is to say, a btree which no data and where the key are records generated by OP_MakeRecord with
                            // the list field being the integer ROWID of the entry that the index entry refers to.
                            //
                            // The P3 register contains an integer record number. Call this record number R. Register P4 is the first in a set of N contiguous registers
                            // that make up an unpacked index key that can be used with cursor P1. The value of N can be inferred from the cursor. N includes the rowid
                            // value appended to the end of the index record. This rowid value may or may not be the same as R.
                            //
                            // If any of the N registers beginning with register P4 contains a NULL value, jump immediately to P2.
                            //
                            // Otherwise, this instruction checks if cursor P1 contains an entry where the first (N-1) fields match but the rowid value at the end
                            // of the index entry is not R. If there is no such entry, control jumps to instruction P2. Otherwise, the rowid of the conflicting index
                            // entry is copied to register P3 and control falls through to the next instruction.
                            //
                            // See also: NotFound, NotExists, Found
                            in3 = mems[op.P3];
                            // Assert that the values of parameters P1 and P4 are in range.
                            Debug.Assert(op.P4Type == P4T.INT32);
                            Debug.Assert(op.P4.I > 0 && op.P4.I <= Mems.length);
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);

                            // Find the index cursor.
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(!cur.DeferredMoveto);
                            cur.SeekResult = 0;
                            cur.CacheStatus = CACHE_STALE;
                            Btree.BtCursor crsr = cur.Cursor;

                            // If any of the values are NULL, take the jump.
                            ushort fields = cur.KeyInfo.Fields;
                            Mem[] maxs = new Mem[fields + 1];
                            for (ushort ii = 0; ii < fields; ii++)
                            {
                                maxs[ii] = mems[op.P4.I + ii];
                                if ((maxs[ii].Flags & MEM.Null) != 0)
                                {
                                    pc = op.P2 - 1;
                                    crsr = null;
                                    break;
                                }
                            }
                            maxs[fields] = new Mem();
                            Debug.Assert((maxs[fields].Flags & MEM.Null) == 0);

                            if (crsr != null)
                            {
                                // Populate the index search key.
                                UnpackedRecord r = new UnpackedRecord(); // B-Tree index search key
                                r.KeyInfo = cur.KeyInfo;
                                r.Fields = (ushort)(fields + 1);
                                r.Flags = UNPACKED.PREFIX_SEARCH;
                                r.Mems = maxs;
#if DEBUG
                                for (int i = 0; i < r.Fields; i++) Debug.Assert(E.MemIsValid(r.Mems[i]));
#endif
                                // Extract the value of R from register P3.
                                MemIntegerify(in3);
                                long R = in3.u.I; // Rowid stored in register P3

                                // Search the B-Tree index. If no conflicting record is found, jump to P2. Otherwise, copy the rowid of the conflicting record to
                                // register P3 and fall through to the next instruction.
                                rc = Btree.MovetoUnpacked(crsr, r, 0, 0, ref cur.SeekResult);
                                if ((r.Flags & UNPACKED.PREFIX_SEARCH) != 0 || r.Rowid == R)
                                    pc = op.P2 - 1;
                                else
                                    in3.u.I = r.Rowid;
                            }
                            break;
                        }
                    case OP.NotExists: // jump, in3
                        {
                            // Opcode: NotExists P1 P2 P3 * *
                            //
                            // Use the content of register P3 as an integer key.  If a record with that key does not exist in table of P1, then jump to P2. 
                            // If the record does exist, then fall through.  The cursor is left pointing to the record if it exists.
                            //
                            // The difference between this operation and NotFound is that this operation assumes the key is an integer and that P1 is a table whereas
                            // NotFound assumes key is a blob constructed from MakeRecord and P1 is an index.
                            //
                            // See also: Found, NotFound, IsUnique
                            int res;
                            in3 = mems[op.P3];
                            Debug.Assert((in3.Flags & MEM.Int) != 0);
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.IsTable);
                            Debug.Assert(cur.PseudoTableReg == 0);
                            Btree.BtCursor crsr = cur.Cursor;
                            if (crsr != null)
                            {
                                res = 0;
                                long keyId = in3.u.I;
                                rc = Btree.MovetoUnpacked(crsr, null, (long)keyId, 0, ref res);
                                cur.LastRowid = in3.u.I;
                                cur.RowidIsValid = (res == 0);
                                cur.NullRow = false;
                                cur.CacheStatus = CACHE_STALE;
                                cur.DeferredMoveto = false;
                                if (res != 0)
                                {
                                    pc = op.P2 - 1;
                                    Debug.Assert(!cur.RowidIsValid);
                                }
                                cur.SeekResult = res;
                            }
                            else
                            {
                                // This happens when an attempt to open a read cursor on the sqlite_master table returns SQLITE_EMPTY.
                                pc = op.P2 - 1;
                                Debug.Assert(!cur.RowidIsValid);
                                cur.SeekResult = 0;
                            }
                            break;
                        }
                    case OP.Sequence:// out2-prerelease
                        {
                            // Opcode: Sequence P1 P2 * * *
                            //
                            // Find the next available sequence number for cursor P1. Write the sequence number into register P2.
                            // The sequence number on the cursor is incremented after this instruction.  
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            Debug.Assert(Cursors[op.P1] != null);
                            out_.u.I = (long)Cursors[op.P1].SeqCount++;
                            break;
                        }
                    case OP.NewRowid: // out2-prerelease
                        {
                            // Opcode: NewRowid P1 P2 P3 * *
                            //
                            // Get a new integer record number (a.k.a "rowid") used as the key to a table. The record number is not previously used as a key in the database
                            // table that cursor P1 points to.  The new record number is written written to register P2.
                            //
                            // If P3>0 then P3 is a register in the root frame of this VDBE that holds the largest previously generated record number. No new record numbers are
                            // allowed to be less than this value. When this value reaches its maximum, an SQLITE_FULL error is generated. The P3 register is updated with the '
                            // generated record number. This P3 mechanism is used to help implement the AUTOINCREMENT feature.
                            long v = 0; // The new rowid
                            int res = 0; // Result of an sqlite3BtreeLast()
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1]; // Cursor of table to get the new rowid
                            Debug.Assert(cur != null);
                            if (C._NEVER(cur.Cursor == null))
                            { } // The zero initialization above is all that is needed
                            else
                            {
#if _32BIT_ROWID                                
                                const int MAX_ROWID = int.MaxValue;
#else
                                const long MAX_ROWID = long.MaxValue; // Some compilers complain about constants of the form 0x7fffffffffffffff. Others complain about 0x7ffffffffffffffffLL.  The following macro seems to provide the constant while making all compilers happy.
#endif
                                // The next rowid or record number (different terms for the same thing) is obtained in a two-step algorithm.
                                //
                                // First we attempt to find the largest existing rowid and add one to that.  But if the largest existing rowid is already the maximum
                                // positive integer, we have to fall through to the second probabilistic algorithm
                                //
                                // The second algorithm is to select a rowid at random and see if it already exists in the table.  If it does not exist, we have
                                // succeeded.  If the random rowid does exist, we select a new one and try again, up to 100 times.
                                Debug.Assert(cur.IsTable);
                                if (!cur.UseRandomRowid)
                                {
                                    v = Btree.GetCachedRowid(cur.Cursor);
                                    if (v == 0)
                                    {
                                        rc = Btree.Last(cur.Cursor, ref res);
                                        if (rc != RC.OK)
                                            goto abort_due_to_error;
                                        if (res != 0)
                                            v = 1; // IMP: R-61914-48074
                                        else
                                        {
                                            Debug.Assert(Btree.CursorIsValid(cur.Cursor));
                                            rc = Btree.KeySize(cur.Cursor, ref v);
                                            Debug.Assert(rc == RC.OK); // Cannot fail following BtreeLast()
                                            if (v == MAX_ROWID)
                                                cur.UseRandomRowid = true;
                                            else
                                                v++; // IMP: R-29538-34987
                                        }
                                    }
#if !OMIT_AUTOINCREMENT
                                    if (op.P3 != 0)
                                    {
                                        // Assert that P3 is a valid memory cell.
                                        Debug.Assert(op.P3 > 0);
                                        Mem mem; // Register holding largest rowid for AUTOINCREMENT
                                        VdbeFrame frame; // Root frame of VDBE
                                        if (Frames != null)
                                        {
                                            for (frame = Frames; frame.Parent != null; frame = frame.Parent) ;
                                            // Assert that P3 is a valid memory cell.
                                            Debug.Assert(op.P3 <= frame.Mems.length);
                                            mem = frame.Mems[op.P3];
                                        }
                                        else
                                        {
                                            // Assert that P3 is a valid memory cell.
                                            Debug.Assert(op.P3 <= Mems.length);
                                            mem = mems[op.P3];
                                            MemAboutToChange(this, mem);
                                        }
                                        Debug.Assert(E.MemIsValid(mem));

                                        REGISTER_TRACE(op.P3, mem);
                                        MemIntegerify(mem);
                                        Debug.Assert((mem.Flags & MEM.Int) != 0); // mem(P3) holds an integer
                                        if (mem.u.I == MAX_ROWID || cur.UseRandomRowid)
                                        {
                                            rc = RC.FULL; // IMP: R-12275-61338
                                            goto abort_due_to_error;
                                        }
                                        if (v < (mem.u.I + 1))
                                            v = (int)(mem.u.I + 1);
                                        mem.u.I = (long)v;
                                    }
#endif

                                    Btree.SetCachedRowid(cur.Cursor, (v < MAX_ROWID ? v + 1 : 0));
                                }
                                if (cur.UseRandomRowid)
                                {
                                    // IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the largest possible integer (9223372036854775807) then the database
                                    // engine starts picking positive candidate ROWIDs at random until it finds one that is not previously used. */
                                    Debug.Assert(op.P3 == 0); // We cannot be in random rowid mode if this is an AUTOINCREMENT table. on the first attempt, simply do one more than previous
                                    v = lastRowid;
                                    v &= (MAX_ROWID >> 1); // ensure doesn't go negative
                                    v++; // ensure non-zero
                                    int cnt = 0; // Counter to limit the number of searches
                                    while ((rc = Btree.MovetoUnpacked(cur.Cursor, null, v, 0, ref res)) == RC.OK && res == 0 && ++cnt < 100)
                                    {
                                        // collision - try another random rowid
                                        SysEx.PutRandom(sizeof(long), ref v);
                                        if (cnt < 5)
                                            v &= 0xffffff; // try "small" random rowids for the initial attempts
                                        else
                                            v &= (MAX_ROWID >> 1); // ensure doesn't go negative
                                        v++; // ensure non-zero
                                    }
                                    if (rc == RC.OK && res == 0)
                                    {
                                        rc = RC.FULL; // IMP: R-38219-53002
                                        goto abort_due_to_error;
                                    }
                                    Debug.Assert(v > 0); // EV: R-40812-03570
                                }
                                cur.RowidIsValid = false;
                                cur.DeferredMoveto = false;
                                cur.CacheStatus = CACHE_STALE;
                            }
                            out_.u.I = (long)v;
                            break;
                        }
                    case OP.Insert:
                    case OP.InsertInt:
                        {
                            // Opcode: Insert P1 P2 P3 P4 P5
                            //
                            // Write an entry into the table of cursor P1.  A new entry is created if it doesn't already exist or the data for an existing
                            // entry is overwritten.  The data is the value MEM_Blob stored in register number P2. The key is stored in register P3. The key must
                            // be a MEM_Int.
                            //
                            // If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
                            // then rowid is stored for subsequent return by the sqlite3_last_insert_rowid() function (otherwise it is unmodified).
                            //
                            // If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of the last seek operation (OP_NotExists) was a success, then this
                            // operation will not attempt to find the appropriate row before doing the insert but will instead overwrite the row that the cursor is
                            // currently pointing to.  Presumably, the prior OP_NotExists opcode has already positioned the cursor correctly.  This is an optimization
                            // that boosts performance by avoiding redundant seeks.
                            //
                            // If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an UPDATE operation.  Otherwise (if the flag is clear) then this opcode
                            // is part of an INSERT operation.  The difference is only important to the update hook.
                            //
                            // Parameter P4 may point to a string containing the table-name, or may be NULL. If it is not NULL, then the update-hook 
                            // (sqlite3.xUpdateCallback) is invoked following a successful insert.
                            //
                            // (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically allocated, then ownership of P2 is transferred to the pseudo-cursor
                            // and register P2 becomes ephemeral.  If the cursor is changed, the value of register P2 will then change.  Make sure this does not
                            // cause any problems.)
                            //
                            // This instruction only works on tables.  The equivalent instruction for indices is OP_IdxInsert.
                            //
                            // Opcode: InsertInt P1 P2 P3 P4 P5
                            //
                            // This works exactly like OP_Insert except that the key is the integer value P3, not the value of the integer stored in register P3.
                            Mem data = mems[op.P2]; // MEM cell holding data for the record to be inserted
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            Debug.Assert(E.MemIsValid(data));
                            VdbeCursor cur = Cursors[op.P1]; // Cursor to table into which insert is written
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.Cursor != null);
                            Debug.Assert(cur.PseudoTableReg == 0);
                            Debug.Assert(cur.IsTable);
                            REGISTER_TRACE(op.P2, data);

