Example #1
0
        public static void Test(AUTD autd)
        {
            const double x = AUTD.DeviceWidth / 2;
            const double y = AUTD.DeviceHeight / 2;
            const double z = 150;

            var center = new Vector3d(x, y, z);

            var g1 = Gain.FocalPoint(center);

            var focuses = new[] {
                center + 30.0 * Vector3d.UnitX,
                center - 30.0 * Vector3d.UnitX
            };
            var amps = new[] {
                1.0,
                1.0
            };
            var backend = Gain.Eigen3Backend();
            var g2      = Gain.HoloGSPAT(focuses, amps, backend);

            var gainMap = new Dictionary <int, Gain>
            {
                [0] = g1,
                [1] = g2
            };
            var gain = Gain.Grouped(autd, gainMap);
            var mod  = Modulation.Sine(150); // AM sin 150 Hz

            autd.Send(gain, mod);

            Gain.DeleteBackend(backend);
        }
        public void Configure(Gain gain, float time, byte timeMask, bool illuminator, byte illuminatorMask)
        {
            byte[][] expected = { new byte[] { 0x17, 0x02, timeMask, (byte)gain, illuminatorMask } };

            color.Configure(gain: gain, integationTime: time, illuminate: illuminator);
            Assert.That(platform.GetCommands(), Is.EqualTo(expected));
        }
Example #3
0
        public static void Test(AUTD autd)
        {
            const double x = AUTD.DeviceWidth / 2;
            const double y = AUTD.DeviceHeight / 2;
            const double z = 150;

            autd.SilentMode = false;

            var mod = Modulation.Static();

            var       center   = new Vector3d(x, y, z);
            var       seq      = GainSequence.Create(autd);
            const int pointNum = 200;
            var       backend  = Gain.Eigen3Backend();

            for (var i = 0; i < pointNum; i++)
            {
                const double radius = 30.0;
                var          theta  = 2.0 * Math.PI * i / pointNum;
                var          p      = radius * new Vector3d(Math.Cos(theta), Math.Sin(theta), 0);
                var          gain   = Gain.FocalPoint(center + p);
                seq.AddGain(gain);
            }

            seq.Frequency = 1;
            Console.WriteLine($"Actual frequency is {seq.Frequency}");
            autd.Send(seq, mod);

            Gain.DeleteBackend(backend);
        }
        public double GetMillivolts(Channel channel, Gain gain = Gain.Volt5, SamplesPerSecond sps = SamplesPerSecond.SPS1600) {
            lock (deviceLock) {

                byte[] result = new byte[2];

                // Set disable comparator and set "single shot" mode	
                config = 0x0003 | 0x8000; // | 0x100;
                config |= (ushort)SamplePerSecondMap[(int)sps];
                config |= (ushort)channel;
                config |= (ushort)programmableGainMap[(int)gain];

                data[0] = REG_CFG;
                data[1] = (byte)((config >> 8) & 0xFF);
                data[2] = (byte)(config & 0xFF);


                I2CDevice.Write(data);
                // delay in milliseconds
                //int delay = (1000.0 / SamplesPerSecondRate[(int)sps] + .1;
            //    int delay = 1;
                Task.Delay(TimeSpan.FromMilliseconds(.5)).Wait();

                I2CDevice.WriteRead(new byte[] { (byte)REG_CONV, 0x00 }, result);

                //var r = (((result[0] << 8) | result[1]) >> 4);

                //Debug.WriteLine(r.ToString());

                return (ushort)(((result[0] << 8) | result[1]) >> 4) * programmableGain_Scaler[(int)gain] / 2048;
            }
        }
Example #5
0
 public override int Read(float[] buffer, int offset, int count)
 {
     float[] input  = new float[buffer.Length];
     float[] gain   = new float[buffer.Length];
     float[] cutoff = new float[buffer.Length];
     Source.Read(input, offset, count);
     Gain.Read(gain, offset, count);
     Cutoff.Read(cutoff, offset, count);
     for (int i = offset; i < count; i++)
     {
         // basic hard clipping
         float x   = input[i] * gain[i];
         float cut = Math.Abs(cutoff[i]);
         if (x < -cut)
         {
             buffer[i] = -cut;
         }
         else if (x > cut)
         {
             buffer[i] = cut;
         }
         else
         {
             buffer[i] = x;
         }
     }
     return(count);
 }
Example #6
0
        private ushort[] GetFullLuminosity(Gain gain, IntegrationTime time)
        {
            // We need to configure the device for the correct gain and integration time for this reading
            this._i2cDevice.Write(new byte[] { TSL2591_CONTROL_RW, (byte)((byte)gain << 4 | (byte)time) });
            try
            {
                // Enabled the device so that we can start a reading
                this._i2cDevice.Write(new byte[] { TSL2591_ENABLE_RW, 0x03 });
                try
                {
                    // We now need to wait for the integration time to pass so that we know we have a valid reading. The specification
                    // states that the MAX integration time per gain step is 108ms.
                    System.Threading.Thread.Sleep(120 * ((byte)time + 1));

                    var readBuffer = new byte[4];
                    this._i2cDevice.WriteRead(new byte[] { TSL2591_C0DATAL_R }, readBuffer);

                    var visible = (ushort)((readBuffer[1] << 8) | readBuffer[0]);
                    var ir      = (ushort)((readBuffer[3] << 8) | readBuffer[2]);

                    return(new ushort[] { (ushort)(visible - ir), ir });
                }
                finally
                {
                    this._i2cDevice.Write(new byte[] { TSL2591_ENABLE_RW, 0x00 });
                }
            }
            finally
            {
                this._i2cDevice.Write(new byte[] { TSL2591_CONTROL_RW, 0x00 });
            }
        }
Example #7
0
        public async Task <double> GetLux(Gain gain = Gain.Low, IntegrationTime time = IntegrationTime.Shortest)
        {
            await ConnectAndInitialize();

            await Configure(gain, time);

