Example #1
0
        public void accelerateByEnergyInJoules(SpatialVectorDouble normal, double absolvedEnergyInJoules)
        {
            // PHYSICS TO CHECK ASSUMPTION< we just use e = 1/2 * m * v², because v can be relative >
            // see http://www.dummies.com/education/science/physics/how-to-calculate-the-kinetic-energy-of-an-object/
            double vDelta = System.Math.Sqrt(absolvedEnergyInJoules * 2 / composition.mass);

            relativeVelocity += normal.scale(vDelta);
        }
Example #2
0
        public void integrate(ref RungeKutta4State state, float t, float dt)
        {
            Derivative a, b, c, d, dummy;

            dummy.dx = new SpatialVectorDouble(new double[] { 0.0, 0.0, 0.0 });
            dummy.dv = new SpatialVectorDouble(new double[] { 0.0, 0.0, 0.0 });

            a = evaluate(ref state, t, 0.0f, ref dummy);
            b = evaluate(ref state, t, dt * 0.5f, ref a);
            c = evaluate(ref state, t, dt * 0.5f, ref b);
            d = evaluate(ref state, t, dt, ref c);

            SpatialVectorDouble dxdt = (a.dx + (b.dx + c.dx).scale(2.0f) + d.dx).scale(1.0f / 6.0f);
            SpatialVectorDouble dvdt = (a.dv + (b.dv + c.dv).scale(2.0f) + d.dv).scale(1.0f / 6.0f);

            state.x = state.x + dxdt.scale(dt);
            state.v = state.v + dvdt.scale(dt);
        }
Example #3
0
        // calculates the gravitational forces and coresponding accelerations
        public void calcForcesAndAccelerationsForPhysicsComponents(IEnumerable <PhysicsComponent> physicsComponents)
        {
            foreach (PhysicsComponent iPhysicsComponent in physicsComponents)
            {
                SpatialVectorDouble sumOfForce = new SpatialVectorDouble(new double[] { 0, 0, 0 });

                foreach (CelestialObjectWithPosition iCelestialObject in celestialObjects)
                {
                    SpatialVectorDouble extrapolatedPosition = iPhysicsComponent.rungeKutta4State.x + iPhysicsComponent.rungeKutta4State.v.scale(PhysicsEngine.dt);
                    SpatialVectorDouble difference           = iCelestialObject.position - extrapolatedPosition;
                    SpatialVectorDouble direction            = difference.normalized();
                    double distanceSquared = difference.lengthSquared;

                    double forceMagnitude = Orbit.calculateForceBetweenObjectsByDistance(iPhysicsComponent.mass, iCelestialObject.celestialObject.mass, distanceSquared);

                    sumOfForce += direction.scale(forceMagnitude);
                }

                SpatialVectorDouble acceleration = sumOfForce.scale(iPhysicsComponent.invMass);
                iPhysicsComponent.linearAcceleration += acceleration;
            }
        }
Example #4
0
        public void renderString(string @string, SpatialVectorDouble signScale, SpatialVectorDouble position)
        {
            Debug.Assert(lineRendererDriver != null);

            SpatialVectorDouble currentPosition = position.deepClone();



            // TODO< find optimal scale >
            const float rescalingFactor = 1.0f / 16.0f;

            lineRendererDriver.scale = signScale.scale(rescalingFactor); // normalize scale with scale of a typical sign

            int i = 0;

            foreach (char @char in @string)
            {
                lineRendererDriver.center = currentPosition;

                // continue with next sign if we can't look it up
                if (!signToHersheyCommandIndex.ContainsKey(@char))
                {
                    continue;
                }

                int    commandIndex    = signToHersheyCommandIndex[@char];// (60+30-1) + 3*30; // signToHersheyCommandIndex[@char];
                string hersheyCommands = hersheyCommandsOfLetters[commandIndex];

                hesheyInterpreter.interpret(hersheyCommands, lineRendererDriver);

                float widthBeforeRescaling = lineRendererDriver.positionRight - lineRendererDriver.positionLeft; // width is the difference
                float width = (widthBeforeRescaling * rescalingFactor) * (float)signScale.x;

                currentPosition.x += width;