                            long keyId; // The integer ROWID or key for the record to be inserted
                            if (op.Opcode == OP.Insert)
                            {
                                Mem key = mems[op.P3]; // MEM cell holding key  for the record
                                Debug.Assert((key.Flags & MEM.Int) != 0);
                                Debug.Assert(E.MemIsValid(key));
                                REGISTER_TRACE(op.P3, key);
                                keyId = key.u.I;
                            }
                            else
                            {
                                Debug.Assert(op.Opcode == OP.InsertInt);
                                keyId = op.P3;
                            }

                            if (((OPFLAG)op.P5 & OPFLAG.NCHANGE) != 0) Changes++;
                            if (((OPFLAG)op.P5 & OPFLAG.LASTROWID) != 0) ctx.LastRowID = lastRowid = keyId;
                            if ((data.Flags & MEM.Null) != 0)
                            {
                                data.Z_ = null;
                                data.Z = null;
                                data.N = 0;
                            }
                            else
                                Debug.Assert((data.Flags & (MEM.Blob | MEM.Str)) != 0);
                            int seekResult = (((OPFLAG)op.P5 & OPFLAG.USESEEKRESULT) != 0 ? cur.SeekResult : 0); // Result of prior seek or 0 if no USESEEKRESULT flag
                            int zeros = ((data.Flags & MEM.Zero) != 0 ? data.u.Zeros : 0); // Number of zero-bytes to append
                            rc = Btree.Insert(cur.Cursor, null, keyId, data.Z_, data.N, zeros, ((OPFLAG)op.P5 & OPFLAG.APPEND) != 0 ? 1 : 0, seekResult);
                            cur.RowidIsValid = false;
                            cur.DeferredMoveto = false;
                            cur.CacheStatus = CACHE_STALE;

                            // Invoke the update-hook if required.
                            if (rc == RC.OK && ctx.UpdateCallback != null && op.P4.Z != null)
                            {
                                string dbName = ctx.DBs[cur.Db].Name; // database name - used by the update hook
                                string tableName = op.P4.Z; // Table name - used by the opdate hook
                                int op2 = (((OPFLAG)op.P5 & OPFLAG.ISUPDATE) != 0 ? AUTH.UPDATE : AUTH.INSERT); // Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT
                                Debug.Assert(cur.IsTable);
                                ctx.UpdateCallback(ctx.UpdateArg, op2, dbName, tableName, keyId);
                                Debug.Assert(cur.Db >= 0);
                            }
                            break;
                        }
                    case OP.Delete:
                        {
                            // Opcode: Delete P1 P2 * P4 *
                            //
                            // Delete the record at which the P1 cursor is currently pointing.
                            //
                            // The cursor will be left pointing at either the next or the previous record in the table. If it is left pointing at the next record, then
                            // the next Next instruction will be a no-op.  Hence it is OK to delete a record from within an Next loop.
                            //
                            // If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is incremented (otherwise not).
                            //
                            // P1 must not be pseudo-table.  It has to be a real table with multiple rows.
                            //
                            // If P4 is not NULL, then it is the name of the table that P1 is pointing to.  The update hook will be invoked, if it exists.
                            // If P4 is not NULL then the P1 cursor must have been positioned using OP_NotFound prior to invoking this opcode.
                            long keyId = 0;
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.Cursor != null); // Only valid for real tables, no pseudotables

                            // If the update-hook will be invoked, set iKey to the rowid of the row being deleted.
                            if (ctx.UpdateCallback != null && op.P4.Z != null)
                            {
                                Debug.Assert(cur.IsTable);
                                Debug.Assert(cur.RowidIsValid); // lastRowid set by previous OP_NotFound
                                keyId = cur.LastRowid;
                            }

                            // The OP_Delete opcode always follows an OP_NotExists or OP_Last or OP_Column on the same table without any intervening operations that
                            // might move or invalidate the cursor.  Hence cursor cur is always pointing to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
                            // below is always a no-op and cannot fail.  We will run it anyhow, though, to guard against future changes to the code generator.
                            Debug.Assert(!cur.DeferredMoveto);
                            rc = CursorMoveto(cur);
                            if (C._NEVER(rc != RC.OK)) goto abort_due_to_error;

                            Btree.SetCachedRowid(cur.Cursor, 0);
                            rc = Btree.Delete(cur.Cursor);
                            cur.CacheStatus = CACHE_STALE;

                            // Invoke the update-hook if required.
                            if (rc == RC.OK && ctx.UpdateCallback != null && op.P4.Z != null)
                            {
                                string dbName = ctx.DBs[cur.Db].Name;
                                string tableName = op.P4.Z;
                                ctx.UpdateCallback(ctx.UpdateArg, AUTH.DELETE, dbName, tableName, keyId);
                                Debug.Assert(cur.Db >= 0);
                            }
                            if (((OPFLAG)op.P2 & OPFLAG.NCHANGE) != 0) Changes++;
                            break;
                        }
                    case OP.ResetCount:
                        {
                            // Opcode: ResetCount * * * * *
                            //
                            // The value of the change counter is copied to the database handle change counter (returned by subsequent calls to sqlite3_changes()).
                            // Then the VMs internal change counter resets to 0. This is used by trigger programs.
                            SetChanges(ctx, Changes);
                            Changes = 0;
                            break;
                        }
                    case OP.SorterCompare:
                        {
                            // Opcode: SorterCompare P1 P2 P3
                            //
                            // P1 is a sorter cursor. This instruction compares the record blob in register P3 with the entry that the sorter cursor currently points to.
                            // If, excluding the rowid fields at the end, the two records are a match, fall through to the next instruction. Otherwise, jump to instruction P2.
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(IsSorter(cur));
                            in3 = mems[op.P3];
                            int res;
                            rc = SorterCompare(cur, in3, ref res);
                            if (res != 0)
                                pc = op.P2 - 1;
                            break;
                        };
                    case OP.SorterData:
                        {
                            // Opcode: SorterData P1 P2 * * *
                            //
                            // Write into register P2 the current sorter data for sorter cursor P1.
                            out_ = mems[op.P2];
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur.IsSorter);
                            rc = SorterRowkey(cur, out_);
                            break;
                        }
                    case OP.RowKey:
                    case OP.RowData:
                        {
                            // Opcode: RowData P1 P2 * * *
                            //
                            // Write into register P2 the complete row data for cursor P1. There is no interpretation of the data.  
                            // It is just copied onto the P2 register exactly as it is found in the database file.
                            //
                            // If the P1 cursor must be pointing to a valid row (not a NULL row) of a real table, not a pseudo-table.
                            //
                            // Opcode: RowKey P1 P2 * * *
                            //
                            // Write into register P2 the complete row key for cursor P1. There is no interpretation of the data.  
                            // The key is copied onto the P3 register exactly as it is found in the database file.
                            //
                            // If the P1 cursor must be pointing to a valid row (not a NULL row) of a real table, not a pseudo-table.
                            out_ = mems[op.P2];
                            MemAboutToChange(this, out_);

                            // Note that RowKey and RowData are really exactly the same instruction
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(!cur.IsSorter);
                            Debug.Assert(cur.IsTable || op.Opcode == OP.RowKey);
                            Debug.Assert(cur.IsIndex || op.Opcode == OP.RowData);
                            Debug.Assert(cur != null);
                            Debug.Assert(!cur.NullRow);
                            Debug.Assert(cur.PseudoTableReg == false);
                            Debug.Assert(cur.Cursor != null);
                            Btree.BtCursor crsr = cur.Cursor;
                            Debug.Assert(Btree.CursorIsValid(crsr));

                            // The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or OP_Rewind/Op_Next with no intervening instructions that might invalidate
                            // the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always a no-op and can never fail.  But we leave it in place as a safety.
                            Debug.Assert(!cur.DeferredMoveto);
                            rc = CursorMoveto(cur);
                            if (C._NEVER(rc != RC.OK)) goto abort_due_to_error;