            Enable();

            await Task.Delay((int)time);

            var y          = ReadRegister(Registers.Command | Registers.C0DataL, x => (ushort)((x[1] << 8) | x[0]), 2) | 0;
            var luminosity = (ReadRegister(Registers.Command | Registers.C1DataL, x => (ushort)((x[1] << 8) | x[0]), 2) << 16) | y;

            Disable();

            var full = luminosity & 0xFFFF;
            var ir   = luminosity >> 16;

            if ((full == 0xFFFF) | (ir == 0xFFFF))
            {
                return(0.0);
            }

            var cpl = (float)gain * (float)time / 408.0F;

            return((full - ir) * (1.0f - ir / full) / cpl);
        }
Example #8
0
        public override int GetHashCode()
        {
            int hash = 1;

            if (Id != 0)
            {
                hash ^= Id.GetHashCode();
            }
            if (Player != 0)
            {
                hash ^= Player.GetHashCode();
            }
            if (PictureId != 0)
            {
                hash ^= PictureId.GetHashCode();
            }
            if (Coordinate.Length != 0)
            {
                hash ^= Coordinate.GetHashCode();
            }
            if (Gain != 0D)
            {
                hash ^= Gain.GetHashCode();
            }
            if (IsEvo != 0)
            {
                hash ^= IsEvo.GetHashCode();
            }
            if (Sharpness != 0D)
            {
                hash ^= Sharpness.GetHashCode();
            }
            return(hash);
        }
Example #9
0
        public static void Test(AUTD autd)
        {
            const double x = AUTD.DeviceWidth / 2;
            const double y = AUTD.DeviceHeight / 2;
            const double z = 150.0;

            autd.SilentMode = false;

            var mod = Modulation.Static();

            autd.Send(mod);

            const double radius = 30.0;
            const int    size   = 100;
            var          center = new Vector3d(x, y, z);
            var          stm    = autd.STM();

            for (var i = 0; i < size; i++)
            {
                var theta = 2 * AUTD.Pi * i / size;
                var r     = new Vector3d(Math.Cos(theta), Math.Sin(theta), 0);
                var f     = Gain.FocalPoint(center + radius * r);
                stm.AddSTMGain(f);
            }
            stm.StartSTM(0.5);

            Console.WriteLine("press any key to stop...");
            Console.ReadKey(true);

            stm.StopSTM();
            stm.FinishSTM();
        }
Example #10
0
        public void Configure(Gain gain, Tuple <float, byte> time, Tuple <bool, byte> illuminator)
        {
            byte[][] expected = { new byte[] { 0x17, 0x02, time.Item2, (byte)gain, illuminator.Item2 } };

            color.Configure(gain: gain, integationTime: time.Item1, illuminate: illuminator.Item1);
            Assert.That(platform.GetCommands(), Is.EqualTo(expected));
        }
Example #11
0
 void Update()
 {
     if (Target != null)
     {
         _autd.Send(Gain.FocalPoint(Target.transform.position));
     }
 }
        public double GetMillivolts(Channel channel, Gain gain = Gain.Volt5, SamplesPerSecond sps = SamplesPerSecond.SPS1600)
        {
            lock (deviceLock) {
                byte[] result = new byte[2];

                // Set disable comparator and set "single shot" mode
                config  = 0x0003 | 0x8000; // | 0x100;
                config |= (ushort)SamplePerSecondMap[(int)sps];
                config |= (ushort)channel;
                config |= (ushort)programmableGainMap[(int)gain];

                data[0] = REG_CFG;
                data[1] = (byte)((config >> 8) & 0xFF);
                data[2] = (byte)(config & 0xFF);


                I2CDevice.Write(data);
                // delay in milliseconds
                //int delay = (1000.0 / SamplesPerSecondRate[(int)sps] + .1;
                //    int delay = 1;
                Task.Delay(TimeSpan.FromMilliseconds(.5)).Wait();

                I2CDevice.WriteRead(new byte[] { (byte)REG_CONV, 0x00 }, result);

                //var r = (((result[0] << 8) | result[1]) >> 4);

                //Debug.WriteLine(r.ToString());

                return((ushort)(((result[0] << 8) | result[1]) >> 4) * programmableGain_Scaler[(int)gain] / 2048);
            }
        }
Example #13
0
        public override void Single()
        {
            if (GeneTestSetup.Instance.IsSimulated)
            {
            }
            else
            {
                string dutAddr = MeasInfo.InstruInfoList[1].Address;
                //连接串口
                HWAISGCOM aisg = new HWAISGCOM();
                aisg.Open(dutAddr, 9600);



