public void TestConvergence()
        {
            double[,] features = { { 1d, 0d }, { 1d, 1d }, { 1d, 2d }, { 1d, 3d }, { 1d, 4d } };
            double[] initialTheta       = { 0d, 0d };
            double[] expectedTheta      = { 1d, -1d };
            double[] labels             = { 1d, 0d, -1d, -2d, -3d };
            double   learningRate       = .1d;
            int      numberOfIterations = 200;

            double[] learnedTheta = LinearRegression.Learn(features, labels, initialTheta, learningRate, numberOfIterations);
            for (int index = 0; index < learnedTheta.Length; index++)
            {
                Assert.AreEqual(expectedTheta[index], learnedTheta[index], 0.01d);
            }
        }
Example #2
0
        private void TrainPostFeatures(string postId, double lambda)
        {
            var postRepository = _unitOfWork.GetRepository <Post>();
            var post           = postRepository.Get(p => p.Id == postId)
                                 .SingleOrDefault();

            var rateRepository = _unitOfWork.GetRepository <Rate>();
            var postRates      = rateRepository.Get()
                                 .Where(r => r.PostId == postId)
                                 .Select(r => new { r.Value, r.User.Weights });

            var values = postRates.Select(r => (double)r.Value)
                         .ToArray();

            var usersWeights = postRates.Select(r => r.Weights)
                               .ToArray();

            post.Features = LinearRegression.Learn(usersWeights, values, post.Features, lambda);
            _unitOfWork.SaveChanges();
        }
Example #3
0
        private void TrainUserWeights(string userId, double lambda)
        {
            var userRepostiory = _unitOfWork.GetRepository <User>();
            var user           = userRepostiory.Get(u => u.Id == userId)
                                 .SingleOrDefault();

            var rateRepository = _unitOfWork.GetRepository <Rate>();
            var userRates      = rateRepository.Get()
                                 .Where(r => r.UserId == userId)
                                 .Select(r => new { r.Value, r.Post.Features })
                                 .ToList();

            var values = userRates.Select(r => (double)r.Value)
                         .ToArray();

            var postsFeatures = userRates.Select(r => r.Features)
                                .ToArray();

            user.Weights = LinearRegression.Learn(postsFeatures, values, user.Weights, lambda);
            _unitOfWork.SaveChanges();
        }