                            uint n = 0;
                            long n64 = 0;
                            if (cur.IsIndex)
                            {
                                Debug.Assert(!cur.IsTable);
                                rc = Btree.KeySize(crsr, ref n64);
                                Debug.Assert(rc == RC.OK); // True because of CursorMoveto() call above
                                if (n64 > ctx.Limits[(int)LIMIT.LENGTH])
                                    goto too_big;
                                n = (uint)n64;
                            }
                            else
                            {
                                rc = Btree.DataSize(crsr, ref n);
                                Debug.Assert(rc == RC.OK); // DataSize() cannot fail
                                if (n > (uint)ctx.Limits[(int)LIMIT.LENGTH])
                                    goto too_big;
                            }
                            if (MemGrow(out_, (int)n, false) != 0)
                                goto no_mem;
                            out_.N = (int)n;
                            E.MemSetTypeFlag(out_, MEM.Blob);
                            rc = (cur.IsIndex ? Btree.Key(crsr, 0, n, (out_.Z_ = C._alloc((int)n))) : Btree.Data(crsr, 0, (uint)n, (out_.Z_ = C._alloc((int)crsr.Info.Data))));
                            out_.Encode = TEXTENCODE.UTF8; // In case the blob is ever cast to text
                            UPDATE_MAX_BLOBSIZE(out_);
                            break;
                        }
                    case OP.Rowid: // out2-prerelease
                        {
                            // Opcode: Rowid P1 P2 * * *
                            //
                            // Store in register P2 an integer which is the key of the table entry that P1 is currently point to.
                            //
                            // P1 can be either an ordinary table or a virtual table.  There used to be a separate OP_VRowid opcode for use with virtual tables, but this
                            // one opcode now works for both table types.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.PseudoTableReg == 0 || cur.NullRow);
                            long v = 0;
                            if (cur.NullRow)
                            {
                                out_.Flags = MEM.Null;
                                break;
                            }
                            else if (cur.DeferredMoveto)
                            {
                                v = cur.MovetoTarget;
#if !OMIT_VIRTUALTABLE
                            }
                            else if (cur.VtabCursor != null)
                            {
                                IVTable vtable = cur.VtabCursor.IVTable;
                                ITableModule module = vtable.IModule;
                                Debug.Assert(module.Rowid != null);
                                rc = module.Rowid(cur.VtabCursor, out v);
                                ImportVtabErrMsg(this, vtable);
#endif
                            }
                            else
                            {
                                Debug.Assert(cur.Cursor != null);
                                rc = CursorMoveto(cur);
                                if (rc != 0) goto abort_due_to_error;
                                if (cur.RowidIsValid)
                                    v = cur.LastRowid;
                                else
                                {
                                    rc = Btree.KeySize(cur.Cursor, ref v);
                                    Debug.Assert(rc == RC.OK); // Always so because of CursorMoveto() abov
                                }
                            }
                            out_.u.I = (long)v;
                            break;
                        }
                    case OP.NullRow:
                        {
                            // Opcode: NullRow P1 * * * *
                            //
                            // Move the cursor P1 to a null row.  Any OP_Column operations that occur while the cursor is on the null row will always write a NULL.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            cur.NullRow = true;
                            cur.RowidIsValid = false;
                            if (cur.Cursor != null)
                                Btree.ClearCursor(cur.Cursor);
                            break;
                        }
                    case OP.Last: // jump
                        {
                            // Opcode: Last P1 P2 * * *
                            //
                            // The next use of the Rowid or Column or Next instruction for P1 will refer to the last entry in the database table or index.
                            // If the table or index is empty and P2>0, then jump immediately to P2. If P2 is 0 or if the table or index is not empty, fall through
                            // to the following instruction.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.IsSorter == (op.Opcode == OP.SorterSort));
                            Btree.BtCursor crsr = cur.Cursor;
                            int res = 0;
                            if (C._ALWAYS(crsr != null))
                                rc = Btree.Last(crsr, ref res);
                            cur.NullRow = (res == 1);
                            cur.DeferredMoveto = false;
                            cur.RowidIsValid = false;
                            cur.CacheStatus = CACHE_STALE;
                            if (op.P2 > 0 && res != 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.SorterSort: // jump
                    case OP.Sort: // jump
                        {
                            // Opcode: Sort P1 P2 * * *
                            //
                            // This opcode does exactly the same thing as OP_Rewind except that it increments an undocumented global variable used for testing.
                            //
                            // Sorting is accomplished by writing records into a sorting index, then rewinding that index and playing it back from beginning to
                            // end.  We use the OP_Sort opcode instead of OP_Rewind to do the rewinding so that the global variable will be incremented and
                            // regression tests can determine whether or not the optimizer is correctly optimizing out sorts.
#if TEST
                            g_sort_count++;
                            g_search_count--;
#endif
                            Counters[(int)STMTSTATUS.SORT - 1]++;
                            // Fall through into OP_Rewind
                            goto case OP.Rewind;
                        }
                    case OP.Rewind: // jump
                        {
                            // Opcode: Rewind P1 P2 * * *
                            //
                            // The next use of the Rowid or Column or Next instruction for P1 will refer to the first entry in the database table or index.
                            // If the table or index is empty and P2>0, then jump immediately to P2. If P2 is 0 or if the table or index is not empty, fall through
                            // to the following instruction.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            int res = 1;
                            if (IsSorter(cur))
                                rc = SorterRewind(ctx, cur, ref res);
                            else
                            {
                                Btree.BtCursor crsr = cur.Cursor;
                                Debug.Assert(crsr != null);
                                rc = Btree.First(crsr, ref res);
                                cur.AtFirst = (res == 0);
                                cur.DeferredMoveto = false;
                                cur.CacheStatus = CACHE_STALE;
                                cur.RowidIsValid = false;
                            }
                            cur.NullRow = (res != 0);
                            Debug.Assert(op.P2 > 0 && op.P2 < Ops.length);
                            if (res != 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.SorterNext: // jump
                    case OP.Prev: // jump
                    case OP.Next: // jump
                        {
                            // Opcode: Next P1 P2 * P4 P5
                            //
                            // Advance cursor P1 so that it points to the next key/data pair in its table or index.  If there are no more key/value pairs then fall through
                            // to the following instruction.  But if the cursor advance was successful, jump immediately to P2.
                            //
                            // The P1 cursor must be for a real table, not a pseudo-table.
                            //
                            // P4 is always of type P4T_ADVANCE. The function pointer points to sqlite3BtreeNext().
                            //
                            // If P5 is positive and the jump is taken, then event counter number P5-1 in the prepared statement is incremented.
                            //
                            // See also: Prev
                            //
                            // Opcode: Prev P1 P2 * * P5
                            //
                            // Back up cursor P1 so that it points to the previous key/data pair in its table or index.  If there is no previous key/value pairs then fall through
                            // to the following instruction.  But if the cursor backup was successful, jump immediately to P2.
                            //
                            // The P1 cursor must be for a real table, not a pseudo-table.
                            //
                            // P4 is always of type P4T_ADVANCE. The function pointer points to sqlite3BtreePrevious().
                            //
                            // If P5 is positive and the jump is taken, then event counter number P5-1 in the prepared statement is incremented.
                            CHECK_FOR_INTERRUPT;
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            Debug.Assert(op.P5 <= Counters.Length);
                            VdbeCursor cur = Cursors[op.P1];
                            if (cur == null)
                                break; // See ticket #2273
                            Debug.Assert(cur.IsSorter == (op.Opcode == OP.SorterNext));
                            int res;
                            if (IsSorter(cur))
                            {
                                Debug.Assert(op.Opcode == OP.SorterNext);
                                rc = SorterNext(ctx, cur, ref res);
                            }
                            else
                            {
                                res = 1;
                                Debug.Assert(!cur.DeferredMoveto);
                                Debug.Assert(cur.Cursor != null);
                                Debug.Assert(op.Opcode != OP.Next || op.P4.Advance == Btree.Next_);
                                Debug.Assert(op.Opcode != OP.Prev || op.P4.Advance == Btree.Previous);
                                rc = op.P4.Advance(cur.Cursor, res);
                            }
                            cur.NullRow = (res != 0);
                            cur.CacheStatus = CACHE_STALE;
                            if (res == 0)
                            {
                                pc = op.P2 - 1;
                                if (op.P5) Counters[op.P5 - 1]++;
#if TEST
                                g_search_count++;
#endif
                            }
                            cur.RowidIsValid = false;
                            break;
                        }
                    #region Index
                    case OP.SorterInsert: // in2
                    case OP.IdxInsert: // in2
                        {
                            // Opcode: IdxInsert P1 P2 P3 * P5
                            //
                            // Register P2 holds an SQL index key made using the MakeRecord instructions.  This opcode writes that key
                            // into the index P1.  Data for the entry is nil.
                            //
                            // P3 is a flag that provides a hint to the b-tree layer that this insert is likely to be an append.
                            //
                            // This instruction only works for indices.  The equivalent instruction for tables is OP_Insert.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.IsSorter == (op.Opcode == OP.SorterInsert));
                            in2 = mems[op.P2];
                            Debug.Assert((in2.Flags & MEM.Blob) != 0);
                            BtCursor crsr = cur.Cursor;
                            if (C._ALWAYS(crsr != null))
                            {
                                Debug.Assert(!cur.IsTable);
                                ExpandBlob(in2);
                                if (rc == RC.OK)
                                {
                                    if (IsSorter(cur))
                                        rc = SorterWrite(ctx, cur, in2);
                                    else
                                    {
                                        int keyLength = in2.N;
                                        byte[] key = ((in2.Flags & MEM.Blob) != 0 ? in2.Z_ : Encoding.UTF8.GetBytes(in2.Z));
                                        rc = Btree.Insert(crsr, key, keyLength, null, 0, 0, (op.P3 != 0 ? 1 : 0), (((OPFLAG)op.P5 & OPFLAG.USESEEKRESULT) != 0 ? cur.SeekResult : 0));
                                        Debug.Assert(!cur.DeferredMoveto);
                                        cur.CacheStatus = CACHE_STALE;
                                    }
                                }
                            }
                            break;
                        }
                    case OP.IdxDelete:
                        {
                            // Opcode: IdxDelete P1 P2 P3 * *
                            //
                            // The content of P3 registers starting at register P2 form an unpacked index key. This opcode removes that entry from the 
                            // index opened by cursor P1.
                            Debug.Assert(op.P3 > 0);
                            Debug.Assert(op.P2 > 0 && op.P2 + op.P3 <= Mems.length + 1);
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = p.apCsr[op.P1];
                            Debug.Assert(cur != null);
                            BtCursor crsr = cur.Cursor;
                            if (C._ALWAYS(crsr != null))
                            {