                //设置参数
                aisg.InitDut();
                aisg.SetGain(Gain.ToString());
                string gain = aisg.GetGain();
                if (gain != Gain.ToString())
                {
                    DataUtils.LOGINFO.WriteLog("set aisg gain wrong");
                }
                aisg.SetTMAMode(SubNum, Mode);
                var mode = aisg.GetTMAMode(SubNum);
                if (mode != Mode)
                {
                    DataUtils.LOGINFO.WriteLog("set aisg tma mode wrong");
                }
                //关闭串口
                aisg.Close();
            }
        }
Example #14
0
        public static void Test(AUTD autd)
        {
            autd.SilentMode = false;

            var delays = new byte[autd.NumDevices, AUTD.NumTransInDevice];

            delays[0, 0] = 4;
            autd.SetDelayOffset(delays, null);

            var uniform = new ushort[autd.NumDevices, AUTD.NumTransInDevice];

            for (var i = 0; i < autd.NumDevices; i++)
            {
                for (var j = 0; j < AUTD.NumTransInDevice; j++)
                {
                    uniform[i, j] = 0xFFFF;
                }
            }

            var burst = new byte[4000];

            burst[0] = 0xFF;

            var g = Gain.Custom(uniform);
            var m = Modulation.Custom(burst);

            autd.Send(g, m);
        }
Example #15
0
        public static void Test(AUTD autd)
        {
            const double x = AUTD.TransSpacing * (AUTD.NumTransInX - 1) / 2.0;
            const double y = AUTD.TransSpacing * (AUTD.NumTransInY - 1) / 2.0;
            const double z = 150.0;

            var mod = Modulation.Sine(150);

            var center  = new Vector3d(x, y, z);
            var focuses = new[] {
                center + 20.0 * Vector3d.UnitX,
                center - 20.0 * Vector3d.UnitX
            };
            var amps = new[] {
                1.0,
                1.0
            };

            var backend = Gain.Eigen3Backend();
            var gain    = Gain.HoloSDP(focuses, amps, backend);

            autd.Send(gain, mod);

            Gain.DeleteBackend(backend);
        }
 protected override void EnableProperties()
 {
     Octaves.IsVisibleWhen(FractalType, f => f.CurrentValue != PropertiesFractalType.None);
     Lacunarity.IsVisibleWhen(FractalType, f => f.CurrentValue != PropertiesFractalType.None);
     Gain.IsVisibleWhen(FractalType, f => f.CurrentValue != PropertiesFractalType.None);
     WeightedStrength.IsVisibleWhen(FractalType, f => f.CurrentValue != PropertiesFractalType.None);
     PingPongStrength.IsVisibleWhen(FractalType, f => f.CurrentValue == PropertiesFractalType.PingPong);
 }
Example #17
0
 public void SetTimingAndGain(IntegrationTimeMs timing, Gain gain)
 {
     Enable();
     Write((Register)((byte)Register.Timing | (byte)Command.Command), (byte)((byte)timing | (byte)gain));
     IntegrationTime = timing;
     SensorGain      = gain;
     Disable();
 }
Example #18
0
        public INoise GetLandFormFct()
        {
            INoise AnomaliesZonesFractal           = new FractalFbm(new Perlin(_seed), _octaves, _frequency, enuBaseNoiseRange.ZeroToOne);
            INoise AnomaliesZonesFractal_as2DNoise = new NoiseAccess(AnomaliesZonesFractal, NoiseAccess.enuDimUsage.Noise2D, true);
            INoise AnomaliesZonesFractal_Bias      = new Gain(AnomaliesZonesFractal_as2DNoise, _bias);

            return(AnomaliesZonesFractal_Bias);
        }
Example #19
0
        /// <summary>
        /// Initialize a new HMC5883L device connected through I2C
        /// </summary>
        /// <param name="sensor">I2C Device, like UnixI2cDevice or Windows10I2cDevice</param>
        /// <param name="gain">Gain Setting</param>
        /// <param name="measuringMode">The Mode of Measuring</param>
        /// <param name="outputRate">Typical Data Output Rate (Hz)</param>
        public Hmc5883l(I2cDevice sensor, Gain gain = Gain.Gain1090, MeasuringMode measuringMode = MeasuringMode.Continuous, OutputRate outputRate = OutputRate.Rate15)
        {
            _sensor        = sensor;
            _gain          = (byte)gain;
            _measuringMode = (byte)measuringMode;
            _outputRate    = (byte)outputRate;

            Initialize();
        }
Example #20
0
 void Start()
 {
     trans         = GetComponent <Transform>();
     Player        = trans.Find("Camera (eye)");
     physicsPlayer = GetComponent <VRRigidbodyPlayer>();
     playArea      = GetComponent <SteamVR_PlayArea>();
     gains         = new Gain();
     lastPlayerPos = Player.localPosition;
 }
Example #21
0
        public override double GetValue(double x, double y, double z)
        {
            double lacunarity = Lacunarity.GetValue(x, y, z);
            double gain       = Gain.GetValue(x, y, z);
            double offset     = Offset.GetValue(x, y, z);
            double frequency  = Frequency.GetValue(x, y, z);

            x *= frequency;
            y *= frequency;
            z *= frequency;

            int mOctaveCount = (int)OctaveCount.GetValue(x, y, z);

            double signal = 0.0;
            double value  = 0.0;
            double weight = 1.0;

            for (int currentOctave = 0; currentOctave < mOctaveCount; currentOctave++)
            {
                long seed = (Seed + currentOctave) & 0x7fffffff;
                signal = GradientNoise.GradientCoherentNoise(x, y, z,
                                                             (int)seed, NoiseQuality);