                i++;// for testing
            }
        }
Example #5
0
        static void applyForceToLinearAndAngularVelocity(PhysicsComponent physicsComponent, SpatialVectorDouble localForce, SpatialVectorDouble objectLocalPositionOfForce)
        {
            { // linear part
              // to calculate the linear component we use the dot product
                double scaleOfLinearForce = 0.0;
                if (localForce.length > double.Epsilon)
                {
                    double dotOfForceAndLocalPosition = SpatialVectorDouble.dot(localForce.normalized(), objectLocalPositionOfForce.normalized());
                    scaleOfLinearForce = System.Math.Abs(dotOfForceAndLocalPosition);
                }

                // the linear force (and resulting acceleration) is the force scaled by the dot product

                Matrix rotationMatrix           = physicsComponent.calcLocalToGlobalRotationMatrix();
                Matrix globalForceAsMatrix      = rotationMatrix * SpatialVectorUtilities.toVector4(localForce).asMatrix;
                SpatialVectorDouble globalForce = SpatialVectorUtilities.toVector3(new SpatialVectorDouble(globalForceAsMatrix));

                physicsComponent.linearAcceleration += globalForce.scale(scaleOfLinearForce * physicsComponent.invMass);
            }

            { // angular part
                physicsComponent.eulerAngularAcceleration += physicsComponent.calcAngularAccelerationOfRigidBodyForAppliedForce(objectLocalPositionOfForce, localForce);
            }
        }
Example #6
0
        RayHitDescriptor?traceRayInternal(SpatialVectorDouble rayOrigin, SpatialVectorDouble rayDirection, out bool hit, double maxT = double.MaxValue)
        {
            CollisionDescriptor collisionDescriptor = new CollisionDescriptor();

            foreach (PhysicsComponentAndCollidersPair iPhysicsComponentAndColliders in physicsAndMeshPairs)
            {
                if (ConvexHullRayIntersection.checkRayCollision(rayOrigin, rayDirection, iPhysicsComponentAndColliders.physicsComponent.boundingVolume.convexHull))
                {
                    // iterate over all ColliderComponents and check for collision
                    foreach (ColliderComponent iCollider in iPhysicsComponentAndColliders.colliders)
                    {
                        if (iCollider.isConvex)
                        {
                            SpatialVectorDouble[] convexHullPlanes = MeshUtilities.calcAllPlanes(iCollider.faces, iCollider.transformedVertices);

                            SpatialVectorDouble?hitNormal;
                            double hitTResult;
                            int?   hitFaceNumber;

                            bool isHit = ConvexHullRayIntersection.calcRayCollision(rayOrigin, rayDirection, convexHullPlanes, out hitNormal, out hitTResult, out hitFaceNumber);
                            if (!isHit)
                            {
                                continue;
                            }

                            if (hitTResult < 0.0)
                            {
                                continue;
                            }

                            if (hitTResult > maxT)
                            {
                                continue;
                            }

                            if (collisionDescriptor.rayDistance < hitTResult)
                            {
                                continue;
                            }



                            // store collision information
                            collisionDescriptor.rayDistance = hitTResult;
                            collisionDescriptor.faceIndex   = (uint)hitFaceNumber.Value;
                            collisionDescriptor.faceNormal  = hitNormal.Value;
                            collisionDescriptor.physicsComponentAndCollider = new PhysicsComponentAndCollidersPair(iPhysicsComponentAndColliders.physicsComponent, iCollider);
                            collisionDescriptor.hit = true;
                        }
                        else
                        {
                            throw new NotImplementedException();
                        }
                    }
                }
            }

            hit = collisionDescriptor.hit;
            if (hit)
            {
                // translate hit informations
                RayHitDescriptor hitDescriptor = new RayHitDescriptor();
                hitDescriptor.hitNormal = collisionDescriptor.faceNormal;
                hitDescriptor.hitPhysicsComponentAndCollider = collisionDescriptor.physicsComponentAndCollider;
                hitDescriptor.hitPosition = rayOrigin + rayDirection.scale(collisionDescriptor.rayDistance);
                return(hitDescriptor);
            }
            else
            {
                return(null);
            }
        }