                                UnpackedRecord r = new UnpackedRecord();
                                r.KeyInfo = cur.KeyInfo;
                                r.Fields = (ushort)op.P3;
                                r.Flags = 0;
                                r.Mems = new Mem[r.Fields];
                                for (int ra = 0; ra < r.Fields; ra++)
                                {
                                    r.Mems[ra] = mems[op.P2 + ra];
#if DEBUG
                                    Debug.Assert(MemIsValid(r.Mems[ra]));
#endif
                                }
                                int res = 0;
                                rc = Btree.MovetoUnpacked(crsr, r, 0, 0, ref res);
                                if (rc == RC.OK && res == 0)
                                    rc = Btree.Delete(crsr);
                                Debug.Assert(!cur.DeferredMoveto);
                                cur.CacheStatus = CACHE_STALE;
                            }
                            break;
                        }
                    case OP.IdxRowid: // out2-prerelease
                        {
                            // Opcode: IdxRowid P1 P2 * * *
                            //
                            // Write into register P2 an integer which is the last entry in the record at the end of the index key pointed to by cursor P1.  This integer should be
                            // the rowid of the table entry to which this index entry points.
                            //
                            // See also: Rowid, MakeRecord.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            BtCursor crsr = cur.Cursor;
                            out_.Flags = MEM.Null;
                            if (C._ALWAYS(crsr != null))
                            {
                                rc = Vdbe.CursorMoveto(cur);
                                if (C._NEVER(rc != 0)) goto abort_due_to_error;
                                Debug.Assert(!cur.DeferredMoveto);
                                Debug.Assert(!cur.IsTable);
                                if (!cur.NullRow)
                                {
                                    long rowid = 0;
                                    rc = IdxRowid(ctx, crsr, ref rowid);
                                    if (rc != RC.OK)
                                        goto abort_due_to_error;
                                    out_.u.I = rowid;
                                    out_.Flags = MEM_Int;
                                }
                            }
                            break;
                        }
                    case OP.IdxLT: // jump
                    case OP.IdxGE: // jump
                        {
                            // Opcode: IdxGE P1 P2 P3 P4 P5
                            //
                            // The P4 register values beginning with P3 form an unpacked index key that omits the ROWID.  Compare this key value against the index 
                            // that P1 is currently pointing to, ignoring the ROWID on the P1 index.
                            //
                            // If the P1 index entry is greater than or equal to the key value then jump to P2.  Otherwise fall through to the next instruction.
                            //
                            // If P5 is non-zero then the key value is increased by an epsilon prior to the comparison.  This make the opcode work like IdxGT except
                            // that if the key from register P3 is a prefix of the key in the cursor, the result is false whereas it would be true with IdxGT.
                            //
                            // Opcode: IdxLT P1 P2 P3 P4 P5
                            //
                            // The P4 register values beginning with P3 form an unpacked index key that omits the ROWID.  Compare this key value against the index 
                            // that P1 is currently pointing to, ignoring the ROWID on the P1 index.
                            //
                            // If the P1 index entry is less than the key value then jump to P2. Otherwise fall through to the next instruction.
                            //
                            // If P5 is non-zero then the key value is increased by an epsilon prior to the comparison.  This makes the opcode work like IdxLE.
                            Debug.Assert(op.P1 >= 0 && op.P1 < Cursors.length);
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur != null);
                            Debug.Assert(cur.IsOrdered);
                            if (C._ALWAYS(cur.Cursor != null))
                            {
                                Debug.Assert(!cur.DeferredMoveto);
                                Debug.Assert(op.P5 == 0 || op.P5 == 1);
                                Debug.Assert(op.P4Type == P4T.INT32);
                                UnpackedRecord r = new UnpackedRecord();
                                r.KeyInfo = cur.KeyInfo;
                                r.Fields = (ushort)op.P4.I;
                                r.Flags = (op.P5 != 0 ? UNPACKED.INCRKEY | UNPACKED.IGNORE_ROWID : UNPACKED.IGNORE_ROWID);
                                r.Mems = new Mem[r.Fields];
                                for (int i = 0; i < r.Fields; i++)
                                {
                                    r.Mems[i] = mems[op.P3 + i]; //: r.Mems = mems[op.P3];
#if DEBUG
                                    Debug.Assert(MemIsValid(r.Mems[i]));
#endif
                                }
                                int res = 0;
                                rc = IdxKeyCompare(cur, r, ref res);
                                if (op.Opcode == OP.IdxLT)
                                    res = -res;
                                else
                                {
                                    Debug.Assert(op.Opcode == OP.IdxGE);
                                    res++;
                                }
                                if (res > 0)
                                    pc = op.P2 - 1;
                            }
                            break;
                        }
                    #endregion
                    case OP.Destroy: // out2-prerelease
                        {
                            // Opcode: Destroy P1 P2 P3 * *
                            //
                            // Delete an entire database table or index whose root page in the database file is given by P1.
                            //
                            // The table being destroyed is in the main database file if P3==0.  If P3==1 then the table to be clear is in the auxiliary database file
                            // that is used to store tables create using CREATE TEMPORARY TABLE.
                            //
                            // If AUTOVACUUM is enabled then it is possible that another root page might be moved into the newly deleted root page in order to keep all
                            // root pages contiguous at the beginning of the database.  The former value of the root page that moved - its value before the move occurred -
                            // is stored in register P2.  If no page movement was required (because the table being dropped was already 
                            // the last one in the database) then a zero is stored in register P2. If AUTOVACUUM is disabled then a zero is stored in register P2.
                            //
                            // See also: Clear
                            int cnt;
#if !OMIT_VIRTUALTABLE
                            cnt = 0;
                            for (Vdbe v = ctx.Vdbes; v != null; v = v.Next)
                                if (v.magic == VDBE_MAGIC_RUN && v.inVtabMethod < 2 && v.pc >= 0)
                                    cnt++;
#else
                            cnt = ctx.ActiveVdbeCnt;
#endif
                            out_.Flags = MEM.Null;
                            if (cnt > 1)
                            {
                                rc = RC.LOCKED;
                                ErrorAction = OE.Abort;
                            }
                            else
                            {
                                int db = op.P3;
                                Debug.Assert(cnt == 1);
                                Debug.Assert((BtreeMask & (((yDbMask)1) << db)) != 0);
                                int moved = 0;
                                rc = ctx.DBs[db].Bt.DropTable(op.P1, ref moved);
                                out_.Flags = MEM.Int;
                                out_.u.I = moved;
#if !OMIT_AUTOVACUUM
                                if (rc == RC.OK && moved != 0)
                                {
                                    Parse.RootPageMoved(ctx, db, moved, op.P1);
                                    // All OP_Destroy operations occur on the same btree
                                    Debug.Assert(resetSchemaOnFault == 0 || resetSchemaOnFault == db + 1);
                                    resetSchemaOnFault = (byte)(db + 1);
                                }
#endif
                            }
                            break;
                        }
                    case OP.Clear:
                        {
                            // Opcode: Clear P1 P2 P3
                            //
                            // Delete all contents of the database table or index whose root page in the database file is given by P1.  But, unlike Destroy, do not
                            // remove the table or index from the database file.
                            //
                            // The table being clear is in the main database file if P2==0.  If P2==1 then the table to be clear is in the auxiliary database file
                            // that is used to store tables create using CREATE TEMPORARY TABLE.
                            //
                            // If the P3 value is non-zero, then the table referred to must be an intkey table (an SQL table, not an index). In this case the row change 
                            // count is incremented by the number of rows in the table being cleared. If P3 is greater than zero, then the value stored in register P3 is
                            // also incremented by the number of rows in the table being cleared.
                            //
                            // See also: Destroy
                            int changes = 0;
                            Debug.Assert((BtreeMask & (((yDbMask)1) << op.P2)) != 0);
                            int dummy1 = 0;
                            rc = (op.P3 != 0 ? ctx.DBs[op.P2].Bt.ClearTable(op.P1, ref changes) : ctx.DBs[op.P2].Bt.ClearTable(op.P1, ref dummy1));
                            if (op.P3 != 0)
                            {
                                Changes += changes;
                                if (op.P3 > 0)
                                {
                                    Debug.Assert(E.MemIsValid(mems[op.P3]));
                                    MemAboutToChange(this, mems[op.P3]);
                                    mems[op.P3].u.I += changes;
                                }
                            }
                            break;
                        }
                    case OP.CreateIndex: // out2-prerelease
                    case OP.CreateTable: // out2-prerelease
                        {
                            // Opcode: CreateTable P1 P2 * * *
                            //
                            // Allocate a new table in the main database file if P1==0 or in the auxiliary database file if P1==1 or in an attached database if
                            // P1>1.  Write the root page number of the new table into register P2
                            //
                            // The difference between a table and an index is this:  A table must have a 4-byte integer key and can have arbitrary data.  An index
                            // has an arbitrary key but no data.
                            //
                            // See also: CreateIndex
                            //
                            // Opcode: CreateIndex P1 P2 * * *
                            //
                            // Allocate a new index in the main database file if P1==0 or in the auxiliary database file if P1==1 or in an attached database if
                            // P1>1.  Write the root page number of the new table into register P2.
                            //
                            // See documentation on OP_CreateTable for additional information.
                            int pgid = 0;
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.nDb);
                            Debug.Assert((BtreeMask & (((yDbMask)1) << op.P1)) != 0);
                            Context.DB db = ctx.DBs[op.P1];
                            Debug.Assert(db.Bt != null);
                            int flags = (op.opcode == OP.CreateTable ? BTREE_INTKEY : BTREE_BLOBKEY);
                            rc = db.Bt.CreateTable(ref pgid, flags);
                            out_.u.I = pgid;
                            break;
                        }
                    case OP.ParseSchema:
                        {
                            // Opcode: ParseSchema P1 * * P4 *
                            //
                            // Read and parse all entries from the SQLITE_MASTER table of database P1 that match the WHERE clause P4. 
                            //
                            // This opcode invokes the parser to create a new virtual machine, then runs the new virtual machine.  It is thus a re-entrant opcode.
#if DEBUG
                            // Any prepared statement that invokes this opcode will hold mutexes on every btree.  This is a prerequisite for invoking sqlite3InitCallback().
                            for (db = 0; db < ctx.DBs.length; db++)
                                Debug.Assert(db == 1 || ctx.DBs[db].Bt.HoldsMutex());
#endif
                            db = op.P1;
                            Debug.Assert(db >= 0 && db < ctx.DBs.length);
                            Debug.Assert(E.DbHasProperty(ctx, db, SCHEMA.SchemaLoaded));
                            // Used to be a conditional
                            {
                                masterName = E.SCHEMA_TABLE(db);
                                InitData initData = new InitData();
                                initData.Ctx = ctx;
                                initData.Db = op.P1;
                                initData.ErrMsg = ErrMsg;
                                string sql = C._mtagprintf(ctx, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", ctx.DBs[db].Name, masterName, op.P4.Z);
                                if (sql == null)
                                    rc = RC.NOMEM;
                                else
                                {
                                    Debug.Assert(!ctx.Init.Busy);
                                    ctx.Init.Busy = true;
                                    initData.RC = RC.OK;
                                    //Debug.Assert( 0 == db.mallocFailed );
                                    rc = sqlite3_exec(ctx, sql, Prepare.InitCallback, (object)initData, 0);
                                    if (rc == RC.OK)
                                        rc = initData.RC;
                                    C._tagfree(ctx, ref sql);
                                    ctx.Init.Busy = false;
                                }
                            }
                            if (rc != 0) Parse.ResetAllSchemasOfConnection(ctx);
                            if (rc == RC.NOMEM)
                                goto no_mem;
                            break;
                        }