                // Make the ridges.
                signal = System.Math.Abs(signal);
                signal = offset - signal;

                // Square the signal to increase the sharpness of the ridges.
                signal *= signal;

                // The weighting from the previous octave is applied to the signal.
                // Larger values have higher weights, producing sharp points along the
                // ridges.
                signal *= weight;

                // Weight successive contributions by the previous signal.
                weight = signal * gain;
                if (weight > 1.0)
                {
                    weight = 1.0;
                }
                else if (weight < 0.0)
                {
                    weight = 0.0;
                }

                // Add the signal to the output value.
                value += (signal * SpectralWeights[currentOctave]);

                // Go to the next octave.
                x *= lacunarity;
                y *= lacunarity;
                z *= lacunarity;
            }

            return((value * 1.25) - 1.0);
        }
Example #22
0
        /// <summary>
        /// Constructs a new Midi Processor.
        /// </summary>
        /// <param name="plugin">Must not be null.</param>
        public MidiProcessor(Plugin plugin)
        {
            _plugin   = plugin;
            Gain      = new Gain(plugin);
            Transpose = new Transpose(plugin);

            // for most hosts, midi output is expected during the audio processing cycle.
            SyncWithAudioProcessor = true;
        }
Example #23
0
 public override int GetHashCode()
 {
     unchecked
     {
         int hashCode = Power.GetHashCode();
         hashCode = (hashCode * 397) ^ Gain.GetHashCode();
         return(hashCode);
     }
 }
Example #24
0
        public override int GetHashCode()
        {
            int result = 7057;

            result = result * 8171 + (Sound != null ? (int)Sound.Index.Value : 0);
            result = result * 8171 + Gain.GetHashCode();
            result = result * 8171 + Flags;
            return(result);
        }
Example #25
0
        public override int GetHashCode()
        {
            int result = 7057;