#if  !OMIT_ANALYZE
                    case OP.LoadAnalysis:
                        {
                            // Opcode: LoadAnalysis P1 * * * *
                            //
                            // Read the sqlite_stat1 table for database P1 and load the content of that table into the internal index hash table.  This will cause
                            // the analysis to be used when preparing all subsequent queries.
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.DBs.length);
                            rc = Analyze.AnalysisLoad(ctx, op.P1);
                            break;
                        }
#endif
                    case OP.DropTable:
                        {
                            // Opcode: DropTable P1 * * P4 *
                            //
                            // Remove the internal (in-memory) data structures that describe the table named P4 in database P1.  This is called after a table
                            // is dropped in order to keep the internal representation of the schema consistent with what is on disk.
                            Parse.UnlinkAndDeleteTable(ctx, op.P1, op.P4.Z);
                            break;
                        }
                    case OP.DropIndex:
                        {
                            // Opcode: DropIndex P1 * * P4 *
                            //
                            // Remove the internal (in-memory) data structures that describe the index named P4 in database P1.  This is called after an index
                            // is dropped in order to keep the internal representation of the schema consistent with what is on disk.
                            Parse.UnlinkAndDeleteIndex(ctx, op.P1, op.P4.Z);
                            break;
                        }
                    case OP.DropTrigger:
                        {
                            // Opcode: DropTrigger P1 * * P4 *
                            //
                            // Remove the internal (in-memory) data structures that describe the trigger named P4 in database P1.  This is called after a trigger
                            // is dropped in order to keep the internal representation of the schema consistent with what is on disk.
                            Trigger.UnlinkAndDeleteTrigger(ctx, op.P1, op.P4.Z);
                            break;
                        }
#if !OMIT_INTEGRITY_CHECK
                    case OP.IntegrityCk:
                        {
                            // Opcode: IntegrityCk P1 P2 P3 * P5
                            //
                            // Do an analysis of the currently open database.  Store in register P1 the text of an error message describing any problems.
                            // If no problems are found, store a NULL in register P1.
                            //
                            // The register P3 contains the maximum number of allowed errors. At most reg(P3) errors will be reported.
                            // In other words, the analysis stops as soon as reg(P1) errors are seen.  Reg(P1) is updated with the number of errors remaining.
                            //
                            // The root page numbers of all tables in the database are integer stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables total.
                            //
                            // If P5 is not zero, the check is done on the auxiliary database file, not the main database file.
                            //
                            // This opcode is used to implement the integrity_check pragma.
                            int rootsLength = op.P2; // Number of tables to check.  (Number of root pages.)
                            Debug.Assert(rootsLength > 0);
                            Pid[] roots = (Pid[])C._alloc(roots, (rootsLength + 1));
                            if (roots == null) goto no_mem;
                            Debug.Assert(op.P3 > 0 && op.P3 <= Mems.length);
                            Mem err = mems[op.P3]; // Register keeping track of errors remaining
                            Debug.Assert((err.Flags & MEM.Int) != 0);
                            Debug.Assert((err.Flags & (MEM.Str | MEM.Blob)) == 0);
                            in1 = mems[op.P1];
                            int j;
                            for (j = 0; j < rootsLength; j++)
                                roots[j] = (int)IntValue(mems[op.P1 + j]); //: in1[j]);
                            roots[j] = 0;
                            Debug.Assert(op.P5 < ctx.nDb);
                            Debug.Assert((p.btreeMask & (((yDbMask)1) << op.P5)) != 0);
                            int errs = 0; // Number of errors reported
                            string z = ctx.DBs[op.P5].Bt.IntegrityCheck(roots, rootsLength, (int)err.u.i, ref errs); // Text of the error report
                            C._tagfree(ctx, ref roots);
                            err.u.I -= errs;
                            MemSetNull(in1);
                            if (errs == 0)
                                Debug.Assert(z == null);
                            else if (z == null)
                                goto no_mem;
                            else
                                MemSetStr(in1, z, -1, TEXTENCODE.UTF8, null);
                            UPDATE_MAX_BLOBSIZE(in1);
                            ChangeEncoding(in1, encoding);
                            break;
                        }
#endif
                    case OP.RowSetAdd: // in1, in2
                        {
                            // Opcode: RowSetAdd P1 P2 * * *
                            //
                            // Insert the integer value held by register P2 into a boolean index held in register P1.
                            //
                            // An assertion fails if P2 is not an integer.
                            in1 = mems[op.P1];
                            in2 = mems[op.P2];
                            Debug.Assert((in2.Flags & MEM.Int) != 0);
                            if ((in1.Flags & MEM.RowSet) == 0)
                            {
                                MemSetRowSet(in1);
                                if ((in1.Flags & MEM.RowSet) == 0) goto no_mem;
                            }
                            sqlite3RowSetInsert(in1.u.RowSet, in2.u.I);
                            break;
                        }
                    case OP.RowSetRead: // jump, in1, ref3
                        {
                            // Opcode: RowSetRead P1 P2 P3 * *
                            //
                            // Extract the smallest value from boolean index P1 and put that value into register P3.  Or, if boolean index P1 is initially empty, leave P3
                            // unchanged and jump to instruction P2.
                            CHECK_FOR_INTERRUPT;
                            in1 = mems[op.P1];
                            long val = 0;
                            if ((in1.Flags & MEM.RowSet) == 0 || sqlite3RowSetNext(in1.u.RowSet, ref val) == 0)
                            {
                                MemSetNull(in1); // The boolean index is empty
                                pc = op.P2 - 1;
                            }
                            else
                                MemSetInt64(mems[op.P3], val); // A value was pulled from the index
                            break;
                        }
                    case OP.RowSetTest: // jump, in1, in3
                        {
                            // Opcode: RowSetTest P1 P2 P3 P4
                            //
                            // Register P3 is assumed to hold a 64-bit integer value. If register P1 contains a RowSet object and that RowSet object contains
                            // the value held in P3, jump to register P2. Otherwise, insert the integer in P3 into the RowSet and continue on to the next opcode.
                            //
                            // The RowSet object is optimized for the case where successive sets of integers, where each set contains no duplicates. Each set
                            // of values is identified by a unique P4 value. The first set must have P4==0, the final set P4=-1.  P4 must be either -1 or
                            // non-negative.  For non-negative values of P4 only the lower 4 bits are significant.
                            //
                            // This allows optimizations: (a) when P4==0 there is no need to test the rowset object for P3, as it is guaranteed not to contain it,
                            // (b) when P4==-1 there is no need to insert the value, as it will never be tested for, and (c) when a value that is part of set X is
                            // inserted, there is no need to search to see if the same value was previously inserted as part of set X (only if it was previously
                            // inserted as part of some other set).
                            in1 = mems[op.P1];
                            in3 = mems[op.P3];
                            int set = op.P4.I;
                            Debug.Assert((in3.Flags & MEM.Int) != 0);
                            // If there is anything other than a rowset object in memory cell P1, delete it now and initialize P1 with an empty rowset
                            if ((in1.Flags & MEM.RowSet) == 0)
                            {
                                MemSetRowSet(in1);
                                if ((in1.Flags & MEM.RowSet) == 0) goto no_mem;
                            }
                            Debug.Assert(op.P4Type == P4T.INT32);
                            Debug.Assert(set == -1 || set >= 0);
                            if (set != 0)
                            {
                                int exists = sqlite3RowSetTest(in1.u.RowSet, (byte)(set >= 0 ? set & 0xf : 0xff), in3.u.I);
                                if (exists != 0)
                                {
                                    pc = op.P2 - 1;
                                    break;
                                }
                            }
                            if (set >= 0)
                                sqlite3RowSetInsert(in1.u.RowSet, in3.u.I);
                            break;
                        }
#if !OMIT_TRIGGER
                    case OP.Program: // jump
                        {
                            // Opcode: Program P1 P2 P3 P4 *
                            //
                            // Execute the trigger program passed as P4 (type P4T_SUBPROGRAM). 
                            //
                            // P1 contains the address of the memory cell that contains the first memory cell in an array of values used as arguments to the sub-program. P2 
                            // contains the address to jump to if the sub-program throws an IGNORE exception using the RAISE() function. Register P3 contains the address 
                            // of a memory cell in this (the parent) VM that is used to allocate the memory required by the sub-vdbe at runtime.
                            //
                            // P4 is a pointer to the VM containing the trigger program.
                            SubProgram program = op.P4.Program; // Sub-program to execute
                            Mem rt = memsLength[op.P3]; // Register to allocate runtime space
                            Debug.Assert(program.Ops.length > 0);

                            // If the p5 flag is clear, then recursive invocation of triggers is disabled for backwards compatibility (p5 is set if this sub-program
                            // is really a trigger, not a foreign key action, and the flag set and cleared by the "PRAGMA recursive_triggers" command is clear).
                            // 
                            // It is recursive invocation of triggers, at the SQL level, that is disabled. In some cases a single trigger may generate more than one 
                            // SubProgram (if the trigger may be executed with more than one different ON CONFLICT algorithm). SubProgram structures associated with a
                            // single trigger all have the same value for the SubProgram.token variable.
                            VdbeFrame frame; // New vdbe frame to execute in
                            if (op.P5 != 0)
                            {
                                int t = program.Token; // Token identifying trigger
                                for (frame = Frames; frame != null && frame.Token != t; frame = frame.Parent) ;
                                if (frame != null) break;
                            }

                            if (FramesLength >= ctx.Limits[(int)LIMIT.TRIGGER_DEPTH])
                            {
                                rc = RC.ERROR;
                                C._setstring(ref ErrMsg, ctx, "too many levels of trigger recursion");
                                break;
                            }

                            // Register pRt is used to store the memory required to save the state of the current program, and the memory required at runtime to execute
                            // the trigger program. If this trigger has been fired before, then pRt is already allocated. Otherwise, it must be initialized.  */
                            int childMems; // Number of memory registers for sub-program
                            if ((rt.Flags & MEM.Frame) == 0)
                            {
                                // SubProgram.nMem is set to the number of memory cells used by the program stored in SubProgram.ops. As well as these, one memory
                                // cell is required for each cursor used by the program. Set local variable nMem (and later, VdbeFrame.nChildMem) to this value.
                                childMems = program.Mems + program.Csrs;
                                //int byte = ROUND8(sizeof(VdbeFrame))
                                //+ childMems * sizeof(Mem)
                                //+ program.nCsr * sizeof(VdbeCursor); // Bytes of runtime space required for sub-program
                                frame = new VdbeFrame();
                                if (!frame)
                                    goto no_mem;
                                MemRelease(rt);
                                rt.Flags = MEM.Frame;
                                rt.u.Frame = frame;

                                frame.V = this;
                                frame.ChildMems = childMems;
                                frame.ChildCursors = program.Csrs;
                                frame.PC = pc;
                                frame.Mems.data = Mems.data;
                                frame.Mems.length = Mems.length;
                                frame.Cursors.data = Cursors.data;
                                frame.Cursors.length = Cursors.length;
                                frame.Ops.data = Ops.data;
                                frame.Ops.length = Ops.length;
                                frame.Token = program.Token;
                                frame.OnceFlags.data = OnceFlags.data;
                                frame.OnceFlags.length = OnceFlags.length;

                                //: C#
                                Mem mem = null; // Used to iterate through memory cells
                                //: childMems is 1 based, so allocate 1 extra cell under C#
                                frame._ChildMems = new Mem[frame.ChildMems + 1];
                                for (int i = 0; i < frame._ChildMems.Length; i++) //: mem = VdbeFrameMem(frame ); mem != end; mem++)
                                {
                                    frame._ChildMems[i] = mem = C._alloc(mem);
                                    mem.Flags = MEM.Invalid;
                                    mem.Ctx = ctx;
                                }
                                frame._ChildCursors = new VdbeCursor[frame.ChildCursors];
                                for (int i = 0; i < frame.ChildCursors; i++)
                                    frame._ChildCursors[i] = new VdbeCursor();
                                frame._ChildOnceFlags = new byte[program.Onces];
                            }
                            else
                            {
                                frame = rt.u.Frame;
                                Debug.Assert(program.Mems + program.Csrs == frame.ChildMems);
                                Debug.Assert(program.Csrs == frame.ChildCursors);
                                Debug.Assert(pc == frame.PC);
                            }