            result = result * 8171 + (int)OriginalSound.Value;
            result = result * 8171 + Gain.GetHashCode();
            result = result * 8171 + Flags;
            return(result);
        }
Example #26
0
        public void CreateFeedEntryTest()
        {
            string xml = "<?xml version='1.0' encoding='UTF-8'?><feed xmlns='http://www.w3.org/2005/Atom' xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/' xmlns:gf='http://schemas.google.com/finance/2007' xmlns:gd='http://schemas.google.com/g/2005'><id>http://finance.google.com/finance/feeds/[email protected]/portfolios</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#portfolio'/><title type='text'>Portfolio Feed</title><link rel='alternate' type='text/html' href='http://finance.google.com/finance/portfolio?action=view'/><link rel='http://schemas.google.com/g/2005#feed' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios'/><link rel='http://schemas.google.com/g/2005#post' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios'/><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios?positions=true&amp;returns=true'/><openSearch:totalResults>1</openSearch:totalResults><openSearch:startIndex>1</openSearch:startIndex><openSearch:itemsPerPage>1</openSearch:itemsPerPage><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#portfolio'/><title type='text'>My Portfolio</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/1'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/1'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions'><feed><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>My Portfolio</title><link rel='alternate' type='text/html' href='http://finance.google.com/finance/portfolio?action=view&amp;pid=1'/><link rel='http://schemas.google.com/g/2005#feed' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios'/><openSearch:totalResults>9</openSearch:totalResults><openSearch:itemsPerPage>9</openSearch:itemsPerPage><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:MSFT</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>Microsoft Corporation</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AMSFT'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AMSFT'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:MSFT/transactions'/><gf:positionData gainPercentage='20.82242991' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='1000.0'><gf:costBasis><gd:money amount='1070.0' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='-440.001' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='22280.0' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='23350.0' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NASDAQ' fullName='Microsoft Corporation' symbol='MSFT'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:AAPL</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>Apple Inc.</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AAAPL'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AAAPL'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:AAPL/transactions'/><gf:positionData gainPercentage='355.1' return1w='0.02122168053' return1y='355.1' return3m='355.1' return3y='355.1' return4w='355.1' return5y='355.1' returnOverall='355.1' returnYTD='355.1' shares='100.0'><gf:costBasis><gd:money amount='40.0' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='258.0002' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='14204.0' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='14244.0' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NASDAQ' fullName='Apple Inc.' symbol='AAPL'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:ACAS</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>American Capital Ltd.</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AACAS'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AACAS'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:ACAS/transactions'/><gf:positionData gainPercentage='0.1045296167' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='10000.0'><gf:costBasis><gd:money amount='28700.0' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='4500.0' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='3000.0' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='31700.0' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NASDAQ' fullName='American Capital Ltd.' symbol='ACAS'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:ING</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>ING Groep N.V. (ADR)</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3AING'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3AING'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:ING/transactions'/><gf:positionData gainPercentage='0.05503634476' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='124.0'><gf:costBasis><gd:money amount='1194.12' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='-2.48' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='65.72' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='1259.84' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NYSE' fullName='ING Groep N.V. (ADR)' symbol='ING'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:FORTY</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>Formula Systems (1985) Ltd. (ADR)</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AFORTY'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NASDAQ%3AFORTY'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NASDAQ:FORTY/transactions'/><gf:positionData gainPercentage='0.03818953324' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='130.0'><gf:costBasis><gd:money amount='919.1' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='17.55' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='35.1' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='954.2' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NASDAQ' fullName='Formula Systems (1985) Ltd. (ADR)' symbol='FORTY'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:DT</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>Deutsche Telekom AG (ADR)</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3ADT'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3ADT'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:DT/transactions'/><gf:positionData gainPercentage='0.01224846894' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='242.0'><gf:costBasis><gd:money amount='2766.06' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='14.519758' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='33.88' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='2799.94' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NYSE' fullName='Deutsche Telekom AG (ADR)' symbol='DT'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:CHN</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>China Fund Inc. (The)</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3ACHN'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3ACHN'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:CHN/transactions'/><gf:positionData gainPercentage='0.03348104382' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='244.0'><gf:costBasis><gd:money amount='4955.64' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='7.320244' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='165.92' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='5121.56' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NYSE' fullName='China Fund Inc. (The)' symbol='CHN'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:FTE</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>France Telecom SA (ADR)</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3AFTE'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3AFTE'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:FTE/transactions'/><gf:positionData gainPercentage='0.02424786709' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='420.0'><gf:costBasis><gd:money amount='9353.4' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='-42.0' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='226.8' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='9580.2' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NYSE' fullName='France Telecom SA (ADR)' symbol='FTE'/></entry><entry><id>http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:GNK</id><updated>2009-06-27T05:40:34.000Z</updated><category scheme='http://schemas.google.com/g/2005#kind' term='http://schemas.google.com/finance/2007#position'/><title type='text'>Genco Shipping &amp; Trading Limited</title><link rel='self' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3AGNK'/><link rel='edit' type='application/atom+xml' href='http://finance.google.com/finance/feeds/default/portfolios/NYSE%3AGNK'/><gd:feedLink href='http://finance.google.com/finance/feeds/[email protected]/portfolios/1/positions/NYSE:GNK/transactions'/><gf:positionData gainPercentage='0.1024649589' return1w='0.0' return1y='0.0' return3m='0.0' return3y='0.0' return4w='0.0' return5y='0.0' returnOverall='0.0' returnYTD='0.0' shares='10.0'><gf:costBasis><gd:money amount='206.9' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='14.69999' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='21.2' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='228.1' currencyCode='USD'/></gf:marketValue></gf:positionData><gf:symbol exchange='NYSE' fullName='Genco Shipping &amp; Trading Limited' symbol='GNK'/></entry></feed></gd:feedLink><gf:portfolioData currencyCode='USD' gainPercentage='0.8135848188' return1w='0.02122168053' return1y='355.1' return3m='355.1' return3y='355.1' return4w='355.1' return5y='355.1' returnOverall='355.1' returnYTD='355.1'><gf:costBasis><gd:money amount='49205.22' currencyCode='USD'/></gf:costBasis><gf:daysGain><gd:money amount='4327.609192' currencyCode='USD'/></gf:daysGain><gf:gain><gd:money amount='40032.62' currencyCode='USD'/></gf:gain><gf:marketValue><gd:money amount='140032.62' currencyCode='USD'/></gf:marketValue></gf:portfolioData></entry></feed>";


            PortfolioFeed target = Parse(xml);



            for (int i = 0; i < target.Entries.Count; i++)
            {
                PortfolioEntry portfolioEntry = target.Entries[i] as PortfolioEntry;


                Console.WriteLine("Title: " + portfolioEntry.Title.Text);
                Console.WriteLine("FeedLink: " + portfolioEntry.FeedLink.ToString());
                Console.WriteLine("CurrencyCode: " + portfolioEntry.CurrencyCode);
                Console.WriteLine("GainPercentage: " + portfolioEntry.GainPercentage.ToString("0.00000000%"));
                Console.WriteLine("Return1Week: " + portfolioEntry.Return1Week.ToString("0.00000000%"));
                Console.WriteLine("Return4Week: " + portfolioEntry.Return4Week.ToString("0.00000000%"));
                Console.WriteLine("Return3Month: " + portfolioEntry.Return3Month.ToString("0.00000000%"));
                Console.WriteLine("ReturnYTD: " + portfolioEntry.ReturnYTD.ToString("0.00000000%"));
                Console.WriteLine("Return1Year: " + portfolioEntry.Return1Year.ToString("0.00000000%"));
                Console.WriteLine("Return3Year: " + portfolioEntry.Return3Year.ToString("0.00000000%"));
                Console.WriteLine("Return5Year: " + portfolioEntry.Return5Year.ToString("0.00000000%"));
                Console.WriteLine("ReturnOverall: " + portfolioEntry.ReturnOverall.ToString("0.00000000%"));

                CostBasis costBasis = portfolioEntry.CostBasis;
                foreach (Money m in costBasis.Money)
                {
                    Console.WriteLine("Money: Amount = " + m.Amount as string);
                    Console.WriteLine("Money: CurrencyCode = " + m.CurrencyCode);
                }

                DaysGain daysGain = portfolioEntry.DaysGain;
                foreach (Money m in daysGain.Money)
                {
                    Console.WriteLine("Money: Amount = " + m.Amount as string);
                    Console.WriteLine("Money: CurrencyCode = " + m.CurrencyCode);
                }

                Gain gain = portfolioEntry.Gain;
                foreach (Money m in gain.Money)
                {
                    Console.WriteLine("Money: Amount = " + m.Amount as string);
                    Console.WriteLine("Money: CurrencyCode = " + m.CurrencyCode);
                }

                MarketValue marketValue = portfolioEntry.MarketValue;
                foreach (Money m in marketValue.Money)
                {
                    Console.WriteLine("Money: Amount = " + m.Amount as string);
                    Console.WriteLine("Money: CurrencyCode = " + m.CurrencyCode);
                }
            }
        }
Example #27
0
        /// <summary>
        /// Constructs a new Midi Processor.
        /// </summary>
        /// <param name="plugin">Must not be null.</param>
        public MidiProcessor(IVstPluginEvents pluginEvents, PluginParameters parameters)
        {
            Gain      = new Gain(parameters.GainParameters);
            Transpose = new Transpose(parameters.TransposeParameters);

            // for most hosts, midi output is expected during the audio processing cycle.
            SyncWithAudioProcessor = true;

            pluginEvents.Opened += Plugin_Opened;
        }
Example #28
0
        public async Task Configure(Gain gain, IntegrationTime time)
        {
            await ConnectAndInitialize();

            _gain = (int)gain;
            WriteRegister(Registers.Command | Registers.Oscillator, gain.ToByte());

            _integrationTime = (int)time;
            WriteRegister(Registers.Command | Registers.Oscillator, time.ToByte());
        }
Example #29
0
 public void GainResourceGroup(Gain gain)
 {
     foreach (var pair in gain.GainDic)
     {
         if (BattleRsourceDic.ContainsKey(pair.Key))
         {
             BattleRsourceDic[pair.Key].GainResource(pair.Value);
         }
     }
 }
 private async void setGain(Gain gain)
 {
     if (!initialized)
     {
         await begin();
     }
     this.gain = gain;
     byte[] WriteBuffer = new byte[] { TCS34725Params.CONTROL | TCS34725Params.COMMAND_BIT,
                                       (byte)gain };
     colorSensor.Write(WriteBuffer);
 }
Example #31
0
        public Luminosity GetLuminosity(Gain gain = Gain.Low, IntegrationTime time = IntegrationTime.MS100)
        {
            var luminosity = this.GetFullLuminosity(gain, time);

            var lux = CalculateLux(luminosity[0], luminosity[1], gain, time);

            return(new Luminosity()
            {
                Visible = luminosity[0], IR = luminosity[1], Lux = lux, Gain = gain
            });
        }
Example #32
0
        /// <summary>
        /// Computes activation function and its derivative
        /// </summary>
        /// <param name="n">int</param>
        /// <param name="net">double - net</param>
        /// <param name="acct">VectorHorizontal - activation matrix</param>
        /// <param name="gain">VectorHorizontal - gain matrix</param>
        /// <returns>FunctionRD - function result</returns>
        /// <remarks>Remember that values are passed by ref to speed up</remarks>
        public static FunctionRD computeFunctionDervative(ref int n, ref double net, ref Activation acct, ref Gain gain)
        {
            FunctionChoice function = (FunctionChoice)(int)acct.Data[0][n];
            FunctionRD rd = new FunctionRD();
            switch (function)
            {
                case FunctionChoice.LinearNeuron://for output layer
                    {
                        rd.FunctionResult = gain.Data[0][n] * net;
                        rd.FunctionDerivative = gain.Data[0][n];
                    }break;

                case FunctionChoice.UnipolarNeuron:
                    {
                        rd.FunctionResult = 1 / (1 + System.Math.Exp(-gain.Data[0][n] * net));
                        rd.FunctionDerivative = gain.Data[0][n] * (1 - rd.FunctionResult) * rd.FunctionResult;
                    }break;

                case FunctionChoice.BipolarNeuron://for hidden layer
                    {
                        rd.FunctionResult = System.Math.Tanh(gain.Data[0][n] * net);
                        rd.FunctionDerivative = gain.Data[0][n] * (1 - System.Math.Pow(rd.FunctionResult,2));
                    }break;

                case FunctionChoice.BipolarElliotNeuron:
                    {
                        rd.FunctionResult = gain.Data[0][n] * net / (1 + gain.Data[0][n] * System.Math.Abs(net));
                        rd.FunctionDerivative = 1 / System.Math.Pow((gain.Data[0][n] * System.Math.Abs(net) + 1), 2);
                    }break;

                case FunctionChoice.UnipolarElliotNeuron:
                    {
                        rd.FunctionResult = 2 * gain.Data[0][n] * net / (1 + gain.Data[0][n] * System.Math.Abs(net)) - 1;
                        rd.FunctionDerivative = 2 * gain.Data[0][n] / System.Math.Pow((gain.Data[0][n] * System.Math.Abs(net) + 1), 2);
                    }break;