                            FramesLength++;
                            frame.Parent = Frames;
                            frame.LastRowID = lastRowid;
                            frame.Changes = Changes;
                            Changes = 0;
                            Frames = frame;
                            Mems.data = mem = frame._ChildMems; //: &VdbeFrameMem(frame)[-1];
                            Mems.length = frame.ChildMems;
                            Cursors.length = (ushort)frame.ChildCursors;
                            Cursors.data = frame._ChildCursors; //: &mems[Mems.length+1];
                            Ops.data = ops = program.Ops.data;
                            Ops.length = program.Ops.length;
                            OnceFlags.data = frame._ChildOnceFlags; //: &Cursors[Cursors.length];
                            OnceFlags.length = program.Onces;
                            pc = -1;
                            break;
                        }
                    case OP.Param: // out2-prerelease
                        {
                            // Opcode: Param P1 P2 * * *
                            //
                            // This opcode is only ever present in sub-programs called via the OP_Program instruction. Copy a value currently stored in a memory 
                            // cell of the calling (parent) frame to cell P2 in the current frames address space. This is used by trigger programs to access the new.* 
                            // and old.* values.
                            //
                            // The address of the cell in the parent frame is determined by adding the value of the P1 argument to the value of the P1 argument to the
                            // calling OP_Program instruction.
                            VdbeFrame frame = Frames;
                            Mem in_ = frame.Mems[op.P1 + frame.Ops[frame.PC].P1];
                            MemShallowCopy(out_, in_, MEM_Ephem);
                            break;
                        }
#endif
#if !OMIT_FOREIGN_KEY
                    case OP.FkCounter:
                        {
                            // Opcode: FkCounter P1 P2 * * *
                            //
                            // Increment a "constraint counter" by P2 (P2 may be negative or positive). If P1 is non-zero, the database constraint counter is incremented 
                            // (deferred foreign key constraints). Otherwise, if P1 is zero, the statement counter is incremented (immediate foreign key constraints).
                            if (op.P1 != 0)
                                ctx.DeferredCons += op.P2;
                            else
                                FkConstraints += op.P2;
                            break;
                        }
                    case OP.FkIfZero: // jump
                        {
                            // Opcode: FkIfZero P1 P2 * * *
                            //
                            // This opcode tests if a foreign key constraint-counter is currently zero. If so, jump to instruction P2. Otherwise, fall through to the next instruction.
                            //
                            // If P1 is non-zero, then the jump is taken if the database constraint-counter is zero (the one that counts deferred constraint violations). If P1 is
                            // zero, the jump is taken if the statement constraint-counter is zero (immediate foreign key constraint violations).
                            if (op.P1 != 0)
                            {
                                if (ctx.DeferredCons == 0) pc = op.P2 - 1;
                            }
                            else
                            {
                                if (FkConstraints == 0) pc = op.P2 - 1;
                            }
                            break;
                        }
#endif
#if !OMIT_AUTOINCREMENT
                    case OP.MemMax: // in2
                        {
                            // Opcode: MemMax P1 P2 * * *
                            //
                            // P1 is a register in the root frame of this VM (the root frame is different from the current frame if this instruction is being executed
                            // within a sub-program). Set the value of register P1 to the maximum of its current value and the value in register P2.
                            //
                            // This instruction throws an error if the memory cell is not initially an integer.
                            Mem in1_;
                            VdbeFrame frame;
                            if (Frames != null)
                            {
                                for (frame = Frames; frame.Parent != null; frame = frame.Parent) ;
                                in1_ = frame.Mems[op.P1];
                            }
                            else
                                in1_ = mems[op.P1];
                            Debug.Assert(E.MemIsValid(in1_));
                            MemIntegerify(in1_);
                            in2 = mems[op.P2];
                            MemIntegerify(in2);
                            if (in1_.u.I < in2.u.I)
                                in1_.u.I = in2.u.I;
                            break;
                        }
#endif
                    case OP.IfPos: // jump, in1
                        {
                            // Opcode: IfPos P1 P2 * * *
                            //
                            // If the value of register P1 is 1 or greater, jump to P2.
                            //
                            // It is illegal to use this instruction on a register that does not contain an integer.  An assertion fault will result if you try.
                            in1 = mems[op.P1];
                            Debug.Assert((in1.Flags & MEM.Int) != 0);
                            if (in1.u.I > 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.IfNeg: // jump, in1
                        {
                            // Opcode: IfNeg P1 P2 * * *
                            //
                            // If the value of register P1 is less than zero, jump to P2. 
                            //
                            // It is illegal to use this instruction on a register that does not contain an integer.  An assertion fault will result if you try.
                            in1 = mems[op.P1];
                            Debug.Assert((in1.Flags & MEM.Int) != 0);
                            if (in1.u.I < 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.IfZero: // jump, in1
                        {
                            // Opcode: IfZero P1 P2 P3 * *
                            //
                            // The register P1 must contain an integer.  Add literal P3 to the value in register P1.  If the result is exactly 0, jump to P2. 
                            //
                            // It is illegal to use this instruction on a register that does not contain an integer.  An assertion fault will result if you try.
                            in1 = mems[op.P1];
                            Debug.Assert((in1.Flags & MEM.Int) != 0);
                            in1.u.I += op.P3;
                            if (in1.u.I == 0)
                                pc = op.P2 - 1;
                            break;
                        }
                    case OP.AggStep:
                        {
                            // Opcode: AggStep * P2 P3 P4 P5
                            //
                            // Execute the step function for an aggregate.  The function has P5 arguments.   P4 is a pointer to the FuncDef
                            // structure that specifies the function.  Use register P3 as the accumulator.
                            //
                            // The P5 arguments are taken from register P2 and its successors.
                            int n = op.P5;
                            Debug.Assert(n >= 0);
                            Mem[] vals = Args;
                            Debug.AssertMayAbort(vals != null || n == 0);
                            Mem rec; // = mems[op.P2];
                            int i;
                            for (i = 0; i < n; i++)
                            {
                                rec = mems[op.P2 + i];
                                Debug.Assert(E.MemIsValid(rec));
                                vals[i] = rec;
                                MemAboutToChange(this, rec);
                                MemStoreType(rec);
                            }
                            FuncContext fctx = new FuncContext();
                            fctx.Func = op.P4.Func;
                            Debug.Assert(op.P3 > 0 && op.P3 <= Mems.length);
                            Mem mem;
                            fctx.Mem = mem = mems[op.P3];
                            mem.N++;
                            fctx.S.Flags = MEM_Null;
                            fctx.S.Z = null;
                            //ctx.S.Malloc = null;
                            fctx.S.Del = null;
                            fctx.S.Ctx = ctx;
                            fctx.IsError = 0;
                            fctx.Coll = null;
                            fctx.SkipFlag = false;
                            if ((fctx.Func.Flags & FUNC.NEEDCOLL) != 0)
                            {
                                Debug.Assert(pc > 0); //: op > Ops.data
                                Debug.Assert(Ops[pc - 1].P4Type == P4T.COLLSEQ); //: op[-1]
                                Debug.Assert(Ops[pc - 1].Opcode == OP.CollSeq); //: op[-1]
                                fctx.Coll = Ops[pc - 1].P4.Coll; //: op[-1]
                            }
                            fctx.Func.Step(fctx, n, vals); // IMP: R-24505-23230
                            if (fctx.IsError != 0)
                            {
                                C._setstring(ref ErrMsg, fctx, Value_Text(fctx.S));
                                rc = fctx.IsError;
                            }
                            if (fctx.SkipFlag)
                            {
                                Debug.Assert(Ops[pc - 1].Opcode == OP.CollSeq); //: op[-1]
                                i = Ops[pc - 1].P1; //: op[-1]
                                if (i != 0) MemSetInt64(mems[i], 1);
                            }
                            MemRelease(fctx.S);
                            break;
                        }
                    case OP.AggFinal:
                        {
                            // Opcode: AggFinal P1 P2 * P4 *
                            //
                            // Execute the finalizer function for an aggregate.  P1 is the memory location that is the accumulator for the aggregate.
                            //
                            // P2 is the number of arguments that the step function takes and P4 is a pointer to the FuncDef for this function.  The P2
                            // argument is not used by this opcode.  It is only there to disambiguate functions that can take varying numbers of arguments.  The
                            // P4 argument is only needed for the degenerate case where the step function was not previously called.
                            Debug.Assert(op.P1 > 0 && op.P1 <= Mems.length);
                            Mem mem = mems[op.P1];
                            Debug.Assert((mem.Flags & ~(MEM.Null | MEM.Agg)) == 0);
                            rc = MemFinalize(mem, op.P4.Func);
                            mems[op.P1] = mem;
                            if (rc != 0)
                                C._setstring(ref ErrMsg, ctx, Value_Text(mem));
                            ChangeEncoding(mem, encoding);
                            UPDATE_MAX_BLOBSIZE(mem);
                            if (MemTooBig(mem))
                                goto too_big;
                            break;
                        }
#if !OMIT_WAL
                    case OP.Checkpoint:
                        {
                            // Opcode: Checkpoint P1 P2 P3 * *
                            //
                            // Checkpoint database P1. This is a no-op if P1 is not currently in WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
                            // or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns SQLITE_BUSY or not, respectively.  Write the number of pages in the
                            // WAL after the checkpoint into mem[P3+1] and the number of pages in the WAL that have been checkpointed after the checkpoint
                            // completes into mem[P3+2].  However on an error, mem[P3+1] and mem[P3+2] are initialized to -1.
                            int[] res = new int[3]; // Results
                            res[0] = 0;
                            res[1] = res[2] = -1;
                            Debug.Assert(op.P2 == IPager.CHECKPOINT.PASSIVE || op.P2 == IPager.CHECKPOINT.FULL || op.P2 == IPager.CHECKPOINT.RESTART);
                            rc = sqlite3Checkpoint(ctx, op.P1, op.P2, ref res[1], ref res[2]);
                            if (rc == RC.BUSY)
                            {
                                rc = RC.OK;
                                res[0] = 1;
                            }
                            int i;
                            Mem mem;
                            for (i = 0, mem = mems[op.P3]; i < 3; i++)
                            {
                                mem = mems[op.P3 + 1];
                                MemSetInt64(mem, (long)res[i]);
                            }
                            break;
                        }
#endif
#if !OMIT_PRAGMA
                    case OP.JournalMode: // out2-prerelease
                        {
                            // Opcode: JournalMode P1 P2 P3 * P5
                            //
                            // Change the journal mode of database P1 to P3. P3 must be one of the PAGER_JOURNALMODE_XXX values. If changing between the various rollback
                            // modes (delete, truncate, persist, off and memory), this is a simple operation. No IO is required.
                            //
                            // If changing into or out of WAL mode the procedure is more complicated.
                            //
                            // Write a string containing the final journal-mode to register P2.
                            IPager.JOURNALMODE newMode = op.P3; // New journal mode
                            Debug.Assert(newMode == IPager.JOURNALMODE.DELETE || newMode == IPager.JOURNALMODE.TRUNCATE || newMode == IPager.JOURNALMODE.PERSIST || newMode == IPager.JOURNALMODE.OFF || newMode == IPager.JOURNALMODE.JMEMORY || newMode == IPager.JOURNALMODE.WAL || newMode == IPager.JOURNALMODE.JQUERY);
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.DBs.length);

                            Btree bt = ctx.DBs[op.P1].Bt; // Btree to change journal mode of
                            Pager pager = bt.get_Pager(); // Pager associated with pBt
                            IPager.JOURNALMODE oldMode = pager.GetJournalMode(); // The old journal mode
                            if (newMode == IPager.JOURNALMODE.JQUERY) newMode = oldMode;
                            if (!pager.OkToChangeJournalMode()) newMode = oldMode;

#if !OMIT_WAL
                            string filename = pager.get_Filename(true); // Name of database file for pPager

                            // Do not allow a transition to journal_mode=WAL for a database in temporary storage or if the VFS does not support shared memory 
                            if (newMode == IPager.JOURNALMODE.WAL && (filename[0] == 0 || !pager.WalSupported())) // Temp file || No shared-memory support
                                newMode = oldMode;

                            if ((newMode != oldMode) && (oldMode == IPager.JOURNALMODE.WAL || newMode == IPager.JOURNALMODE.WAL))
                            {
                                if (ctx.AutoCommit == 0 || ctx.ActiveVdbeCnt > 1)
                                {
                                    rc = RC.ERROR;
                                    C._setstring(&ErrMsg, ctx, "cannot change %s wal mode from within a transaction", (newMode == IPager.JOURNALMODE.WAL ? "into" : "out of"));
                                    break;
                                }
                                else
                                {
                                    if (oldMode == IPager.JOURNALMODE.WAL)
                                    {
                                        // If leaving WAL mode, close the log file. If successful, the call to PagerCloseWal() checkpoints and deletes the write-ahead-log 
                                        // file. An EXCLUSIVE lock may still be held on the database file after a successful return. 
                                        rc = pager.CloseWal();
                                        if (rc == RC.OK)
                                            pager.SetJournalMode(newMode);
                                    }
                                    else if (oldMode == IPager.JOURNALMODE.JMEMORY)
                                        pager.SetJournalMode(IPager.JOURNALMODE.OFF); // Cannot transition directly from MEMORY to WAL.  Use mode OFF as an intermediate