                default:
                    {
                        throw new NeuralNetworkError(Properties.Settings.Default.FE1);
                    }
            }
            return rd;
        }
Example #33
0
        /// <summary>
        /// Compute psudo hessian matrix and its gradient
        /// </summary>
        /// <param name="info">NetworkInfo - information about neural network</param>
        /// <param name="inp">Input - input data patterns used for learn</param>
        /// <param name="dout">Output - output data patterns used for learn</param>
        /// <param name="topo">Topography - neural network topography</param>
        /// <param name="ww">Weights - weights</param>
        /// <param name="act">Activation - activation function selection</param>
        /// <param name="gain">Gain - neuron gain</param>
        /// <param name="iw">Index - topography indexes</param>
        public void Compute(ref NetworkInfo info, ref Input inp, ref Output dout, ref Topography topo,
            Weights ww, ref Activation act, ref Gain gain, ref Index iw)
        {
            GradientMat = MatrixMB.Zeros(info.nw, 1);
            HessianMat = MatrixMB.Zeros(info.nw, info.nw);
            np = info.np;//number of patterns
            ni = info.ni;//number of inputs
            no = info.no;//number of outputs
            nw = info.nw;//number of weights
            nn = info.nn;//number of neurons
            nio = nn + ni - no;
            zeros = ni.Zeros();
            delo = MatrixMB.Zeros(1, nio + 1);
            J = MatrixMB.Zeros(1, nw);

            for (p = 0; p < np; p++)
            {
                node.Clear();
                node.AddRange(inp.Data[p]);

                CalculateFunctionValuesAndDerivates(ref ww, ref iw, ref topo, ref act, ref gain);

                for (k = 0; k < no; k++)
                {
                    o = nio + k;
                    error = dout.Data[p][k] - node[o];
                    J.ClearWithZeros();
                    s = iw.Pos(o - ni);
                    J.Data[0][s] = -derivates[o];
                    delo.ClearWithZeros();

                    CalculateJacobian(ref ww, ref iw, ref topo);

                    CalculateForHiddenLayer(ref iw, ref topo, ref ww);

                    if (dout[p, 0] > 0.5) J = J * ratio;
                    var JT = J.Transposed;
                    GradientMat = GradientMat + JT * error;
                    HessianMat = HessianMat + JT * J;
                }
            }
        }
Example #34
0
        /// <summary>
        /// Computes activation function
        /// </summary>
        /// <param name="n">int</param>
        /// <param name="net">double - net</param>
        /// <param name="acct">VectorHorizontal - activation matrix</param>
        /// <param name="gain">VectorHorizontal - gain matrix</param>
        /// <returns>double - function result</returns>
        /// <remarks>Remember that values are passed by ref to speed up</remarks>
        public static double computeFunction(ref int n,ref double net, ref Activation acct, ref Gain gain)
        {
            try
            {
                FunctionChoice function = (FunctionChoice)(int)acct.Data[0][n];
                switch (function)
                {
                    case FunctionChoice.LinearNeuron:
                        {
                            return gain.Data[0][n] * net;
                        }

                    case FunctionChoice.UnipolarNeuron:
                        {
                            return 1 / (1 + System.Math.Exp(-gain.Data[0][n] * net));
                        }

                    case FunctionChoice.BipolarNeuron:
                        {
                            return System.Math.Tanh(gain.Data[0][n] * net);
                        }

                    case FunctionChoice.BipolarElliotNeuron:
                        {
                            return gain.Data[0][n] * net / (1 + gain.Data[0][n] * System.Math.Abs(net));
                        }

                    case FunctionChoice.UnipolarElliotNeuron:
                        {
                            return 2 * gain.Data[0][n] * net / (1 + gain.Data[0][n] * System.Math.Abs(net)) - 1;
                        }
                    default:
                        {
                            throw new System.Exception(Properties.Settings.Default.FE1);
                        }
                }
            }
            catch (System.Exception ex)
            {
                throw new NeuralNetworkError("Błąd obliczania funkcji aktywacji.", ex);
            }
        }
Example #35
0
        /// <summary>
        /// Total error calculation
        /// </summary>
        /// <param name="info">NetworkInfo</param>
        /// <param name="inp">ref Input - input data patterns</param>
        /// <param name="dout">ref Output - output data</param>
        /// <param name="topo">ref Topography - topo is network topology in the form of one vector</param>
        /// <param name="ww">ref Weights  weights</param>
        /// <param name="act">ref Activation - type of activation function</param>
        /// <param name="gain">ref Gain - strengthening the activation function</param>
        /// <param name="iw">ref WeightsPointers - index pointers used for network topology stored in top in the form of one vector</param>
        /// <remarks>Network error will be overriden so please save it</remarks>
        public double CalculateError(ref NetworkInfo info, ref Input inp, ref Output dout, ref Topography topo, 
            Weights ww, ref Activation act, ref Gain gain, ref Index iw)
        {
            try
            {
                Error = 0;
                for (p = 0; p < info.np; p++)
                {
                    node.Clear();
                    node.AddRange(inp.Data[p]);

                    for (n = 0; n < info.nn; n++)
                    {
                        net = ww[iw.Pos(n)];

                        int from = iw.Pos(n) + 1;
                        int to = iw.Pos(n + 1) - 1;

                        for (i = from; i <= to; i++)
                        {
                            net += node[(int)topo[i]] * ww[i];
                        }

                        node.Add(ActivationFunction.computeFunction(ref n, ref net, ref act, ref gain));

                    }

                    for (k = 0; k < info.no; k++)
                    {
                        Error += System.Math.Pow((dout.Data[p][k] - node[info.nio + k]), 2);
                    }
                }

                return Error;
            }
            catch (System.Exception ex)
            {
                throw new NeuralNetworkError("Błąd uaktualnienia błędu sieci neuronowej. " + ex.Message, ex);
            }
        }
    private bool m_CameraChangingHeight; // is camera height changing?