                                    // Open a transaction on the database file. Regardless of the journal mode, this transaction always uses a rollback journal.
                                    Debug.Assert(!bt.IsInTrans());
                                    if (rc == RC.OK)
                                        rc = bt.SetVersion(newMode == IPager.JOURNALMODE.WAL ? 2 : 1);
                                }
                            }
#endif

                            if (rc != 0)
                                newMode = oldMode;
                            newMode = pager.SetJournalMode(newMode);

                            out_ = mems[op.P2];
                            out_.Flags = MEM.Str | MEM.Static | MEM.Term;
                            out_.Z = Pragma.JournalModename(newMode);
                            out_.N = out_.Z.Length;
                            out_.Encode = TEXTENCODE.UTF8;
                            ChangeEncoding(out_, encoding);
                            break;
                        }
#endif
#if !OMIT_VACUUM && !OMIT_ATTACH
                    case OP.Vacuum:
                        {
                            // Opcode: Vacuum * * * * *
                            //
                            // Vacuum the entire database.  This opcode will cause other virtual machines to be created and run.  It may not be called from within a transaction.                         
                            rc = Vacuum.RunVacuum(ref ErrMsg, ctx);
                            break;
                        }
#endif
#if !OMIT_AUTOVACUUM
                    case OP.IncrVacuum: // jump
                        {
                            // Opcode: IncrVacuum P1 P2 * * *
                            //
                            // Perform a single step of the incremental vacuum procedure on the P1 database. If the vacuum has finished, jump to instruction
                            // P2. Otherwise, fall through to the next instruction.
                            Debug.Assert(op.P1 >= 0 && op.P1 < ctx.DBs.length);
                            Debug.Assert((BtreeMask & (((yDbMask)1) << op.P1)) != 0);
                            Btree bt = ctx.DBs[op.P1].Bt;
                            rc = bt.IncrVacuum();
                            if (rc == RC.DONE)
                            {
                                pc = op.P2 - 1;
                                rc = RC.OK;
                            }
                            break;
                        }
#endif
                    case OP.Expire:
                        {
                            // Opcode: Expire P1 * * * *
                            //
                            // Cause precompiled statements to become expired. An expired statement fails with an error code of SQLITE_SCHEMA if it is ever executed (via sqlite3_step()).
                            // 
                            // If P1 is 0, then all SQL statements become expired. If P1 is non-zero, then only the currently executing statement is affected. 
                            if (op.P1 == 0)
                                ExpirePreparedStatements(ctx);
                            else
                                Expired = true;
                            break;
                        }
#if !OMIT_SHARED_CACHE
                    case OP.TableLock:
                        {
                            // Opcode: TableLock P1 P2 P3 P4 *
                            //
                            // Obtain a lock on a particular table. This instruction is only used when the shared-cache feature is enabled. 
                            //
                            // P1 is the index of the database in sqlite3.aDb[] of the database on which the lock is acquired.  A readlock is obtained if P3==0 or
                            // a write lock if P3==1.
                            //
                            // P2 contains the root-page of the table to lock.
                            //
                            // P4 contains a pointer to the name of the table being locked. This is only used to generate an error message if the lock cannot be obtained.
                            bool isWriteLock = (op.P3 != 0);
                            if (isWriteLock || (ctx.flags & Context.FLAG.ReadUncommitted) == 0)
                            {
                                int p1 = op.P1;
                                Debug.Assert(p1 >= 0 && p1 < ctx.DBs.length);
                                Debug.Assert((BtreeMask & (((yDbMask)1) << p1)) != 0);
                                rc = ctx.DBs[p1].Bt.LockTable(op.P2, isWriteLock);
                                if ((rc & 0xFF) == RC.LOCKED)
                                {
                                    string z = op.P4.Z;
                                    C._setstring(ref ErrMsg, ctx, "database table is locked: ", z);
                                }
                            }
                            break;
                        }
#endif
                    #region Virtual Table
#if !OMIT_VIRTUALTABLE
                    case OP.VBegin:
                        {
                            // Opcode: VBegin * * * P4 *
                            //
                            // P4 may be a pointer to an sqlite3_vtab structure. If so, call the xBegin method for that table.
                            //
                            // Also, whether or not P4 is set, check that this is not being called from within a callback to a virtual table xSync() method. If it is, the error
                            // code will be set to SQLITE_LOCKED.
                            VTable vtable = op.P4.VTable;
                            rc = VTable.Begin(ctx, vtable);
                            if (vtable != null) ImportVtabErrMsg(this, vtable.IVTable);
                            break;
                        }
                    case OP.VCreate:
                        {
                            // Opcode: VCreate P1 * * P4 *
                            //
                            // P4 is the name of a virtual table in database P1. Call the xCreate method for that table.
                            rc = VTable.CallCreate(ctx, op.P1, op.P4.Z, ref ErrMsg);
                            break;
                        }
                    case OP.VDestroy:
                        {
                            // Opcode: VDestroy P1 * * P4 *
                            //
                            // P4 is the name of a virtual table in database P1.  Call the xDestroy method of that table.
                            InVtabMethod = 2;
                            rc = VTable.CallDestroy(ctx, op.P1, op.P4.Z);
                            InVtabMethod = 0;
                            break;
                        }
                    case OP.VOpen:
                        {
                            // Opcode: VOpen P1 * * P4 *
                            //
                            // P4 is a pointer to a virtual table object, an sqlite3_vtab structure. P1 is a cursor number.  This opcode opens a cursor to the virtual
                            // table and stores that cursor in P1.
                            IVTable vtable = op.P4.VTable.IVTable;
                            ITableModule module = (ITableModule)vtable.IModule;
                            Debug.Assert(vtable != null && module != null);
                            IVTableCursor vtabCursor;
                            rc = module.Open(vtable, out vtabCursor);
                            ImportVtabErrMsg(this, vtable);
                            if (rc == RC.OK)
                            {
                                // Initialize sqlite3_vtab_cursor base class
                                vtabCursor.IVTable = vtable;

                                // Initialise vdbe cursor object
                                VdbeCursor cur = AllocateCursor(this, op.P1, 0, -1, false);
                                if (cur != null)
                                {
                                    cur.VtabCursor = vtabCursor;
                                    cur.IModule = vtabCursor.IVTable.IModule;
                                }
                                else
                                {
                                    ctx.MallocFailed = true;
                                    module.Close(ref vtabCursor);
                                }
                            }
                            break;
                        }
                    case OP.VFilter: // jump
                        {
                            // Opcode: VFilter P1 P2 P3 P4 *
                            //
                            // P1 is a cursor opened using VOpen.  P2 is an address to jump to if the filtered result set is empty.
                            //
                            // P4 is either NULL or a string that was generated by the xBestIndex method of the module.  The interpretation of the P4 string is left
                            // to the module implementation.
                            //
                            // This opcode invokes the xFilter method on the virtual table specified by P1.  The integer query plan parameter to xFilter is stored in register
                            // P3. Register P3+1 stores the argc parameter to be passed to the xFilter method. Registers P3+2..P3+1+argc are the argc
                            // additional parameters which are passed to xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
                            //
                            // A jump is made to P2 if the result set after filtering would be empty.
                            int res;
                            Mem query = mems[op.P3];
                            Mem argc = mems[op.P3 + 1]; //: query[1];
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(E.MemIsValid(query));
                            REGISTER_TRACE(op.P3, query);
                            Debug.Assert(cur.VtabCursor != null);
                            IVTableCursor vtabCursor = cur.VtabCursor;
                            IVTable vtable = vtabCursor.IVTable;
                            ITableModule module = vtable.IModule;

                            // Grab the index number and argc parameters
                            Debug.Assert((query.Flags & MEM.Int) != 0 && argc.Flags == MEM.Int);
                            int argsLength = (int)argc.u.I;
                            int queryLength = (int)query.u.I;

                            // Invoke the xFilter method
                            {
                                res = 0;
                                Mem[] args = Args;
                                for (int i = 0; i < argsLength; i++)
                                {
                                    args[i] = mems[(op.P3 + 1) + i + 1]; //: args[i] = argc[i + 1];
                                    MemStoreType(args[i]);
                                }

                                InVtabMethod = 1;
                                rc = module.Filter(vtabCursor, queryLength, op.P4.Z, argsLength, args);
                                InVtabMethod = 0;
                                ImportVtabErrMsg(this, vtable);
                                if (rc == RC.OK)
                                    res = module.Eof(vtabCursor);

                                if (res != 0)
                                    pc = op.P2 - 1;
                            }
                            cur.NullRow = false;
                            break;
                        }
                    case OP.VColumn:
                        {
                            // Opcode: VColumn P1 P2 P3 * *
                            //
                            // Store the value of the P2-th column of the row of the virtual-table that the P1 cursor is pointing to into register P3.
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur.VtabCursor != null);
                            Debug.Assert(op.P3 > 0 && op.P3 <= Mems.length);
                            Mem dest = mems[op.P3];
                            MemAboutToChange(this, dest);
                            if (cur.NullRow)
                            {
                                MemSetNull(dest);
                                break;
                            }
                            IVTable vtable = cur.VtabCursor.IVTable;
                            ITableModule module = vtable.IModule;
                            Debug.Assert(module.Column != null);
                            FuncContext sContext = new FuncContext();

                            // The output cell may already have a buffer allocated. Move the current contents to sContext.s so in case the user-function 
                            // can use the already allocated buffer instead of allocating a new one.
                            MemMove(sContext.S, dest);
                            E.MemSetTypeFlag(sContext.S, MEM.Null);

                            rc = module.Column(cur.VtabCursor, sContext, op.P2);
                            ImportVtabErrMsg(this, vtable);
                            if (sContext.IsError != 0)
                                rc = sContext.IsError;

                            // Copy the result of the function to the P3 register. We do this regardless of whether or not an error occurred to ensure any
                            // dynamic allocation in sContext.s (a Mem struct) is released.
                            ChangeEncoding(sContext.S, encoding);
                            MemMove(dest, sContext.S);
                            REGISTER_TRACE(op.P3, dest);
                            UPDATE_MAX_BLOBSIZE(dest);

                            if (MemTooBig(dest))
                                goto too_big;
                            break;
                        }
                    case OP.VNext: // jump
                        {
                            // Opcode: VNext P1 P2 * * *
                            //
                            // Advance virtual table P1 to the next row in its result set and jump to instruction P2.  Or, if the virtual table has reached
                            // the end of its result set, then fall through to the next instruction.
                            int res = 0;
                            VdbeCursor cur = Cursors[op.P1];
                            Debug.Assert(cur.VtabCursor != null);
                            if (cur.NullRow)
                                break;
                            IVTable vtable = cur.VtabCursor.IVTable;
                            ITableModule module = vtable.IModule;
                            Debug.Assert(module.Next != null);