    void Start()
    {
        if (!Terrain1 || !Terrain2)
        {
            Debug.LogError("Terrains not set!!");
            enabled = false;
        }

        // desert dune-like ridges are created using RidgeNoise. it is scaled down a bit, and Gain applied to make ridges more pronounced
        var desert = new Gain(
            new RidgeNoise(23478568)
                {
                    OctaveCount = 8
                } * 0.6f, 0.4f);
        // hills use a simple pink noise. 
        var hills = new PinkNoise(3465478)
                        {
                            OctaveCount = 5, // smooth hills (no higher frequencies)
                            Persistence = 0.56f // but steep (changes rapidly in the frequencies we do have)
                        };
        // weight decides, whether a given point is hills or desert
        // cached, as we'd need it to decide texture at every point
        m_Weight = new Cache(new PinkNoise(346546)
                                    {
                                        Frequency = 0.5f,
                                        OctaveCount = 3
                                    }.ScaleShift(0.5f, 0.5f));
        // overall heightmap blends hills and deserts
        m_Generator = desert.Blend(hills, m_Weight).ScaleShift(0.5f, 0.5f);
        // as changes to terrains made in playmode get saved in the editor, we need to re-generate terrains
        // at start. The coroutine will set m_Move in the end, so that camera does not fly intil it's ready
#if UNITY_EDITOR
        StartCoroutine(CreateMapsAtStart());
#else
        m_NoiseCoord=1;
        m_Move=true;
#endif
    }
Example #37
0
        private void RumasterSetCarrierConfig(string cpriport, string flowdirection, string carriernumber, string enabled, string carrierid, string technology, string frequency, string axccontainer, string gain, string fsinfo,string axcContainerGroupLength,string bfPeriod,string syncmode)
        {
            try
            {

                FsInfo fsinfoData = new FsInfo();
                string[] fsinfostr = fsinfo.Split(SPACER_FLAG_SEC);
                if (fsinfostr.Length >= 4)
                {
                    fsinfoData.Addr = byte.Parse(fsinfostr[0]);
                    fsinfoData.Hf = byte.Parse(fsinfostr[1]);
                    fsinfoData.Bf = byte.Parse(fsinfostr[2]);
                    fsinfoData.BfOffset = byte.Parse(fsinfostr[3]);
                }

                Gain  gainData = new Gain();
                string[] gainstr = gain.Split(SPACER_FLAG_SEC);
                if (fsinfostr.Length >= 3)
                {
                    gainData.GainEnable = boolDic[gainstr[0]];
                    gainData.GainDb = double.Parse(gainstr[1]);
                    gainData.GainFact = double.Parse(gainstr[2]);
                }

                CarrierData data = new CarrierData();
                data.axcContainerGroupLength = byte.Parse(axcContainerGroupLength);
                data.bfPeriod = byte.Parse(bfPeriod);
                data.carrierId = byte.Parse(carrierid);
                data.carrierNumber = byte.Parse(carriernumber);
                data.enabled = boolDic[enabled];
                data.sampleFrequency = freqDic[frequency];
                data.technology = technologyDic[technology];
                data.startAxcContainer = byte.Parse(axccontainer);
                data.syncMode = syncModeDic[syncmode];
                data.fsInfo = fsinfoData;
                data.gain = gainData;

                rCarrierConfig.SetCarrierConfig(cpriport, flowDirectionDic[flowdirection], data);
                showCarrierData(data);

            }
            catch (Exception e)
            {
                WriteTraceText("Rumaster Set Carrier Config failed!--" + e.Message);
            }
        }
Example #38
0
 /// <summary>
 /// Sets the sensor gain value.
 /// </summary>
 /// <param name="gain">Gain value.</param>
 public void SetGain(Gain gain)
 {
     Write(Register.CRB, (byte)gain);
 }
 public ADS1015(Gain refVoltage = Gain.Volt33)
 {
     this.gain = refVoltage;
 }
 public static extern void SetGain(IntPtr config, Gain gain);
Example #41
0
 /// <summary>
 /// Puts the sensor into initial state.
 /// </summary>
 /// <param name="gainLevel">Gain level configuration.</param>
 public void Init(Gain gainLevel = Gain.Level6)
 {
     bus.Write(0x01, (byte)((byte)gainLevel << 5));
 }
Example #42
0
        private void CalculateFunctionValuesAndDerivates(ref Weights ww, ref Index iw, ref Topography topo, ref Activation act, ref Gain gain)
        {
            derivates.Clear();
            derivates.AddRange(node.Count.Zeros());

            for (int n = 0; n < nn; n++)//for each neuron in network
            {
                net = ww[iw[n]];//calculate net sum

                for (i = iw[n] + 1; i <= iw[n + 1] - 1; i++)
                {
                    net += (node[topo[i]] * ww[i]);
                }

                var res = ActivationFunction.computeFunctionDervative(ref n, ref net, ref act, ref gain);//and function value and its derivative
                node.Add(res.FunctionResult);//save function value for output signal from neuron
                derivates.Add(res.FunctionDerivative);//save function derivative value for output signal from neuron
            }
        }