                            // Invoke the xNext() method of the module. There is no way for the underlying implementation to return an error if one occurs during
                            // xNext(). Instead, if an error occurs, true is returned (indicating that data is available) and the error code returned when xColumn or
                            // some other method is next invoked on the save virtual table cursor.
                            InVtabMethod = 1;
                            rc = module.Next(cur.VtabCursor);
                            InVtabMethod = 0;
                            ImportVtabErrMsg(this, vtable);
                            if (rc == RC.OK)
                                res = module.Eof(cur.VtabCursor);

                            if (res == 0)
                                pc = op.P2 - 1;// If there is data, jump to P2
                            break;
                        }
                    case OP.VRename:
                        {
                            // Opcode: VRename P1 * * P4 *
                            //
                            // P4 is a pointer to a virtual table object, an sqlite3_vtab structure. This opcode invokes the corresponding xRename method. The value
                            // in register P1 is passed as the zName argument to the xRename method.
                            IVTable vtable = op.P4.VTable.IVTable;
                            Mem name = mems[op.P1];
                            Debug.Assert(vtable.IModule.Rename != null);
                            Debug.Assert(E.MemIsValid(name));
                            REGISTER_TRACE(op.P1, name);
                            Debug.Assert((name.Flags & MEM.Str) != 0);
                            rc = ChangeEncoding(name, TEXTENCODE.UTF8);
                            if (rc == RC.OK)
                            {
                                rc = vtable.IModule.Rename(vtable, name.Z);
                                ImportVtabErrMsg(this, vtable);
                                Expired = false;
                            }
                            break;
                        }
                    case OP.VUpdate:
                        {
                            // Opcode: VUpdate P1 P2 P3 P4 *
                            //
                            // P4 is a pointer to a virtual table object, an sqlite3_vtab structure. This opcode invokes the corresponding xUpdate method. P2 values
                            // are contiguous memory cells starting at P3 to pass to the xUpdate invocation. The value in register (P3+P2-1) corresponds to the 
                            // p2th element of the argv array passed to xUpdate.
                            //
                            // The xUpdate method will do a DELETE or an INSERT or both. The argv[0] element (which corresponds to memory cell P3)
                            // is the rowid of a row to delete.  If argv[0] is NULL then no deletion occurs.  The argv[1] element is the rowid of the new 
                            // row.  This can be NULL to have the virtual table select the new rowid for itself.  The subsequent elements in the array are 
                            // the values of columns in the new row.
                            //
                            // If P2==1 then no insert is performed.  argv[0] is the rowid of a row to delete.
                            //
                            // P1 is a boolean flag. If it is set to true and the xUpdate call is successful, then the value returned by sqlite3_last_insert_rowid() 
                            // is set to the value of the rowid for the row just inserted.
                            Debug.Assert(op.P2 == 1 || (OE)op.P5 == OE.Fail || (OE)op.P5 == OE.Rollback || (OE)op.P5 == OE.Abort || (OE)op.P5 == OE.Ignore || (OE)op.P5 == OE.Replace);
                            IVTable vtable = op.P4.VTable.IVTable;
                            ITableModule module = (ITableModule)vtable.IModule;
                            int argsLength = op.P2;
                            Debug.Assert(op.P4Type == Vdbe.P4T.VTAB);
                            if (C._ALWAYS(module.Update))
                            {
                                byte vtabOnConflict = ctx.VTableOnConflict;
                                Mem[] args = Args;
                                Mem x; //: x = mems[op.P3];
                                for (int i = 0; i < argsLength; i++)
                                {
                                    x = mems[op.P3 + i];
                                    Debug.Assert(E.MemIsValid(x));
                                    MemAboutToChange(this, x);
                                    MemStoreType(x);
                                    args[i] = x;
                                    //: x++;
                                }
                                ctx.VTableOnConflict = op.P5;
                                long rowid = 0;
                                rc = module.Update(vtable, argsLength, args, out rowid);
                                ctx.VTableOnConflict = vtabOnConflict;
                                ImportVtabErrMsg(p, vtable);
                                if (rc == RC.OK && op.P1 != 0)
                                {
                                    Debug.Assert(argsLength > 1 && args[0] != null && (args[0].Flags & MEM.Null) != 0);
                                    ctx.LastRowID = lastRowid = rowid;
                                }
                                if ((RC)(rc & 0xff) == RC.CONSTRAINT && op.P4.VTable.Constraint)
                                {
                                    if ((OE)op.P5 == OE.Ignore)
                                        rc = RC.OK;
                                    else
                                        ErrorAction = ((OE)op.P5 == OE.Replace ? OE.Abort : (OE)op.P5);
                                }
                                else
                                    Changes++;
                            }
                            break;
                        }
#endif
                    #endregion
#if !OMIT_PAGER_PRAGMAS
                    case OP.Pagecount: // out2-prerelease
                        {
                            // Opcode: Pagecount P1 P2 * * *
                            //
                            // Write the current number of pages in database P1 to memory cell P2.
                            out_.u.I = ctx.DBs[op.P1].Bt.LastPage();
                            break;
                        }
                    case OP.MaxPgcnt: // out2-prerelease
                        {
                            // Opcode: MaxPgcnt P1 P2 P3 * *
                            //
                            // Try to set the maximum page count for database P1 to the value in P3. Do not let the maximum page count fall below the current page count and
                            // do not change the maximum page count value if P3==0.
                            //
                            // Store the maximum page count after the change in register P2.
                            Btree bt = ctx.DBs[op.P1].Bt;
                            long newMax = 0;
                            if (op.P3 != 0)
                            {
                                newMax = bt.LastPage();
                                if (newMax < op.P3) newMax = op.P3;
                            }
                            out_.u.I = (long)bt.MaxPageCount((int)newMax);
                            break;
                        }
#endif
#if !OMIT_TRACE
                    case OP.Trace:
                        {
                            // Opcode: Trace * * * P4 *
                            //
                            // If tracing is enabled (by the sqlite3_trace()) interface, then the UTF-8 string contained in P4 is emitted on the trace callback.
                            string trace;
                            string z;
                            if (ctx.Trace != null && !DoingRerun && (trace = (op.P4.Z != null ? op.P4.Z : Sql_)) != null)
                            {
                                z = ExpandSql(trace);
                                ctx.Trace(ctx.TraceArg, z);
                                C._tagfree(ctx, ref z);
                            }
#if DEBUG
                            if ((ctx.Flags & Context.FLAG.SqlTrace) != 0 && (trace = (op.P4.Z != null ? op.P4.Z : Sql_)) != null)
                                _dprintf("SQL-trace: %s\n", trace);
#endif
                            break;
                        }
#endif
                    default: // This is really OP_Noop and OP_Explain
                        {
                            // Opcode: Noop * * * * *
                            //
                            // Do nothing.  This instruction is often useful as a jump destination.
                            //
                            // The magic Explain opcode are only inserted when explain==2 (which is to say when the EXPLAIN QUERY PLAN syntax is used.)
                            // This opcode records information from the optimizer.  It is the the same as a no-op.  This opcodesnever appears in a real VM program.
                            Debug.Assert(op.Opcode == OP.Noop || op.Opcode == OP.Explain);
                            break;
                        }
                }
                // The cases of the switch statement above this line should all be indented by 6 spaces.  But the left-most 6 spaces have been removed to improve the
                // readability.  From this point on down, the normal indentation rules are restored.

#if VDBE_PROFILE
                {
                    ulong elapsed = C._hwtime() - start;
                    op.Cycles += elapsed;
                    op.Cnt++;
#if false
Console.Write("%10llu ", elapsed);
PrintOp(Console.Out, origPc, ops[origPc]);
#endif
                }
#endif

#if !NDEBUG
                // The following code adds nothing to the actual functionality of the program.  It is only here for testing and debugging.
                // On the other hand, it does burn CPU cycles every time through the evaluator loop.  So we can leave it out when NDEBUG is defined.
                Debug.Assert(pc >= -1 && pc < Ops.length);
#if DEBUG
                if (Trace != null)
                {
                    if (rc != 0)
                        fprintf(Trace, "rc=%d\n", rc);
                    if ((op.Opflags & (OPFLG.OUT2_PRERELEASE | OPFLG.OUT2)) != 0)
                        RegisterTrace(Trace, op.P2, mems[op.P2]);
                    if ((op.Opflags & OPFLG.OUT3) != 0)
                        RegisterTrace(Trace, op.P3, mems[op.P3]);
                }
#endif
#endif
            }  // The end of the for(;;) loop the loops through opcodes

        // If we reach this point, it means that execution is finished with an error of some kind.
        vdbe_error_halt:
            Debug.Assert(rc != 0);
            RC_ = rc;
            C.ASSERTCOVERAGE(SysEx._GlobalStatics.Log != null);
            SysEx.LOG(rc, "statement aborts at %d: [%s] %s", pc, Sql_, ErrMsg);
            Halt();
            if (rc == RC.IOERR_NOMEM) ctx.MallocFailed = true;
            rc = RC.ERROR;
            if (resetSchemaOnFault > 0)
                Parse.ResetOneSchema(ctx, resetSchemaOnFault - 1);

        // This is the only way out of this procedure.  We have to release the mutexes on btrees that were acquired at the top.
        vdbe_return:
            ctx.LastRowID = lastRowid;
            Leave();
            return rc;

        // Jump to here if a string or blob larger than CORE_MAX_LENGTH is encountered.
        too_big:
            C._setstring(ref ErrMsg, ctx, "string or blob too big");
            rc = RC.TOOBIG;
            goto vdbe_error_halt;

        // Jump to here if a malloc() fails.
        no_mem:
            ctx.MallocFailed = true;
            C._setstring(ref ErrMsg, ctx, "out of memory");
            rc = RC.NOMEM;
            goto vdbe_error_halt;

        // Jump to here for any other kind of fatal error.  The "rc" variable should hold the error number.
        abort_due_to_error:
            Debug.Assert(ErrMsg != null);
            if (ctx.MallocFailed) rc = RC.NOMEM;
            if (rc != RC.IOERR_NOMEM)
                C._setstring(ref ErrMsg, ctx, "%s", Main.ErrStr(rc));
            goto vdbe_error_halt;

        // Jump to here if the sqlite3_interrupt() API sets the interrupt flag.
        abort_due_to_interrupt:
            Debug.Assert(ctx.u1.IsInterrupted);
            rc = RC.INTERRUPT;
            RC_ = rc;
            C._setstring(ref ErrMsg, ctx, Main.ErrStr(rc));
            goto vdbe_error_halt;
        }
Example #5
0
 public static void FrameDelete(VdbeFrame p)
 {
     int i;
     //Mem[] mems = VdbeFrameMem(p);
     VdbeCursor[] cursors = p.aChildCsr;// (VdbeCursor)aMem[p.nChildMem];
     for (i = 0; i < p.nChildCsr; i++)
         FreeCursor(p.v, cursors[i]);
     ReleaseMemArray(p.aChildMem, p.nChildMem);
     p = null;// sqlite3DbFree( p.v.db, p );
 }
Example #6
0
 public static int FrameRestore(VdbeFrame frame)
 {
     Vdbe v = frame.V;
     v.OnceFlags.data = frame.OnceFlags.data;
     v.OnceFlags.length = frame.OnceFlags.length;
     v.Ops.data = frame.Ops.data;
     v.Ops.length = frame.Ops.length;
     v.Mems.data = frame.Mems.data;
     v.Mems.length = frame.Mems.length;
     v.Cursors.data = frame.Cursors.data;
     v.Cursors.length = frame.Cursors.length;
     v.Ctx.LastRowID = frame.LastRowID;
     v.Changes = frame.Changes;
     return frame.PC;
 }